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INTRODUCTION

Many applications in biostatistics involve the modeling of lifetime data.

In these applications the outcome of interest is the time T , until some event

occurs. This event may be death, the appearance of a tumor, the development

of some disease, recurrence of a disease, conception, cessation of smoking,

and so forth. Here T is a non-negative random variable from a homogenous

population.

In this article we shall examine how the distribution of T can be char-

acterized. Four functions characterize the distribution of T , namely, the

survival function, which is the probability of an individual surviving beyond

time t, the hazard rate which is approximately the chance an individual of

age t experiences the event in the next instant in time, the probability den-

sity (or mass) function, which is the approximate unconditional probability

of the event occurring at time t, and the mean residual life at time t, which

is the mean time to the event of interest, given the event has not occurred

at t. If we know any one of these four functions, then the other three can be

uniquely determined. These functions are introduced for continuous, discrete

and mixed random variable in the following sections and the interrelationship

among the four functions are discussed.

The distribution of the time to an event can also be characterized by the

aging properties of the distribution of T . Aging classes are based on certain

properties of one of the four basic quantities that describe the distribution
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of T . These classes are de�ned and some basic properties of these classes are

discussed in the �nal section.

THE SURVIVAL FUNCTION

The basic quantity employed to describe time-to-event phenomena is the

survival function. This function, also known as the survivor function or

survivorship function, is the probability an individual survives beyond time

t. It is de�ned as

S(t) = Pr [T � t] :

In the context of equipment or manufactured item failures, S(t) is re-

ferred to as the reliability function. Note that the survival function is a non

increasing function with a value of 1 at the origin and 0 as t approaches

in�nity.

If T is a continuous random variable then S(t) is a continuous monotone

decreasing function and the survival function is the complement of the cu-

mulative distribution function F (t) = Pr [T � t] : That is S(t) = 1 � F (t).

The survival function is the integral of the probability density function f(t).

That is,

S(t) = Pr (T � t) =

1Z
t

f(u)du

Thus, we have the following relationship:
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f(t) = �
dS(t)

dt
:

Note that f(t)�t may be thought of as the \approximate" probability of the

event occurring at time t and that f(x) is a non-negative function with the

area under f(x) being equal to one.

Example

A common distribution used in many applications in the Weibull dis-

tribution with probability density function f(t) = ��t��1 exp (��t�) ; � >

0; � > 0: The exponential distribution is a special case of the Weibull dis-

tribution when � = 1: The survival function for the Weibull distribution is

S(t) = exp(��t�); � > 0; � > 0: Survival curves with a common median of

6.93 are exhibited in Figure 1 for � = :26328; � = :5; � = :1; � = 1; and

� = :00208; � = 3: }

When T is a discrete random variable then the survival function is a non

increasing left-continuous step function. If T can take on values t0 < t1 <

t2 < : : : with probability mass function (p.m.f.) p (tj) = Pr (T = tj) ; j =

1; 2; ::: then

S (t) = Pr (X � t) =
X

j:tj�t

p (tj) :

Note that the survival function and probability mass function are related by

p (tj) = S (tj)� S (tj+1)
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. Here we have de�ned S(t) = Pr[T � t] as was the case in [3] and [4].

This de�nition was used to make later formulas for the discrete case simpler.

Other authors (c.f. [5] and [6]) have de�ned S(t) = Pr[T > t] which makes

the relationship S(t) = 1 � F (t) hold for both the discrete and continuous

case.

THE HAZARD FUNCTION

A basic quantity, foundational in survival analysis, is the hazard function.

This function is also known as the conditional failure rate in reliability, the

force of mortality in demography, the age-speci�c failure rate in epidemiology,

the inverse of the Mill's ratio in economics or simply as the hazard rate. The

hazard rate is de�ned as

h (t) = lim
�t!0

Pr [t � T < t+�tjT � t]

�t
: (1)

The hazard rate is a non-negative function. It tells us how quickly indi-

viduals of a given age are experiencing the event of interest. The quantity

h (t)�t is the approximate probability that an individual who has survived

to age t will experience the event in the interval (t; t +�t) :

