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Summary

When there are covariate effects to be considered, multistate survival analysis is domi-

nated either by parametric Markov regression models or by semiparametric Markov regres-

sion models using Cox’s (1972) proportional hazards models for transition intensities between

the states. The purpose of this research work is to study alternatives to Cox’s model in a

general finite-state Markov process setting. We shall look at two alternative models, Aalen’s

(1989) nonparametric additive hazards model and Lin & Ying’s (1994) semiparametric ad-

ditive hazards model. The former allows the effects of covariates to vary freely over time,

while the latter assumes that the regression coefficients are constant over time. With the

basic tools of the product integral and the functional delta-method, we present an estimator

of the transition probability matrix and develop the large sample theory for the estimator

under each of these two models. Data on 1459 HLA identical sibling transplants for acute

leukaemia from the International Bone Marrow Transplant Registry serve as illustration.

Some key words: Additive hazards; Additive risk; Bone marrow transplant; Markov regres-
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sion model; Multistate model; Multistate survival analysis; Product integral.

1. Introduction

In many clinical and epidemiological follow-up studies, subjects may experience events

of multiple types. For example, a patient recovering from a bone marrow transplant for

leukaemia may fail therapy because of one of several terminal events, such as death in

remission, relapse or simply death. As the patient recovers, intermediate events may occur

that have an influence on the eventual prognosis, such as the return of the patient’s platelets

to a ‘normal’ level, the development of various types of infection and the occurrence of acute

or chronic graft-versus-host disease.

A natural way to model complex experiments of this kind is to use a multistate model.

Figure 1 shows a simplified diagram of the recovery process as previously explored by Keiding

et al. (2001). Here, for illustrative purposes, we only consider four events: acute graft-versus-

host disease (A), chronic graft-versus-host disease (C), death in remission (D) and relapse

(R). These four events are modelled by a six-state model with two absorbing states, D and

R, and four transient states, Tx, which stands for transplantation, A, C and AC, which

stands for both A and C. Note that relapse is treated as an absorbing state since patients

who relapse are typically considered as failures of the treatment, and that chronic prior to

acute graft-versus-host disease is not biologically possible. Our interest centres on predicting

the probability that a patient will be in one of the six states at some time after transplant.

[Fig. 1 about here.]

Multistate models have traditionally been represented by Markov models which assume

that the transition rates depend only on the current state of the patient and not on the

patient’s history. When there is no covariate, Aalen & Johansen (1978) showed how counting

process methods can be used to estimate transition probabilities.

2



When there are covariates which may affect the rate of transition from one state to

the next, a number of Markov models have been proposed in the literature. These include

parametric models for the transition intensities (Begg & Larson, 1982; Kalbfleisch & Lawless,

1985; Marshall & Jones, 1995; Alioum & Commenges, 2001; Pérez-Ocón et al., 2001) or

semiparametric Markov regression models where transition intensities are modelled by the

Cox (1972) proportional hazards regression models (Andersen, 1988; Andersen et al., 1991;

Klein et al., 1993; Klein & Qian, 1996; Andersen et al., 2000). In this paper, we focus on

the semiparametric case. For convenience, the semiparametric proportional hazards Markov

regression model will be called the ‘Cox Markov model’ in the sequel.

Two versions of the Cox Markov model have been suggested. The first, due to Andersen

& Gill (1982) and Andersen et al. (1991), fits a distinct Cox model to each of the transition

rates. Hereafter we shall refer to this version as the ‘Andersen-Gill Cox Markov model’.

In the bone marrow transplant example, this model entails eleven separate Cox regression

analyses. These regression analyses are then synthesized to obtain estimates of the transition

probabilities.

Klein et al. (1993) suggested fitting a Cox model to each of the events with indicator-type

time-dependent covariates used to model the timing of the intermediate events that precede

the event of interest. Their model, which essentially assumes proportional hazards for all

transitions into the same event, is a special case of the Andersen-Gill Cox Markov model and

will be referred to as the ‘Klein-Keiding Cox Markov model’. In the bone marrow transplant

example this approach requires the fitting of four Cox models. The transition probability

estimators and their asymptotics for this model can be found in Klein & Qian (1996).

Recently, Aalen et al. (2001) suggested an alternative to the Cox model in this setting;

see also the 2001 unpublished Medical College of Wisconsin Ph.D. dissertation of Y. Shu.

They suggested that the transition intensities be modelled by Aalen’s (1989) additive hazards
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regression models rather than Cox’s proportional hazards regression models. They briefly

touched upon the asymptotics of the estimators of the transition probabilities.

In this paper, we discuss the use of Lin & Ying’s (1994) additive hazards regression model

for the transition intensities. This model, as opposed to Aalen’s (1989) model, assumes that

the regression coefficients are constant over time. It is flexible enough to allow analogues of

both the Andersen-Gill and Klein-Keiding models in the additive regression settings. It has

a further advantage over both the Cox and Aalen (1989) models in that the estimates of the

regression coefficients have a closed-form solution.

The remainder of the paper proceeds as follows. In § 2, we describe Markov processes and

introduce the powerful tool of the product integral. In § 3, we present three additive hazards

Markov regression models, namely, the Aalen Markov model, the Andersen-Gill Lin-Ying

Markov model and the Klein-Keiding Lin-Ying Markov model. The first two are analogues

of the Andersen-Gill Cox Markov model, and the third one is an analogue of the Klein-

Keiding Cox Markov model. For each model, we present the synthesized estimators of the

transition probabilities and the asymptotics of the estimators. Proofs of the asymptotics are

found in the appendices. The results of fitting various Markov models to the bone marrow

transplant data are reported in § 4. We conclude with some discussion in § 5.

2. Markov Processes and the Product Integral

Suppose that observations are made on a group of individuals who independently move

among k states, denoted by 1, . . . , k, according to a nonhomogeneous, time-continuous

Markov process {Γ(t), t ≥ 0} having k× k transition intensity matrix α(t) = {αhj(t); h, j =

1, . . . , k} with diagonal elements αhh(t) = −∑j �=h αhj(t), and having transition probability

matrix P(s, t) = {Phj(s, t); h, j = 1, . . . , k} with (h, j)th element

Phj(s, t) = pr{Γ(t) = j|Γ(s) = h}, s ≤ t.
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Conditioning on the initial states, for n conditionally independent replications of this process,

subject to quite general censoring patterns, the multivariate counting process N (t) = {Nhj(t);

h �= j}, with Nhj(t) counting the number of observed direct transitions from state h to

state j in [0, t], has intensity process λ(t) = {λhj(t); h �= j} of the multiplicative form

λhj(t) = Yh(t)αhj(t). Here Yh(t) ≤ n is the number of sample paths observed to be in state

h just prior to time t.

