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Abstract.

A common approach to testing for di�erences between the survival rates of two

therapies is to use a proportional hazards regression model which allows for an

adjustment of the two survival functions for any imbalance in prognostic factors in

the comparison. An alternative approach to this problem is to plot the di�erence

between the two predicted survival functions with a con�dence band that provides

information about when these two treatments di�er. Such a band will depend on

the covariate values of a given patient. In this paper we show how to construct a

con�dence band for the di�erence of two survival functions based on the proportional

hazards model. A simulation approach is used to generate the bands. This approach

is used to compare the survival probabilities of chemotherapy and allogeneic bone

marrow transplants for chronic leukemia.

1. Introduction

A common problem encountered in biomedical applications is the comparison of the survival
rates of two treatments. In this comparison one tests whether the two treatments have the
same survival function or equivalently the same hazard function over a given time period.
When there are additional covariates associated with survival then this testing is typically
performed in the framework of a Cox (1972) proportional hazards model.

When the testing results indicate that two survival functions are di�erent, patients and
physicians often want to known \at what times are these two treatments di�erent?". This
is particularly important when one treatment has a higher early survival but lower long
term survival. This question is of particular interest in comparing the survival rates of
bone marrow transplantation (BMT) and conventional chemotherapy patients. Here, bone
marrow transplantation patients may have a higher early mortality rate, due to treatment
toxicity, and a lower late death rate, due to a reduced relapse risk.

To answer this question, it is useful to plot the estimate of the di�erence between the two
survival functions along with a con�dence band for the di�erence. Visually examining these
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plots and comparing the con�dence bands with the zero line summarizes how the di�erence
betwen the two survival functions change with time. Recently, Parzen et al (1997) used the
Kaplan-Meier (1958) estimators of the two survival functions, F̂1(�) and F̂2(�), to estimate
the di�erence between the survival functions and they proposed a simulation method to
construct a con�dence band for this di�erence.

In many applications there is a need, when comparing two treatments, to make adjust-
ments for other covariates that may a�ect outcome. When the two treatments are found
to have di�erent survival rates then patients and physicians want to known \for a given
patient with a certain set of covariates, when are the two treatments di�erent?". In the
sequal, we attempt to answer this question by comparing the estimated survival functions
for the two treatments using a strati�ed Cox(1972) proportional hazards model. That is, we
estimate the di�erence between the two conditional survival functions for a particular set
of covariate values, D(�; z0) = F2(�; z0) � F1(�; z0), by D̂(�; z0) = e��̂2(�;z0) � e��̂1(�;z0) where
�̂i(�; z0); i = 1; 2 are the Breslow (1975) type estimate for the cumulative hazard functions.

To �nd a con�dence band for D(�; z0), using the martingale central limit theory one can
show that D̂(�; z0) converges weakly to a zero mean Gaussian process. It is well known that
this limiting Gaussian process does not have independent increments, hence, it is di�cult
to evaluate this limiting distribution analytically. In the one sample cases, Lin et al (1994)
proposed a simulation method to construct the con�dence bands for F (�; z0). In this paper
we propose to use a similar simulation method to construct a con�dence band for D(�; z0).

In Section 2, we present the estimates and simulation method used to construct a con�-
dence band for the di�erence of two survival functions based on a strati�ed Cox proportional
hazards model. In Section 3, we present an example of this technique using chronic leukemia
data from The International Bone Marrow Transplant Registry and German CML Study
Group.

2. Con�dence bands for the di�erence of two survival functions

Let the observations on subject j of treatment group i be fXij; Tij; Dij; Zijg where Xij is
the left-truncation time, Dij = 0 if subject (i; j) is censored, Dij = 1 otherwise, Tij is
the observation time of subject (i; j) which is observed only if Tij � Xij, and Zij are the
covariates, for i = 1; 2 and j = 1; � � � ; ni. So the data considered here are left-truncated and
right censored. Note that if Xij = 0 for all i; j then the data is right censored only. We �t a
Cox (1972) model strati�ed on treatment. That is for a patient given treatment i, i = 1; 2,
the hazard function is

�i(t; z) = �i0(t)e
�0z;

where �i0(t) is the baseline hazard functions for treatment i, z is a p�vector of covariates
that in
uence survival, and � is a p�vector of unknown regression coe�cients.
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Here, � can be estimated by maximizing the strati�ed Cox partial log likelihood function

C(�; t) =
2X

i=1

niX
j=1

Z t

0
� 0ZijdNij(u)�

2X
i=1

Z t

0
log

0
@ niX

j=1

Yij(u)e
�0Zij

1
A d �Ni(u);

where Nij(u) = IfXij � Tij � u;Dij = 1g, �Ni =
P

iNij, and Yij(u) = IfXij � u � Tijg is
the indicator of whether the jth individual is at risk at time u and is in the ith treatment
group. Note that an individual is at risk only since his or her truncation time, so that the
size of the risk set is initally increasing and then decreases.