This function is particularly useful in determining the appropriate failure

distributions utilizing qualitative information about the mechanism of fail-

ure and for describing the way in which the chance of experiencing the event

changes with time. There are many general shapes for the hazard rate. Some
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generic types of hazard rates are increasing, decreasing, constant, bathtub-

shaped or hump-shaped hazard rates. Models with increasing hazard rates

arise when there is natural aging or wear-out. Decreasing hazard functions

are much less common but �nd occasional use when there is a very early

likelihood of failure such as in certain types of electronic devices or in pa-

tients experiencing certain types of transplants. Decreasing hazard rates

often arise as models for heterogenous populations where the hazard rates

of members of the population are random (See Frailty models). Most often

a bathtub-shaped hazard is appropriate in populations followed from birth.

Most population mortality data follows this type of hazard function where,

during an early period, deaths result primarily from infant diseases after

which the death rate stabilizes followed by an increasing hazard rate due to

the natural aging process. Finally, if the hazard rate is increasing early and

eventually begins declining, then the hazard is termed hump-shaped. This

type of hazard rate is often used in modeling survival after successful surgery

where there is an initial increase in risk due to infection, hemorrhaging, or

other complications just after the procedure, followed by a steady decline in

risk as the patient recovers.

If T is a continuous random variable, then

h (t) = f (t) =S (t) = �
d ln [S (t)]

dt

A related quantity is the cumulative hazard function H(t), de�ned by

6



H (t) =

tZ
0

h(u)du = � ln [S (t)] :

Thus for continuous lifetimes we have the following relationship:

S (t) = exp f�H (t)g = exp

8<
:�

tZ
0

h(u)du

9=
; :

One particular distribution, which is 
exible enough to accommodate in-

creasing (� > 1) ; decreasing (� < 1) ;or constant hazard rates (� = 1) ; is the

Weibull distribution. Hazard rates, h(x) = � � x��1; are plotted in Figure 2

for the Weibull distribution with � = :26328; � = :5;� = :1; � = 1; and � =

:00208; � = 3: One can see that, though the three survival functions have the

same basic shape, the three hazard functions are dramatically di�erent.}

When T is a discrete random variable, the hazard function is

h (tj) = Pr (T = tjjT � tj) =
p (tj)

S (tj)
; j = 1; 2; :::

Since p (tj) = S (tj)� S (tj+1) we have

h (tj) = 1� S (tj+1) =S (tj) ; j = 1; 2; :::

so that the survival function is related to the hazard function by

S (t) =
Y

j:t
j
<t

[1� h (xj)] :

For discrete lifetimes the \cumulative hazard" function is de�ned by

H (t) =
X

j:tj<t

h (tj) : (2)
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Notice that for this de�nition the relationship S (t) = exp [�H (t)] no longer

holds true. Some authors (Cox and Oakes [3]) prefer to de�ne the cumulative

hazard for discrete lifetimes, as

H (t) =
X
tj<t

ln [1� h (tj)] ; (3)

Note that for this de�nition the relationship for continuous lifetimes, S (t) =

exp [�H (t)] will then be preserved for discrete lifetimes. If the h (tj) are

small, (2) will be a �rst order approximation to (3).

The hazard rate is well-de�ned quantity for the case where T has both

discrete and continuous components. In this case the hazard function de�ned

by (1) will have a continuous part, hc (t) and a discrete part with mass hj at

time t1 < t2 < ::: . The survival function in this case can be expressed as

S (t) = exp

8<
:�

tZ
0

hc(u)du

9=
;
Y

j:tj<t

(1� hj)

For any survival function one can express the relationship between the

hazard rate and the survival function by the using the notion of a product

integral. For a function, G(), de�ne the product integral of 1 � dG(u) over

the range a to b by

P b
a [1� dG(u)] = lim

rY
k=1

f1� [G(uk)�G(uk�1)]g;

where a = u1 < ::: < ur = b and the limit is taken as r!1 and uk�uk�1 !

0: Here G is a function of locally bounded variation which is continuous from
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the right and have �nite left hand limits. If we de�ne the cumulative hazard

rate as

H(t) =

tZ
0

hc(u)du+
X

j:tj<t

hj

then the survival function in the continuous, discrete or mixed case is given

by

S(t) = P t
0 [1� dH(u)] :

Because of this property the product integral plays an important role in

survival analytic techniques.