We define Ahj(t) =
∫ t
0 αhj(u)du for all h, j. The cumulative transition intensities Ahj(t)

(h �= j) can be estimated by the well-known Nelson-Aalen estimators

Âhj(t) =
∫ t

0

Jh(u)dNhj(u)

Yh(u)
,

where Jh(t) = I{Yh(t) > 0} with I(·) being the indicator function. The transition proba-

bilities Phj(s, t) depend on the transition intensities αhj through the Kolmogorov forward

differential equations, whose solution may be represented as the matrix product integral (Gill

& Johansen, 1990)

P(s, t) = π
(s,t]

{
I + dA(u)

}
,

where A(u) = {Ahj(u)} and I is the k×k identity matrix. Aalen & Johansen (1978) exploited

this relationship to estimate the transition probability matrix by

P̂(s, t) = π
(s,t]

{
I + dÂ(u)

}
, (1)

where Â(u) = {Âhj(u)} with diagonal elements Âhh(u) = −∑j �=h Âhj(u).

When there are covariates to be adjusted for, we assume that each transition intensity

αhj(t; Zi) (h, j = 1, . . . , k, h �= j) from state h to state j in a Markov process for individual

i (i = 1, . . . , n) with a vector of fixed-time covariates Zi follows a given regression model.

Our interest lies in predicting the transition probabilities Phj(s, t; Z0) for individuals with a

given vector of fixed-time covariates, Z0. These estimates are obtained by replacing Â(t) in

(1) with Â(t; Z0), an estimate of A(t; Z0), obtained from the regression model.
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The large sample properties of the transition probability matrix estimator P̂(s, t; Z0) =

{P̂hj(s, t; Z0); h, j = 1, . . . , k} can be found for Markov regression models with the aid of the

following lemma.

Lemma 1. Let τ be a model-dependent upper bound of the time interval for which as-

ymptotic results are desired. Let s, v ∈ [0, τ) with s < v. Assume that the matrix-valued

estimator Â(·; Z0) is of uniformly bounded total variation, with probability tending to 1, over

[s, v], and that n1/2
∫ ·
s d{Â(u; Z0) − A(u; Z0)} converges weakly on [s, v] to a limiting process

U (·; Z0). Define, for t ∈ [s, v],

P(s, t; Z0) = π
(s,t]

{
I + dA(u; Z0)

}
, P̂(s, t; Z0) = π

(s,t]

{
I + dÂ(u; Z0)

}
.

Then n1/2{P̂(s, ·; Z0) − P(s, ·; Z0)} converges weakly on [s, v] to the process

∫ ·

s
P(s, u−; Z0) dU (u; Z0)P(u, ·; Z0).

Moreover, we have

n1/2{P̂(s, t; Z0) − P(s, t; Z0)} a
=
∫ t

s
P(s, u−; Z0) d

{
n1/2(Â − A)(u; Z0)

}
P(u, t; Z0),

where
a
= denotes ‘asymptotically equivalent’; that is, convergence in probability to zero of the

supremum norm of the difference.

Proof. This is easily proved by the compact differentiability of the product integral (Gill

& Johansen, 1990, Theorem 8) and by applying the functional delta-method (Andersen et

al., 1993, Theorem II.8.1). �

The rather condensed notation of matrix product integral may not be so illuminating.

In many cases it is possible to write out explicit expressions for the transition probability

estimates P̂hj(s, t; Z0). This is the case with our six-state bone marrow transplant model,

see Fig. 1, as demonstrated in the following example.
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Example 1. For the bone marrow transplant example, the estimated cumulative transi-

tion intensity matrix is, with t and Z0 suppressed for ease of exposition,

Â =




−Â12−Â13−Â15−Â16 Â12 Â13 0 Â15 Â16

0 −Â24−Â25−Â26 0 Â24 Â25 Â26

0 0 −Â35−Â36 0 Â35 Â36

0 0 0 −Â45−Â46 Â45 Â46

0 0 0 0 0 0
0 0 0 0 0 0




.

Let J denote the set of all possible transitions, that is,

J = {12, 13, 15, 16, 24, 25, 26, 35, 36, 45, 46}.

Then the sixteen nonzero transition probability estimates are

P̂hh(s, t; Z0) = π
(s,t]

{
1 − ∑

j: j>h, hj∈J
dÂhj(u; Z0)

}
, h = 1, 2, 3, 4;

P̂hj(s, t; Z0) =
∫ t

s
P̂hh(s, u−; Z0) dÂhj(u; Z0), hj = 35, 36, 45, 46;

P̂2j(s, t; Z0) =
∫ t

s
P̂22(s, u−; Z0)

{
dÂ2j(u; Z0) + P̂4j(u, t; Z0) dÂ24(u; Z0)

}
, j = 5, 6;

P̂hj(s, t; Z0) =
∫ t

s
P̂hh(s, u−; Z0)P̂jj(u, t; Z0) dÂhj(u; Z0), hj = 12, 13, 24;

P̂14(s, t; Z0) =
∫ t

s
P̂11(s, u−; Z0)P̂24(u, t; Z0) dÂ12(u; Z0);

P̂1j(s, t; Z0) =
∫ t

s
P̂11(s, u−; Z0)

{
dÂ1j(u; Z0) + P̂2j(u, t; Z0) dÂ12(u; Z0)

+ P̂3j(u, t; Z0) dÂ13(u; Z0)
}

, j = 5, 6.

At this point, a few words about these transition probability estimates are in order,

for some of these quantities are of particular interest and will be illustrated in § 4. For

example, given that individuals with fixed covariates Z0 were initially in state 1 at time 0,

P̂1j(0, t; Z0) (j = 1, . . . , 6) is the estimated probability of being in state j at time t. Here, in

particular, P̂15(0, t; Z0) and P̂16(0, t; Z0) are the estimated probability of death in remission

at time t and the estimated probability of relapse at time t, respectively. The estimated

leukaemia-free survival function is given by 1 − P̂15(0, t; Z0) − P̂16(0, t; Z0).
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3. The Models

3·1. The Aalen Markov Model

Consider a group of n individuals indexed by i = 1, . . . , n, each with a (p + 1) × 1 time-

fixed covariate vector Zi = (1, Zi1, . . . , Zip)
�. Define the counting process Nhji(t) (h, j =

1, . . . , k, h �= j) to be the number of direct transitions from state h to state j observed for

individual i in the time interval [0, t]. Let αhj(t; Zi) be the transition intensity from state h

to state j for individual i, and let

Yhi(t) = I(the ith individual is observed to be in state h just prior to time t).

Then, under independent censoring, Nhji(t) can be uniquely decomposed as

Nhji(t) =
∫ t

0
Yhi(u)αhj(u; Zi)du + Mhji(t),

where Mhji(t) is a local square integrable martingale.

The Aalen Markov model assumes that each transition intensity αhj(t; Zi) follows an

Aalen (1989) additive model:

αhj(t; Zi) = βhj0(t) + βhj1(t)Zi1 + · · ·+ βhjp(t)Zip,

h, j = 1, . . . , k, h �= j, i = 1, . . . , n,

where βhjw(t), w = 0, 1, . . . , p, are unknown regression functions; note that if a covariate

has no effect on the intensity of the h → j transition then the regression function for that

covariate is set to a constant value of 0. This formulation of the model was initially presented

in Aalen et al. (2001), and had been independently studied in Y. Shu’s dissertation.