To compare two predicted survival curves, we estimate the conditional survival functions
for the two treatments for a patient with a particular set of covariates z0,

Fi(t; z0) = P (T > tjz0; Treatment i) = e��i(t;z0);

where �i(tjz0) = e�
0z0

Z t

0
�i0(u)du. An estimator of the cumulative baseline hazard rate for

treatment i; i = 1; 2 is given by Breslow's (1975) estimator

�̂i0(t) =
Z t

0

d �Ni(u)Pni

j=1 Yij(u) exp(�̂
0Zij)

:

For convenience we introduce the notations

S
(k)
i (�; t) =

1

ni

niX
j=1

Yij(t)Z

k
ij e�

0Zij ;

Ei(�; t) = S
(1)
i (�; t)=S

(0)
i (�; t);

Vi(�; t) = S(2)
i (�; t)=S(0)

i (�; t)� Ei(�; t);

s
(k)
i (�; t) = EfS(k)

i (�; t)g;
ei(�; t) = s

(1)
i (�; t)=s

(0)
i (�; t);

vi(�; t) = s
(2)
i (�; t)=s

(0)
i (�; t)� ei(�; t);

for i = 1; 2; and k = 0; 1; 2, where for a column vector a, a
0 = 1, a
1 = a, and a
2 = aa0.
For simplicity of presentation, we assume fXij; Tij; Dij; Zijg; (j = 1; � � � ; ni) are indepen-

dent and identically distributed, P (Tij � Xij) > 0, and fZijg is bounded. Left-truncated
and right-censored survival data has been studied extensively. The more general conditions
required to obtain large sample results for this type of data can be found in Woodroofe
(1985), Lai and Ying (1991) and Andersen et al (1993). Andersen et al (1993) argued that
the martingale central limit theory can be applied to the left-truncated data, so that the
asymptotic results based on right censored data can be extended to the left-truncated and
right censored data. Also we assume that two samples are independent. Let n = n1 + n2.
Then, if ni=n �! pi > 0, for i = 1; 2, �̂ is an consistent estimate of �, and

p
n(�̂ � �)

D�! N(0;��1);
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where

� =
2X

i=1

pi

Z 1

0
vi(�; t)s

(0)(�; t)�i0(t)dt;

which is assumed to be positive de�nite and can be consistently estimated by the observed
information matrix

b� =
1

n

2X
i=1

Z 1

0
Vi(�̂; t)d �Ni(t):

To �nd the limiting distribution of

W (t; z0) =
p
n
n
[F̂2(t; z0)� F̂1(t; z0)]� [F2(t; z0)� F1(t; z0)]

o
;

the delta-method can be used to show that this process behaves asymptotically like

W1(t; z0) =
p
nfF1(t; z0)[�̂1(t; z0)� �1(t; z0)]� F2(t; z0)[�̂2(t; z0)� �2(t; z0)]g:

Let Nij be the observed counting process and de�ne the martingales

Mij(t) = Nij(t)�
Z t

0
Yij(u)e

�0Zij�i0(u)du; (1)

for i = 1; 2 and j = 1; � � � ; ni. Let �Mi =
Pni

j=1Mij, Andersen and Gill (1982) showed that
W1(t; z0) is asymptotically equivalent to

fW (t; z0) =
p
nF1(t; z0)

Z t

0

e�
0z0d �M1(u)

n1S
(0)
1 (�; u)

�p
nF2(t; z0)

Z t

0

e�
0z0d �M2(u)

n2S
(0)
2 (�; u)

+
�
F1(t; z0)h1(t; z0)�F2(t; z0)h2(t; z0)

�0
��1

8<
: 1p

n

2X
i=1

niX
j=1

Z 1

0
[Zij�Ei(�; u)]dMij(u)

9=
; ; (2)

where hi(t; z0) =
Z t

0
e�

0z0[z0 � ei(�; u)]�i0(u)du; which can be estimated by

ĥi(t; z0) =
Z t

0
e�̂

0z0(u)[z0 � Ei(�; u)]
d �Ni(u)

niS
(0)
i (�̂; u)

:

By Rebolledo's martingale central limit theorem we can show that fW (t; z0) converges
weekly to a zero mean Gaussian martingale on [0; � ], where � < infft : EYij(t) = 0g, with
covariate function

�(t; v; z0) =
2X

i=1

1

pi
Fi(t; z0)Fi(v; z0)

Z t^v

0

e2�
0z0�i0(u)du

s
(0)
i (�; u)

+
�
F1(t; z0)h1(t; z0)� F2(t; z0)h2(t; z0)

�0
��1

�
F1(v; z0)h1(v; z0)� F2(v; z0)h2(v; z0)