THE MEAN RESIDUAL LIFE FUNCTION

The fourth basic parameter of interest is the mean residual life at time t.

This parameter measures, for individuals of age t, their expected remaining

lifetime. It is de�ned as

mrl(t) = E(T � tjT � t):

It can be shown, using integration by parts or a partial summation formula,

that the mean residual life is the area under the survival curve to the right

of t divided by S(t). Note that the mean life, � = mrl(0); is the total area

under the survival curve.

For a continuous random variable we have
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mrl(t) =

1R
t
(u� t)f(t)du

S(t)
=

1R
t
S(u) dt

S(t)

and

� = E(T ) =

1Z
0

uf(u)du =

1Z
0

S(u)du:

Also the variance of T is related to the survival function by

V ar(T ) = 2

1Z
0

uS(u)du�

2
4 1Z
0

S(u)du

3
5
2

:

In some applications the median residual life, rather then the mean resid-

ual life is of interest. To de�ne this quantity recall that the 100pth percentile

of a random variable X with cumulative distribution function (survival func-

tion) F (x) (S(x)) is the value xp such that

F (xp) � p and S(xp) � 1� p:

The median lifetime is the 50th percentile, x:5, of the distribution of X. If X

is a continuous random variable then the pth quantile is found by solving the

equation S(xp) = 1� p: It follows that the median lifetime, for a continuous

random variable X, is the value x:5 such that

S(x:5) = 0:5:

The median residual life time of T at time t, mdrl(t), is de�ned as the

median time to the event for an individual who has survived to time t. That

is, mdrl(t) is solution to the equation
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S(mdrl(t))

S(t)
= :5:

The population median is simply the median residual life at time 0.

To illustrate these quantities consider the three Weibull distributions con-

sidered earlier. Figure 3 shows the mean residual life function for the Weibull

models with � = 0:5; 1:0 and 3:0: As the �gure shows the mean residual life

is constant for the exponential distribution (� = 1); decreasing for the case

where � = 3 and increasing for the case where � = 0:5: Note that the trend

in the mean residual life is reversed from the trend in the hazard rate in that

when the hazard rate is increasing, re
ecting aging, the mean residual life is

decreasing. Figure 4 depicts the median residual life functions for the three

Weibull models. The shapes of the functions are quite similar to the shape

of the mean residual life functions.

RELATIONSHIP BETWEEN CHARACTERIZATIONS

Interrelationships between the characterizations discussed earlier, for a

continuous lifetime T , may be summarized as follows:

S(t) =

1Z
t

f(u)du
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= exp

8<
:�

tZ
0

h(u)du

9=
;

= exp f�H(t)g

=
mrl(0)

mrl(t)
exp

8<
:�

tZ
0

du

mrl(u)

9=
; ;

f(t) = �
d

dt
S(t)

= h(t)S(t)

=

 
d

dt
mrl(t) + 1

! 
mrl(0)

mrl(t)2

!
exp

8<
:�

tZ
0

du

mrl(u)

9=
;

h(t) = �
d

dt
ln[S(t)]

=
f(t)

S(t)

=

 
d

dt
mrl(t) + 1

!
=mrl(t);

and

mrl(t) =

1R
t
S(u)du

S(t)

=

1R
t
(u� t)f(u)du

S(t)

For a discrete random variable we have the following relationships:
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S(t) =
X

j:tj�t

p(tj)

=
Y

j:tj<t

[1� h(tj)]:

If T is an integer valued random variable with mean residual life at time k

equal to mk, k = 0; 1; 2; :::and m0 is �nite then we have

S(k) =
1 +m0

mk

kY
j=0

mj

1 +mj

:

Also, for any discrete survival function, we have

p(tj) = S(tj)� S(tj+1)

= h(tj)S(tj); j = 1; 2; :::;

h(tj) =
p(tj)

S(tj)
;

and

mrl(t) =

[tk+1 � t]S(tk+1) +
P

j:tj�tk+1

[tj+1 � tj]S(tj+1)

S(t)
; for tk � t < tk+1

CLASSES OF AGING DISTRIBUTIONS

An important characteristic of survival distribution is its aging properties.