Let Nhj(t) = (Nhj1(t), . . . , Nhjn(t))�, βhj(t) = (βhj0(t), βhj1(t), . . . , βhjp(t))
�. Let Yh(t)

be the n × (p + 1) matrix with ith row, i = 1, . . . , n, given by

Yhi(t)(1, Zi1, . . . , Zip) = (Yhiw(t), w = 0, 1, . . . , p).
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Aalen (1989) showed that the vector of cumulative regression functions Bhj(t) =
∫ t
0 βhj(u)du

may be estimated by

B̂hj(t) =
∫ t

0
Jh(u)

{
Y �

h (u)Yh(u)
}−1

Y �
h (u)dNhj(u), h �= j,

where Jh(t) is the predictable indicator of Yh(t) having full column rank, with the assumption

that p + 1 ≤ n.

For individuals with given fixed covariate vector Z0 = (1, Z01, . . . , Z0p)
�, their cumulative

intensities for the h → j transition are estimated by

Âhj(t; Z0) = Z�
0 B̂hj(t), h �= j. (2)

Thus, if we define

Âhh(t; Z0) = −∑
j �=h

Âhj(t; Z0), h = 1, . . . , k,

then the transition probability matrix P(s, t; Z0) = {Phj(s, t; Z0); h, j = 1, . . . , k} is esti-

mated by the product integral, cf. § 2,

P̂(s, t; Z0) = π
(s,t]

{
I + dÂ(u; Z0)

}
, (3)

where Â(t; Z0) = {Âhj(t; Z0)}.
The asymptotic properties of the estimator P̂(s, t; Z0) = {P̂hj(s, t; Z0); h, j = 1, . . . , k}

are given by the following theorem.

Theorem 1 (The Aalen Markov model). Let

τ = sup
{
u :

∫ u

0
|βhjw(ũ)|dũ < ∞, h, j = 1, . . . , k, h �= j, w = 0, 1, . . . , p

}

and let s, v ∈ [0, τ) with s < v. Then, under regularity conditions (see Appendix 1), we have

the following:

(i) the process n1/2{P̂(s, ·; Z0) − P(s, ·; Z0)} converges weakly on [s, v] to a zero-mean

Gaussian process;

9



(ii) cov{P̂hj(s, t; Z0), P̂mr(s, t; Z0)} (s ≤ t ≤ v) can be estimated uniformly consistently

by

côv{P̂hj(s, t; Z0), P̂mr(s, t; Z0)}

=
k∑

g=1

∑
l �=g

∫ t

s
F̂

(hj)
gl (u; s, t,Z0)F̂

(mr)
gl (u; s, t,Z0)

× Z�
0 Jg(u)

{
Y �

g (u)Yg(u)
}−1

Y �
g (u) diag{dNgl(u)}Yg(u)

{
Y �

g (u)Yg(u)
}−1

Z0, (4)

where F̂
(hj)
gl (u; s, t,Z0) = P̂hg(s, u−; Z0){P̂lj(u, t; Z0) − P̂gj(u, t; Z0)}, and diag(ρ) for an n-

vector ρ is the n × n diagonal matrix with the elements of ρ on the diagonal.

3·2. The Andersen-Gill Lin-Ying Markov model

An alternative to Aalen’s (1989) additive hazards model is Lin & Ying’s (1994) additive

hazards model. This model assumes that the regression coefficients do not depend on time,

so that the transition intensities are modelled by

αhj(t; Zi) = αhj0(t) + β�
hjZi, h, j = 1, . . . , k, h �= j, i = 1, . . . , n,

where Zi = (Zi1, . . . , Zip)
� is a p-vector of time-fixed covariates, αhj0(t) is an unspecified

baseline intensity for the h → j transition, and βhj is a p-vector of unknown regression

parameters for the h → j transition.

Let Nhj(t) =
∑n

i=1 Nhji(t), Yh(t) =
∑n

i=1 Yhi(t), Z̄h(t) =
∑n

i=1 Yhi(t)Zi/Yh(t). For a p-

vector a, let a⊗2 denote the p×p matrix aa�. Lin & Ying (1994) showed that the estimator

of βhj can be written explicitly as

β̂hj =
[ n∑

i=1

∫ ∞

0
Yhi(u){Zi − Z̄h(u)}⊗2 du

]−1[ n∑
i=1

∫ ∞

0
{Zi − Z̄h(u)} dNhji(u)

]

with variance-covariance matrix consistently estimated by côv(β̂hj) =
1

n
Ω̂

−1

h V̂hjΩ̂
−1

h , where

Ω̂h =
1

n

n∑
i=1

∫ ∞

0
Yhi(u){Zi − Z̄h(u)}⊗2 du,
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V̂hj =
1

n

n∑
i=1

∫ ∞

0
{Zi − Z̄h(u)}⊗2 dNhji(u).

Furthermore, the cumulative baseline hazard function, Ahj0(t) =
∫ t
0 αhj0(u)du, can be esti-

mated uniformly consistently by

Âhj0(t, β̂hj) =
∫ t

0

dNhj(u)

Yh(u)
−
{∫ t

0
Z̄h(u)du

}�
β̂hj. (5)

To estimate the transition probability matrix P(s, t; Z0) for individuals with given fixed

covariate vector Z0 = (Z01, . . . , Z0p)
�, we let

Âhj(t; Z0) = Âhj0(t, β̂hj) + tβ̂
�
hjZ0, h �= j.

Then P(s, t; Z0) is again estimated by the product integral in the manner of (3).

The asymptotic properties of the estimated transition probabilities are found in the fol-

lowing theorem.

Theorem 2 (The Andersen-Gill Lin-Ying Markov model). Let

τ = sup
{
u :

∫ u

0
αhj0(ũ)dũ < ∞, h, j = 1, . . . , k, h �= j

}

and let s, v ∈ [0, τ) with s < v. Then, under regularity conditions (see Appendix 2), we have

the following:

(i) the process n1/2{P̂(s, ·; Z0) − P(s, ·; Z0)} converges weakly on [s, v] to a zero-mean

Gaussian process;

(ii) cov{P̂hj(s, t; Z0), P̂mr(s, t; Z0)} (s ≤ t ≤ v) can be estimated uniformly consistently

by

côv{P̂hj(s, t; Z0), P̂mr(s, t; Z0)}

=
k∑

g=1

∑
l �=g

{Q̂ (hj)
gl (s, t; Z0)}�côv(β̂gl)Q̂

(mr)
gl (s, t; Z0)

+
k∑

g=1

∑
l �=g

∫ t

s
F̂

(hj)
gl (u; s, t,Z0)F̂

(mr)
gl (u; s, t,Z0)

dNgl(u)

{Yg(u)}2
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+
1

n

k∑
g=1

∑
l �=g

n∑
i=1

{Q̂ (hj)
gl (s, t; Z0)}�Ω̂

−1

g

∫ t

s

Zi − Z̄g(u)

Yg(u)
F̂

(mr)
gl (u; s, t,Z0) dNgli(u)

+
1

n

k∑
g=1

∑
l �=g

n∑
i=1

{Q̂ (mr)
gl (s, t; Z0)}�Ω̂

−1

g

∫ t

s

Zi − Z̄g(u)

Yg(u)
F̂

(hj)
gl (u; s, t,Z0) dNgli(u), (6)

where

F̂
(hj)
gl (u; s, t,Z0) = P̂hg(s, u−; Z0){P̂lj(u, t; Z0) − P̂gj(u, t; Z0)},

Q̂
(hj)
gl (s, t; Z0) =

∫ t

s
F̂

(hj)
gl (u; s, t,Z0){Z0 − Z̄g(u)} du.