�
:
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It follows that the variance of W (t; z0) can be consistently estimated by

�̂2(t; z0) =
2X

i=1

n

n2
i

F̂ 2
i (t; z0)

Z t

0

e2�̂
0z0d �Ni(u)

[S
(0)
i (�̂; u)]2

+
�
F̂1(t; z0)ĥ1(t; z0)� F̂2(t; z0)ĥ2(t; z0)

�0 b��1
�
F̂1(t; z0)ĥ1(t; z0)� F̂2(t; z0)ĥ2(t; z0)

�
:

The limiting Gaussian process for W (t; z0) does not have independent increments, which
makes the computation of the distribution of limiting functionals of W (t; z0) di�cult. To
approximate these limiting distributions we shall use a modi�cation of a Monte Carlo tech-
nique proposed recently by Parzen et al (1997) and Lin et al (1994). First, note that the
martingales fMij(u)g in (1) have mean zero and variance fNij(u)g. By the results in Lin
et al (1994), if one replaces fMij(u)g with fGijNij(u)g, in (2), where Gij are independent

standard normal random variables, then the limiting distribution of fW , evaluated using the
estimated regression coe�cients and covariance matrix is the same as that of W . In par-
ticular, to construct the con�dence band for D(t; z0) = F2(t; z0) � F1(t; z0), t 2 [t1; t2], we
simulate N realizations of

B̂(t; z0) = cW (t; z0)=�̂(t; z0);

with

cW (t; z0) =
p
nF̂1(t; z0)

n1X
j=1

Z t

0

e�̂
0z0G1jdN1j(u)

n1S
(0)
1 (�̂; u)

�p
nF̂2(t; z0)

n2X
j=1

Z t

0

e�̂
0z0G2jdN2j(u)

n2S
(0)
2 (�̂; u)

+
�
F̂1(t; z0)ĥ1(t; z0)�F̂2(t; z0)ĥ2(t; z0)

�0
�̂�1

8<
: 1p

n

2X
i=1

niX
j=1

Z 1

0
[Zij�Ei(�̂0; u)]GijdNij(u)

9=
; : (3)

A (1� �)� 100% con�dence band for D(t; z0) over the interval [t1; t2] is given by

[F̂2(t; z0)� F̂1(t; z0)]� n�1=2C��̂(t; zo);

where C� is the (1��)�100th percentile of the sample �B(k) = Supt2[t1;t2]jŴ (k)(t; z0)=�̂(t; zo)j,
for k = 1; � � � ; N , simulated from (3).

3. Example

To illustrate this approach we compare the survival probabilities of chronic phase chronic
myelogenous leukemia (CML) patients treated with conventional chemotherapy against pa-
tients treated by an allogeneic bone marrow transplants. Patients treated with conventional
chemotherapy were from a multicenter trial conducted by the German CML study group.
Of the 196 patients in that study, 75 recieved primary treatment with interferon and 121
with hydroxyurea. Patients in this study arm were followed from the time of diagnosis to
death or until the end of the study.
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The transplant cohort included 548 patients receiving hydroxyurea or interferon pre-
treatment and a HLA-identical sibling bone marrow transplant (BMT). All patients were
reported to the International Bone Marrow Transplant Registry (IBMTR). IBMTR is a
voluntary working group of over 300 transplant centers worldwide that contribute data on
their allogeneic bone marrow transplants to a Statistical Center at the Medical College of
Wisconsin. Patients in this arm were diagnosed between 1983 and 1991, and were between
15 and 55 years of age. For detailed patient characteristics see Gale et al (1998).

The IBMTR only records data on consecutive transplants from member institutions and
does not provide data on patients who died while waiting for a transplant. Thus the trans-
plant data is left truncated at the time of transplant. This left truncation can lead to a
time-to-treatment bias (See Klein and Zhang (1996)) unless a proper adjustment is made to
the risk set. Hence, at each time point, the risk set in the non-transplant cohort consists of
all patients still under study while the risk set in the transplant cohort includes only those
with a waiting time to transplant less than the current time point who are still under study.

For the CML data, the following covariates were associated with survival: sex (1{female,
0{male), spleen size (1{� 10 cm, 0{otherwise), year of diagnosis (1{� 1998, 0{otherwise),
and age at diagnosis (1{� 35 years, 0{otherwise). A test of interaction indicated that
year of diagnosis had a di�erent e�ect for the two treatments. We �t it separately for the
two treatments. Also, the proportionality assumption did not hold for treatment e�ect,
indicating that the relationship between treatment and outcome di�ered over time. We �t
a Cox model strati�ed on treatment to the time from diagnosis to death. The regression
coe�cient estimates are given in Table 1.

Table 1. Regression coe�cient estimates.