There are a number of classes that have been suggested in the literature to

categorize distributions based on their aging properties or their dual. The
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�rst aging class is the class of increasing hazard rate (IHR) distributions and

the dual class of decreasing hazard rate (DHR) distributions. A survival

distribution is said to be in the IHR (DHR) class if and only if

S(t+ x)

S(t)
= S(xlt) is decreasing (increasing) in t for all x:

The de�nition says that the T has the IHR aging property if the probability

an individual of age t survives an addition x period of time is decreasing with

time. If T is a continuous random variable then an equivalent de�nition of

the IHR (DFR) class is that the hazard rate h(t) is increasing (decreasing)

for all t. Examples of distributions that fall in the IHR class are the Weibull

distribution with � > 1 and the gamma distribution with shape parameter

greater than one.

A second, more general aging class is the class of increasing (decreasing)

hazard rate on the average, IHRA (DHRA), distributions. A distribution is

said to fall in the IHRA (DHRA) class if and only if

�
�
1

t

�
ln [S(t)] is increasing (decreasing) in t: (4)

The de�nition arises by declaring a distribution to be in the IHRA class when

its cumulative hazard rate, -ln [S(t)] is increasing faster than the cumulative

hazard rate of an exponential random variable, t. Since the exponential

distribution re
ects a model with no aging, this class is one of distributions

for which individuals are, on the average, aging. There are several equivalent
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de�nitions of a IHRA class. Since (4) implies that S1=t(t) is increasing in t

we have that T is in the IHRA class if and only if S(�t) � S�(t): A second

characterization of the IHRA class is that if T is in the IHRA class then for

any � > 0 the quantity S(t) � e��t has at most one change of sign and if

it does have a change in sign then it is from + to �. The class of IHRA

distributions is larger than the class of IHR distributions in that every IHR

distribution is an IHRA distribution but the converse is not true.

A third aging class is the class of decreasing (increasing) mean residual

life, DMRL (IMRL) distributions. A distribution is said to be in the DMRL

(IMRL) class if

mrl(t) =

1R
t
S(x)dx

S(t)
is decreasing (increasing) in t:

This aging class, which include all IHR models, is one where the mean re-

maining life of an individual of age t is becoming shorter as t increases.

A fourth aging class is the class of new better (worse) than used NBU

(NWU) distributions. Here a distribution is in the NBU (NWU) class if and

only if

S(x+ t) � (�)S(x)S(t) for any x and t:

An equivalent de�nition for the NBU class is

S(x+ t)

S(t)
= Pr [T � x + tjT � t] � Pr [T � x] = S(x):

15



From this second de�nition we see that T has an NBU distribution if the

probability an individual of age t lives an additional x time units is smaller

than the probability an individual of age 0 survives to age x. This aging class

includes all the IHRA distributions.

A �fth aging class is the class of new better (worse) that new in expecta-

tion, NBUE (NWUE) distributions. A distribution is in the NBUE (NWUE)

class if its mean, �, is �nite and

1Z
t

S(u)du � (�)�S(t) for all t:

The NBUE class is one where the mean residual life of an individual of age

t is less that the mean of an individual of age 0.

A �nal aging class is the class of harmonic new better (worse) than used

in expectation, HNBUE (HNWUE) distributions. A distribution is said to

be in the HNBUE (HNWUE) class if its mean is �nite and

1Z
t

S(u)du � � exp(�t=�):

An equivalent de�nition for the HNBUE class is

8<
:1

t

tZ
0

dx

mrl(x)

9=
;
�1

� mrl(0):

This means that for a HNBUE distribution the integral harmonic value of

the residual life of an individual of age t is smaller than the same quantity

for a newly born individual.
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The aging classes are ordered as follows:

IHR =) IHRA =) NBU =) NBUE =) HNBUE

IHR =) DMRL =) NBUE =) HNBUE

DHR =) DHRA =) NWU =) NWUE =) HNWUE

DHR =) IMRL =) NWUE =) HNWUE

Further discussion of these failure classes can be found in Barlow and Proschan

[1] and Basu and Ebrahimi [2].
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