3·3. The Klein-Keiding Lin-Ying Markov Model

The two additive hazards Markov regression models presented in the previous subsec-

tions require that an additive hazards regression model be fitted to each of the transition

intensities. An alternative approach, in the spirit of Klein et al. (1993), is to fit a distinct

additive regression model to each event with time-dependent indicators for the intermediate

events. In the bone marrow transplant example, see Fig. 1, this approach fits a model to

acute graft-versus-host disease, a model to chronic graft-versus-host disease with a time-

dependent indicator for acute graft-versus-host disease, and models to relapse and death

in remission with time-dependent indicators for acute and chronic graft-versus-host disease.

The model for each of these regressions is taken to be a Lin & Ying (1994) additive model

with fixed regression coefficients. Here, we will not consider the Aalen (1989) model which

turns out to produce estimates identical to those of the Aalen Markov model of § 3.1.

To formulate the general finite-state Klein-Keiding Lin-Ying Markov model, we assume

that an individual is at the risk of having any one of the events in a set E . This set consists

of both the intermediate and terminal events. In our bone marrow transplant example,

E = {A, C, D, R}.
As in Example 1 of § 2, we let J denote the set of all possible transitions. In the

bone marrow transplant example, J = {12, 13, 15, 16, 24, 25, 26, 35, 36, 45, 46} has eleven
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elements. For any event X ∈ E , we define J (X) as the set of transitions into event X that

are possible. We call the transitions in J (X) ‘X-transitions’. In our example, J (A) = {12},
J (C) = {13, 24}, J (D) = {15, 25, 35, 45} and J (R) = {16, 26, 36, 46}. Obviously, we have

J = ∪X∈EJ (X).

For any event X ∈ E , we define the ancestor set A(X) as the set of intermediate events

that may happen prior to the occurrence of the event X. In our example, we have A(A) = ∅,
the empty set, A(C) = {A} and A(D) = A(R) = {A, C}.

Let Zi = (Zi1, . . . , Zip)
� be the vector of fixed-time covariates that may have an influence

on any event in E for individual i and let TXi be the occurrence time of event X (X ∈ E) for

individual i. For simplicity and for notational ease, we assume, for the moment, that there

is no interaction effect. Then

ZXi(t) =
(
Z�

i , {I(TX′i < t), X ′ ∈ A(X)}
)�

(7)

will be the ith individual’s full covariate vector used in modelling the hazard rate for event

X. Define the counting process NXi(t) to be the number of X events observed for individual

i in the time interval [0, t]. Let αX{t; ZXi(t)} be the hazard rate of the time to event X for

individual i, and let

YXi(t) = I(the ith individual is at risk of event X just prior to time t).

Then, under independent censoring, NXi(t) can be uniquely decomposed as

NXi(t) =
∫ t

0
YXi(u)αX{u; ZXi(u)} du + MXi(t),

where MXi(t) is a local square integrable martingale.

The Klein-Keiding Lin-Ying Markov model assumes that, for each event X, the hazard

rate αX{t; ZXi(t)} follows a Lin & Ying (1994) additive model:

αX{t; ZXi(t)} = αX0(t) + β�
XZXi(t), X ∈ E , i = 1, . . . , n, (8)
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where αX0(t) is an arbitrary baseline hazard function for event X and βX is a vector of

unknown regression parameters for event X. Conforming to (7), we may write βX =(
β�

FX , {βX′X , X ′ ∈ A(X)}
)�

, where βFX is a vector of risk coefficients for the fixed-time

covariates Zi for the event X; note that if a fixed-time covariate has no effect on the timing

of event X then the risk coefficient for that covariate is set to 0. Also, βX′X is the risk

coefficient for the effect of the occurrence of event X ′ on the time to event X. Then (8) can

be rewritten more explicitly as

αX (t; Zi, {I(TX′i < t), X ′ ∈ A(X)})

= αX0(t) + β�
FXZi +

∑
X′∈A(X)

βX′XI(TX′i < t), X ∈ E , i = 1, . . . , n. (9)

Since, for each gl ∈ J (X), at any time t, state g determines the value of all the indicator

functions {I(TX′i < t), X ′ ∈ A(X)} by definition, we can define the hazard rate for the

X-transition gl by

αgl(t; Zi) = αX0(t) + β�
XZgli,

where Zgli =
(
Z�

i , {I(TX′i < t), X ′ ∈ A(X)}
)�

, a fixed X-transition-specific covariate vector

for individual i composed of the fixed covariates plus the vector {I(TX′i < t), X ′ ∈ A(X)}
of 0’s and 1’s determined by state g.

Example 2. In the bone marrow transplant example, E = {A, C, D, R}, so we fit four

separate Lin & Ying (1994) additive hazards models, one for each of the four events A, C,

D and R. For illustrative purposes, let us look at the event D only. Then model (9) means

αD{t; Zi, I(TAi < t), I(TCi < t)} = αD0(t) + β�
FDZi + βADI(TAi < t) + βCDI(TCi < t), (10)

which implies that 


α15(t; Zi) = αD0(t) + β�
FDZi

α25(t; Zi) = αD0(t) + β�
FDZi + βAD

α35(t; Zi) = αD0(t) + β�
FDZi + βCD

α45(t; Zi) = αD0(t) + β�
FDZi + βAD + βCD.

(11)
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Model (9) assumes that the fixed-time covariate vector Zi has the same regression coef-

ficients βFX for all the X-transitions. This condition may be relaxed by including in the

model interaction terms between the fixed-time covariates and the time-dependent indicator

covariates.

Example 3. In Example 2, the four D-transitions, 1→5, 2→5, 3→5 and 4→5, have the

same covariate effects for Zi, cf. (11). This assumption could be easily relaxed by fitting a

model for the event D with interaction effects as follows. Define ZAi(t) = I(TAi < t, TCi ≥ t),

ZCi(t) = I(TAi ≥ t, TCi < t) and ZACi(t) = I(TAi < t, TCi < t). Then an alternative model

to (10) is

αD{t; Zi, ZAi(t), ZCi(t), ZACi(t)} = αD0(t) + β�
15Zi {1 − ZAi(t) − ZCi(t) − ZACi(t)}

+ β�
25ZiZAi(t) + β�

35ZiZCi(t) + β�
45ZiZACi(t)

+ γADZAi(t) + γCDZCi(t) + γAC,DZACi(t),

which leads to 


α15(t; Zi) = αD0(t) + β�
15Zi

α25(t; Zi) = αD0(t) + β�
25Zi + γAD

α35(t; Zi) = αD0(t) + β�
35Zi + γCD

α45(t; Zi) = αD0(t) + β�
45Zi + γAC,D.