Variable Coe�cient Estimate Standard Error
Sex -0.434 0.139
Spleen size 0.461 0.146
Age 0.198 0.139
Year of diagnosis:

Chemotherapy 0.120 0.216
Transplant -0.553 0.182

When comparing two survival curves based on left-truncated data additional care is
required in choosing the comparison interval, [t1; t2]. It is important to choose t1 such that
the risk sets at t1 consists of a su�cient number of patients for both cohorts in order to
make a stable comparison. We choose the comparison interval as [6:4; 100:4] months since
diagnosis. At 6.4 month, the sizes of the risk sets were 189 and 117 for non-transplant and
transplant cohort respectively, and at 100.4 month both cohort had at least 10 patients still
at risk.

We plot the predicted survival curves and the estimated di�erences for a particular set of
covariates values. The critical value C� was approximated based on 5; 000 realizations of (3).
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Figure 1a shows the estimated survival curves for a recently diagnosed (� 1988) older (� 35
years) male patient with large spleen size � 10 cm. Figure 1b shows the estimated di�erence
(BMT-Chemotherapy) between the two survival curves with a 95% pointwise con�dence
interval and 95% con�dence band for such a patient. A similar plot for a patient diagnosed
prior to 1988 with the same characteristics is given in Figure 2.

These con�dence band plots indicated that the chemotherapy treatment has an early
survival advantage due, perhaps, to the toxicity of the bone marrow transplant. There is a
signi�cant late survival advantage for transplant patient due to a lower relapse rate. Also
for the recently treated cases (Figure 1) BMT had a survival advantage (95% con�dence
band is > 0) starting at 5.50 years after diagnosis. This is in contrast to patients treated
prior to 1988 (Figure 2) where BMT started to show an advantage only after 8.29 years since
diagnosis. This may be due to the improvement of bone marrow transplant techniques over
the years.

In this example, there are 16 sets of possible covariates values. The time points since
diagnosis where BMT starts to have a survival advantage are presented in Table 2. These
time points ranged from 5.50 years to 8.29 years since diagnosis depending on the given
patient characteristics. By contrast to the comparison of two Kaplan-Meier survival curves,
this comparison of two predicted survival curves based on the Cox model provides more
information to both the physicians and patients.

Table 2. Time points t0 since diagnosis (DX) in years where BMT starts to have survival
advantage.

Covariate Values
Sex Spleen Size Age Year of DX C� t0
M < 10 cm < 35 < 88 2.96 7.84
M < 10 cm < 35 � 88 2.97 5.97
M � 10 cm < 35 < 88 2.96 7.84
M � 10 cm < 35 � 88 2.99 5.88
M < 10 cm � 35 < 88 2.99 7.84
M < 10 cm � 35 � 88 2.95 5.88
M � 10 cm � 35 < 88 2.96 8.29
M � 10 cm � 35 � 88 2.94 5.50
F < 10 cm < 35 < 88 2.96 8.29
F < 10 cm < 35 � 88 2.93 5.97
F � 10 cm < 35 < 88 2.99 7.84
F � 10 cm < 35 � 88 2.98 6.24
F < 10 cm � 35 < 88 2.92 7.84
F < 10 cm � 35 � 88 2.89 5.97
F � 10 cm � 35 < 88 2.90 7.84
F � 10 cm � 35 � 88 2.92 5.88
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4. Remarks

Plotting the con�dence band for the di�erence of two predicted survival functions provides a
valuable decision making tool for physicians and patients. The proposed simulation method
is easy to program, and o�ers a 
exible way to construct such con�dence bands, particularly
when the limiting distributions cannot be evaluated analytically. The proposed simulation
method can be extended to compare the di�erence of two survival curves based on other
models, such as Aalen's (1989) additive model or other more general models.

The estimated critical value, C�, depends on the number of realizationsN . It is important
to know what is the appropriate N . In our example for an early diagnosed young (< 35 yr)
male patient with small spleen size (< 10 cm), the estimated C 0

�s were 3.01, 2.98, 2.97, 3.01,
2.97, and 3:01 for N = 500; 1500; 3000; 5000; 8000 and 10000, respectively. It appears that
the estimate of C� is resonably stable after only 500 replications.
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Figure 1(a). Predicted Probability of Survival for Recently Diagnosed,
Older, Male Patient with Large Spleen Size
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Figure 2(a). Predicted Probability of Survival for Early Diagnosed,
Older, Male Patient with Large Spleen Size
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Figure 2(b). Difference of Survival Probabilities (BMT - Chemotherapy)
 for Early Diagnosed, Older, Male Patient with Large Spleen Size

Years Since Diagnosis

D
if

fe
re

nc
e 

of
 S

ur
vi

va
l P

ro
ba

bi
lit

ie
s 95% Pointwise Confidence Interval

95% Simultaneous Confidence Band