Let NX(t) =
∑n

i=1 NXi(t), YX(t) =
∑n

i=1 YXi(t), Z̄X(t) =
∑n

i=1 YXi(t)ZXi(t)/YX(t). Lin &

Ying (1994) showed that the estimator for βX , the vector of regression parameters in model

(8), can be expressed explicitly as

β̂X =
[ n∑

i=1

∫ ∞

0
YXi(u){ZXi(u) − Z̄X(u)}⊗2 du

]−1[ n∑
i=1

∫ ∞

0
{ZXi(u) − Z̄X(u)} dNXi(u)

]
,

the variance-covariance matrix of which is consistently estimated by côv(β̂X) =
1

n
Ω̂

−1

X V̂XΩ̂
−1

X

with

Ω̂X =
1

n

n∑
i=1

∫ ∞

0
YXi(u){ZXi(u) − Z̄X(u)}⊗2 du,
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V̂X =
1

n

n∑
i=1

∫ ∞

0
{ZXi(u) − Z̄X(u)}⊗2 dNXi(u).

Furthermore, the cumulative baseline hazard rate for event X, AX0(t) =
∫ t
0 αX0(u)du, can

be estimated uniformly consistently by

ÂX0(t, β̂X) =
∫ t

0

dNX(u)

YX(u)
−
{∫ t

0
Z̄X(u)du

}�
β̂X . (12)

For individuals with given fixed covariate vector Z0 = (Z01, . . . , Z0p)
�, their estimated

cumulative intensities from state g to l, Âgl(t; Z0), are given by

Âgl(t; Z0) =

{
ÂX0(t, β̂X) + tβ̂

�
XZgl0, if g �= l and gl ∈ J (X) for some X ∈ E ;

0, if g �= l and gl /∈ J .

These estimators are again substituted into (3) to obtain the estimator for P(s, t; Z0).

We have the following result about the asymptotic distribution of the estimated transition

probabilities.

Theorem 3 (The Klein-Keiding Lin-Ying Markov model). Let

τ = sup
{
u :

∫ u

0
αX0(ũ)dũ < ∞, X ∈ E

}

and let s, v ∈ [0, τ) with s < v. Then, under regularity conditions (see Appendix 3), we have

the following:

(i) the process n1/2{P̂(s, ·; Z0) − P(s, ·; Z0)} converges weakly on [s, v] to a zero-mean

Gaussian process;

(ii) cov{P̂hj(s, t; Z0), P̂mr(s, t; Z0)} (s ≤ t ≤ v) can be estimated uniformly consistently

by

côv{P̂hj(s, t; Z0), P̂mr(s, t; Z0)}

=
∑
X∈E

{Q̂ (hj)
X (s, t; Z0)}�côv(β̂X)Q̂

(mr)
X (s, t; Z0)

+
∑
X∈E

∫ t

s
F̂

(hj)
X (u; s, t,Z0)F̂

(mr)
X (u; s, t,Z0)

dNX(u)

{YX(u)}2

16



+
1

n

∑
X∈E

n∑
i=1

{Q̂ (hj)
X (s, t; Z0)}�Ω̂

−1

X

∫ t

s

ZXi(u) − Z̄X(u)

YX(u)
F̂

(mr)
X (u; s, t,Z0) dNXi(u)

+
1

n

∑
X∈E

n∑
i=1

{Q̂ (mr)
X (s, t; Z0)}�Ω̂

−1

X

∫ t

s

ZXi(u) − Z̄X(u)

YX(u)
F̂

(hj)
X (u; s, t,Z0) dNXi(u), (13)

where

F̂
(hj)
X (u; s, t,Z0) =

∑
gl∈J (X)

Ĥ
(hj)
gl (u; s, t,Z0),

Q̂
(hj)
X (s, t; Z0) =

∫ t

s

∑
gl∈J (X)

[
Ĥ

(hj)
gl (u; s, t,Z0){Zgl0 − Z̄X(u)}

]
du,

Ĥ
(hj)
gl (u; s, t,Z0) = P̂hg(s, u−; Z0){P̂lj(u, t; Z0) − P̂gj(u, t; Z0)}.

4. Example

We return to the bone marrow transplant example. A dataset of 1459 patients receiving

an HLA-identical sibling bone marrow transplant between 1988 and 1996 was drawn from

the International Bone Marrow Transplant Registry data base. Of these, 1081 patients were

treated for acute myeloid leukaemia and 378 for acute lymphoblastic leukaemia. All patients

were transplanted in the first remission of their disease, 267 (18.3%) died in remission and

217 (14.9%) relapsed. A total of 418 (28.7%) patients developed acute graft-versus-host

disease and 407 (27.9%) developed chronic graft-versus-host disease. For each patient, a

number of fixed-time covariates were recorded, such as the patient’s and the donor’s age and

sex, Karnofsky score and the time from diagnosis to transplantation.

The purpose of this example is to illustrate the methodology we have developed, and

not to attempt a thorough analysis of the data. Here we shall consider only two covariates,

AGE and SEX-MATCH, of which AGE is a 0–1 binary variable with 1 indicating that the

patient is more than 28 years old. The four combinations of recipient-donor SEX-MATCH

are represented by three indicator variables for the instances of ‘male patient, female donor’,

‘female patient, male donor’ and ‘male patient, male donor’. We fitted the three additive
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hazards Markov regression models of § 3, the Aalen Markov model, the Andersen-Gill Lin-

Ying Markov model and the Klein-Keiding Lin-Ying Markov model with full interaction

effects, as exemplified in Example 3 of § 3. For comparison, we also fitted the two proportional

hazards Markov regression models, the Andersen-Gill Cox Markov model and the Klein-

Keiding Cox Markov model, also with full interaction effects.

We focus on predicting outcome for a male patient aged over 28 years with a female donor.

Table 1 reports the estimates and associated standard errors of the chance the patient will

be in one of the six states at 100 days, 6 months, 1 year and 2 years post-transplant for each

of the five models.

[Table 1 about here.]

In Fig. 2(a), we compare the predicted leukaemia-free survival function, i.e., the chance

of not being in state 5 or 6, for the five models. Figure 2(b) shows the standard errors from

the five models.

[Fig. 2 about here.]

We see from Table 1 and Fig. 2(a) that the probability estimates under the two Lin-Ying

Markov models are pretty similar, as are the probability estimates under the two Cox Markov

models. In fact, all the five models yield reasonably comparable results except at right-hand

tails, where there are fewer data and greater variabilities. However, away from the tails, the

precision of the probability estimates based on the two Lin-Ying Markov models seems to be

higher than that based on the other three models, as is evident from Table 1 and Fig. 2(b).

Remark. In order not to make asymptotic arguments unwieldy, Theorems 1–3 impose

slightly stronger sufficient conditions, such as condition (c) in Appendix 1 and the condition

pr{Yh1(u) = 1 for all u ∈ [s, v]} > 0 in Appendix 2. For the bone marrow transplant data,
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such conditions are not satisfied for states h �= 1 when s = 0. However, we believe that the

asymptotic distributions for P̂1j(s, t; Z0) given in our theorems will continue to hold even

when s = 0.

5. Discussion

For Aalen’s (1989) model, the effects of the covariates are functions of time rather than

single parameter values as in the Cox model and the Lin & Ying (1994) model. Although

being capable of providing detailed information concerning the temporal influence of each

covariate, Aalen’s (1989) model is more limited in the number of covariates it can handle

in practical data analysis. Note that, as opposed to a step function from a Cox model or

an Aalen (1989) model, the estimated cumulative baseline hazard function from a Lin &

Ying (1994) model is piecewise continuous, or, to be more precise, piecewise linear with a

slope not necessarily of zero between any two adjacent follow-up times if there are no time-

dependent covariates or only indicator-type time-dependent covariates when present, with

jumps at event times only; cf. (5) and (12). Thus the Lin-Ying Markov model, in either of

its two forms, usually gives a much smoother fit to the data than do the Cox Markov models

and the Aalen Markov model. This explains why the probability estimates based on the two

Lin-Ying Markov models tend to have smaller standard errors, as found in § 4.

The estimated survival curves from the three additive hazards Markov regression models

shown in Fig. 2(a) are not necessarily monotonically decreasing, as it is obviously the case

with the curve from the Aalen Markov model. This is a consequence of a drawback of the

additive hazards models: in neither Aalen’s (1989) model nor Lin & Ying’s (1994) model is

the hazard rate constrained to be positive. Nevertheless, in practice, this is seldom a serious

disadvantage, since the monotonicity property is usually only slightly violated in a small

neighbourhood of some time points. A simple remedy for this problem is to do monotone
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smoothing using the so-called ‘pool-adjacent-violators algorithm’ (Barlow et al., 1972, pp.

13–5). In our bone marrow transplant example, we could have easily done that, but we leave

it as it is, to show that the lack of monotonicity is minimal. Indeed, an estimated survival

curve with substantially increasing sections would probably indicate a lack of fit, since in

theory the estimator is uniformly consistent for the true survival function.

McKeague & Sasieni (1994) proposed a more versatile additive hazards model in which

the influence of only a few covariates varies nonparametrically over time, and that of the

remaining covariates is unchanging. In a finite-state Markov process, if we assume each tran-

sition intensity follows a McKeague & Sasieni (1994) model, then we add to our multistate

survival models family another new member: the ‘McKeague-Sasieni Markov model’. It is

emphasized that our unifying approach to Markov regression models using the basic tools of

the product integral and the functional delta-method is easily extended to this model.

Finally, note that the regression modelling assumptions made in these models are testable

assumptions. For example, Shen & Cheng (1999) provided graphical methods for assessing

the appropriateness of Lin & Ying’s (1994) regression model. A number of techniques are

also available for checking the fit of the Cox model or the fit of the Aalen (1989) additive

model (Klein & Moeschberger, 1997). Klein & Moeschberger (1997) showed how one can

distinguish between the Andersen-Gill and Klein-Keiding models in the proportional hazards

framework. Y. Shu’s dissertation shows how their methods can be adapted to the additive

hazards framework.
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Appendix 1

The Aalen Markov model

To study the asymptotics of the Aalen Markov model, we assume regularity conditions

similar to those given by Example VII.4.4 of Andersen et al. (1993), with slight modifications

to suit our multistate modelling setting. In particular, we assume that

E

{
sup

u∈[s,v]
Yh1(u)|Z3

1w|
}

< ∞, h = 1, . . . , k, w = 1, . . . , p,

and that the covariates are linearly independent.

Recall from § 3.1 that Yhi0(u) = Yhi(u) and Yhiw(u) = Yhi(u)Ziw for w = 1, . . . , p.

Then, by the same arguments as in Example VII.4.4 of Andersen et al. (1993), the following

conditions similar to those for Theorem VII.4.1 of Andersen et al. (1993) hold true.

(a) For h = 1, . . . , k and w, w′, w′′ = 0, 1, . . . , p, there exist continuous functions R
(1)
hw,

R
(2)
hww′ and R

(3)
hww′w′′ defined on [s, v] such that as n → ∞

sup
u∈[s,v]

∣∣∣∣∣1n
n∑

i=1

Yhiw(u) − R
(1)
hw(u)

∣∣∣∣∣→ 0 in probability,

sup
u∈[s,v]

∣∣∣∣∣ 1n
n∑

i=1

Yhiw(u)Yhiw′(u) − R
(2)
hww′(u)

∣∣∣∣∣→ 0 in probability,

sup
u∈[s,v]

∣∣∣∣∣1n
n∑

i=1

Yhiw(u)Yhiw′(u)Yhiw′′(u) − R
(3)
hww′w′′(u)

∣∣∣∣∣→ 0 in probability.

(b) For h = 1, . . . , k and w = 0, 1, . . . , p,

n−1/2 sup
i = 1, . . . , n
u ∈ [s, v]

|Yhiw(u)| → 0 in probability, as n → ∞.
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(c) For each h = 1, . . . , k, the matrix R
(2)
h (u) =

{
R

(2)
hww′(u); w, w′ = 0, 1, . . . , p

}
is nonsin-

gular for all u ∈ [s, v].

Before moving to the proof of Theorem 1, we first review in a lemma some key asymptotic

results of Aalen’s (1989) additive hazards model for classical two-state survival analysis.

Lemma A1. Let g, l ∈ {1, . . . , k} and g �= l. Define Mgl(u) = (Mgl1(u), . . . , Mgln(u))�.

Then, under conditions (a)–(c) above, we have the following:

(i) n1/2
∫ t
s d{B̂gl(u) − Bgl(u)} a

= n−1/2
∫ t
s Jg(u){R(2)

g (u)}−1Y �
g (u)dMgl(u), for t ∈ [s, v];

(ii) n1/2
∫ ·
s d{B̂gl(u) − Bgl(u)} converges weakly on [s, v] to a zero-mean (p + 1)-variate

Gaussian martingale, the variance-covariance matrix of which can be estimated uniformly

consistently by

n
∫ ·

s
Jg(u)

{
Y �

g (u)Yg(u)
}−1

Y �
g (u) diag{dNgl(u)}Yg(u)

{
Y �

g (u)Yg(u)
}−1

;

(iii) n1/2
∫ ·
s d{Âgl(u; Z0)−Agl(u; Z0)} converges weakly on [s, v] to a zero-mean Gaussian

process, Ugl(·; Z0) say, the variance function of which can be estimated uniformly consistently

by

n
∫ ·

s
Z�

0 Jg(u)
{
Y �

g (u)Yg(u)
}−1

Y �
g (u) diag{dNgl(u)}Yg(u)

{
Y �

g (u)Yg(u)
}−1

Z0.

Proof. Parts (i) and (ii) follow straightforwardly from the proof of Theorem VII.4.1 in

Andersen et al. (1993, pp. 576–7), whose proof is based on that of Huffer and McKeague

(1991). Part (iii) is trivial in view of Part (ii) and equation (2). �

Proof of Theorem 1. (i) Let U (·; Z0 ) = {Ugl(·; Z0); g, l = 1, . . . , k} be a k × k matrix-

valued process, where, for g �= l, the Ugl(·; Z0) are independent zero-mean Gaussian processes

as given by Lemma A1(iii), and Ugg(·; Z0) = −∑l �=g Ugl(·; Z0). Then n1/2
∫ ·
s d{Â(u; Z0) −
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A(u; Z0)} converges weakly on [s, v] to U (·; Z0). It follows from Lemma 1 that

n1/2{P̂(s, ·; Z0) − P(s, ·; Z0)} converges weakly on [s, v] to the zero-mean Gaussian process

∫ ·

s
P(s, u−; Z0) dU (u; Z0)P(u, ·; Z0).

(ii) From Lemma 1, we also have

n1/2(P̂(s, t; Z0) − P(s, t; Z0))
a
=
∫ t

s
P(s, u−; Z0) d

{
n1/2(Â − A)(u; Z0)

}
P(u, t; Z0).

Multiplying both sides on the right by the inverse of P(s, t; Z0) = P(s, u; Z0)P(u, t; Z0), we

obtain

n1/2
{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}

a
=
∫ t

s
P(s, u−; Z0) d

{
n1/2(Â − A)(u; Z0)

}
P(s, u; Z0)

−1.

(A1)

Let P(s, u; Z0)
−1 =

{
P hj(s, u; Z0); h, j = 1, . . . , k

}
and let

F̃
(hj)
gl (u; s,Z0) = Phg(s, u−; Z0){P lj(s, u; Z0) − P gj(s, u; Z0)}.

Denote the (h, j)th entry of n1/2
{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}

by ξ
(n)
hj (s, t; Z0). Then, from

(A1), by applying Lemma A1(i), we have

ξ
(n)
hj (s, t; Z0)

a
=

k∑
g=1

k∑
l=1

∫ t

s
Phg(s, u−; Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}
P lj(s, u; Z0)

=
k∑

g=1

∑
l �=g

∫ t

s
F̃

(hj)
gl (u; s,Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}

=
k∑

g=1

∑
l �=g

∫ t

s
F̃

(hj)
gl (u; s,Z0)d

[
n1/2Z�

0 {B̂gl(u) − Bgl(u)}
]

a
=

k∑
g=1

∑
l �=g

∫ t

s
F̃

(hj)
gl (u; s,Z0)Z

�
0 n−1/2Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u)dMgl(u). (A2)

Note that the expression on the right-hand side of (A2) is a martingale integral, where

the Mgl(·) are orthogonal n-variate martingales with optional variation processes given by

[Mgl](·) = diag{Ngl(·)}. Therefore,

cov
{
ξ

(n)
hj (s, t; Z0), ξ(n)

mr (s, t; Z0)
}
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a
=

k∑
g=1

∑
l �=g

cov
[∫ t

s
F̃

(hj)
gl (u; s,Z0)Z

�
0 n−1/2Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u)dMgl(u),

∫ t

s
F̃

(mr)
gl (u; s,Z0)Z

�
0 n−1/2Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u)dMgl(u)

]

=
k∑

g=1

∑
l �=g

E
(∫ t

s
F̃

(hj)
gl (u; s,Z0)F̃

(mr)
gl (u; s,Z0)

× Z�
0

1

n
Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u) d[Mgl](u)Yg(u)

{
R(2)

g (u)
}−1

Z0

)

=
k∑

g=1

∑
l �=g

E
[∫ t

s
F̃

(hj)
gl (u; s,Z0)F̃

(mr)
gl (u; s,Z0)

× Z�
0

1

n
Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u) diag {dNgl(u)}Yg(u)

{
R(2)

g (u)
}−1

Z0

]
. (A3)

For g �= l, let Cgl denote the k × k matrix with element (g, l) equal to 1, element

(g, g) equal to −1, and the rest equal to zero. Then F̃
(hj)
gl (u; s,Z0) is the (h, j)th entry of

P(s, u−; Z0)CglP(s, u; Z0)
−1. It follows from (A3) that

cov
[
n1/2

{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}]

a
=

k∑
g=1

∑
l �=g

E
[∫ t

s
vec

{
P(s, u−; Z0)CglP(s, u; Z0)

−1
}

× Z�
0

1

n
Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u) diag {dNgl(u)}Yg(u)

{
R(2)

g (u)
}−1

Z0

× vec�
{
P(s, u−; Z0)CglP(s, u; Z0)

−1
}]

. (A4)

Here, in line with Andersen et al. (1993, § IV.4.1.3), vec{Ψ} for a k× k matrix Ψ stacks the

columns of Ψ on the top of each other into a k2 × 1 vector, and we define the covariance

matrix of a k × k matrix-valued random variable W as the ordinary covariance matrix of

vec{W }, i.e., as the k2 × k2 matrix

cov(W ) = E
(
[vec{W } − vec{E(W )}] [vec{W } − vec{E(W )}]�

)
.

Using equation (4.4.11) of Andersen et al. (1993, p. 291), (A4), and elementary properties

of the vec-operator and Kronecker products of matrices, we find that

cov
{
P̂(s, t; Z0)

}
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= cov
[
I {P̂(s, t; Z0)P(s, t; Z0)

−1}P(s, t; Z0)
]

=
{
P(s, t; Z0)

� ⊗ I
}

cov
{
P̂(s, t; Z0)P(s, t; Z0)

−1
}
{P(s, t; Z0) ⊗ I }

=
{
P(s, t; Z0)

� ⊗ I
} 1

n
cov

[
n1/2

{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}]

{P(s, t; Z0) ⊗ I } (A5)

a
=

k∑
g=1

∑
l �=g

E
[∫ t

s
vec {P(s, u−; Z0)CglP(u, t; Z0)}

× Z�
0

1

n2
Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u) diag {dNgl(u)}Yg(u)

{
R(2)

g (u)
}−1

Z0

× vec� {P(s, u−; Z0)CglP(u, t; Z0)}
]
. (A6)

Now let F
(hj)
gl (u; s, t,Z0) = Phg(s, u−; Z0){Plj(u, t; Z0)−Pgj(u, t; Z0)}. Then the (h, j)th entry

of P(s, u−; Z0)CglP(u, t; Z0) is F
(hj)
gl (u; s, t,Z0). It follows from (A6) that

cov
{
P̂hj(s, t; Z0), P̂mr(s, t; Z0)

}
a
=

k∑
g=1

∑
l �=g

E
[∫ t

s
F

(hj)
gl (u; s, t,Z0)F

(mr)
gl (u; s, t,Z0)

× Z�
0

1

n2
Jg(u)

{
R(2)

g (u)
}−1

Y �
g (u) diag {dNgl(u)}Yg(u)

{
R(2)

g (u)
}−1

Z0

]
,

which can be estimated uniformly consistently by (4). �

Appendix 2

The Andersen-Gill Lin-Ying Markov model

We assume that regularity conditions similar to those given by Kulich & Lin (2000,

Appendix 1) hold. In particular, pr{Yh1(u) = 1 for all u ∈ [s, v]} > 0,

E

{
sup

u∈[s,v]

∣∣∣Yh1(u)Z⊗2
1 (β�

hjZ1)
2
∣∣∣
}

< ∞,

and Vhj := E
[∫∞

0 {Z1 − Z̄h(u)}⊗2 dNhj1(u)
]

is positive definite, for h, j = 1, . . . , k, h �= j.

Then by applying functional forms of the strong law of large numbers (Andersen & Gill,

1982, Appendix III), we have

1

n
Yh(u) → π

(0)
h (u),

1

n

n∑
i=1

Yhi(u)Zi → π
(1)
h (u), Z̄h(u) → eh(u),
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all uniformly in u ∈ [s, v] in probability, where

π
(0)
h (u) = E{Yh1(u)}, π

(1)
h (u) = E{Yh1(u)Z1}, eh(u) = π

(1)
h (u)/π

(0)
h (u);

see Kulich & Lin (2000, Appendix 1) for a similar argument.

To prove Theorem 2, we need the following lemma.

Lemma A2. Let g, l ∈ {1, . . . , k} and g �= l. Define

Ωg = E
[∫ ∞

0
Yg1(u){Z1 − Z̄g(u)}⊗2 du

]
, Mgl(u) =

n∑
i=1

Mgli(u).

Then, under the regularity conditions stated above, we have the following:

(i) n1/2(β̂gl − βgl)
a
= Ω−1

g n−1/2
n∑

i=1

∫ ∞

0
{Zi − Z̄g(u)} dMgli(u);

(ii) n1/2
∫ t

s
d
{
Âgl0(u, β̂gl) − Agl0(u)

}
a
= −

∫ t

s
e�

g (u) du n1/2(β̂gl − βgl)

+ n1/2
∫ t

s

dMgl(u)

Yg(u)
, for t ∈ [s, v];

(iii) n1/2
∫ t

s
d
{
Âgl(u; Z0) − Agl(u; Z0)

}
a
=
∫ t

s
{Z0 − eg(u)}� du n1/2(β̂gl − βgl)

+ n1/2
∫ t

s

dMgl(u)

Yg(u)
, for t ∈ [s, v];

(iv) n1/2
∫ ·
s d{Âgl(u; Z0) −Agl(u; Z0)} converges weakly on [s, v] to a zero-mean Gaussian

process, Ugl(·; Z0) say, the variance function of which can be estimated uniformly consistently

by

∫ ·

s

n dNgl(u)

{Yg(u)}2 +
∫ ·

s
{Z0 − Z̄g(u)}� du Ω̂

−1

g V̂glΩ̂
−1

g

∫ ·

s
{Z0 − Z̄g(u)} du

+ 2
∫ ·

s
{Z0 − Z̄g(u)}� du Ω̂

−1

g

n∑
i=1

∫ ·

s

{Zi − Z̄g(u)} dNgli(u)

Yg(u)
.

Proof. These are the basic asymptotic results that were either implicit or embedded in

Lin & Ying (1994). Full derivations of Parts (i) and (ii) are straightforward along the lines

of Kulich & Lin (2000, Appendix 2). Part (iii) is a direct consequence of Part (ii). Part (iv)

follows immediately from Part (iii) and Rebolledo’s (1980) martingale central limit theorem.

�
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Proof of Theorem 2. (i) Let U (·; Z0 ) = {Ugl(·; Z0); g, l = 1, . . . , k} be a k × k matrix-

valued process, where, for g �= l, the Ugl(·; Z0) are independent zero-mean Gaussian processes

as given by Lemma A2(iv), and Ugg(·; Z0) = −∑l �=g Ugl(·; Z0). Then n1/2
∫ ·
s d{Â(u; Z0) −

A(u; Z0)} converges weakly on [s, v] to U (·; Z0). It follows from Lemma 1 that

n1/2{P̂(s, ·; Z0) − P(s, ·; Z0)} converges weakly on [s, v] to the zero-mean Gaussian process

∫ ·

s
P(s, u−; Z0) dU (u; Z0)P(u, ·; Z0).

(ii) As in the beginning of the proof of Theorem 1(ii) in Appendix 1, from Lemma 1, we

may also derive (A1) in the current context.

Let P(s, u; Z0)
−1 =

{
P hj(s, u; Z0); h, j = 1, . . . , k

}
and let

F̃
(hj)
gl (u; s,Z0) = Phg(s, u−; Z0){P lj(s, u; Z0) − P gj(s, u; Z0)},

Q̃
(hj)
gl (s, t; Z0) =

∫ t

s
F̃

(hj)
gl (u; s,Z0){Z0 − eg(u)} du. (A7)

Denote the (h, j)th entry of n1/2
{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}

by ξ
(n)
hj (s, t; Z0). Then, from

(A1), by applying Lemma A2 (i) and (iii), we have

ξ
(n)
hj (s, t; Z0)

a
=

k∑
g=1

k∑
l=1

∫ t

s
Phg(s, u−; Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}
P lj(s, u; Z0)

=
k∑

g=1

∑
l �=g

∫ t

s
F̃

(hj)
gl (u; s,Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}

a
=

k∑
g=1

∑
l �=g

{Q̃ (hj)
gl (s, t; Z0)}�n1/2(β̂gl − βgl)

+
k∑

g=1

∑
l �=g

∫ t

s
F̃

(hj)
gl (u; s,Z0)n

1/2 dMgl(u)

Yg(u)

a
=

k∑
g=1

∑
l �=g

n∑
i=1

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g n−1/2
∫ ∞

0
{Zi − Z̄g(u)} dMgli(u)

+
k∑

g=1

∑
l �=g

n∑
i=1

∫ t

s
F̃

(hj)
gl (u; s,Z0)n

1/2 dMgli(u)

Yg(u)
. (A8)

Notice that in (A8), the Mgli(·) are orthogonal martingales with optional variation
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processes given by [Mgli](·) = Ngli(·). Therefore,

cov
{
ξ

(n)
hj (s, t; Z0), ξ(n)

mr (s, t; Z0)
}

a
=

k∑
g=1

∑
l �=g

n∑
i=1

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g

1

n
cov

[∫ ∞

0
{Zi − Z̄g(u)} dMgli(u)

]
Ω−1

g Q̃
(mr)
gl (s, t; Z0)

+
k∑

g=1

∑
l �=g

n∑
i=1

cov

{∫ t

s
F̃

(hj)
gl (u; s,Z0)n

1/2 dMgli(u)

Yg(u)
,
∫ t

s
F̃

(mr)
gl (u; s,Z0)n

1/2 dMgli(u)

Yg(u)

}

+
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g

× cov

[∫ ∞

0
{Zi − Z̄g(u)} dMgli(u),

∫ t

s
F̃

(mr)
gl (u; s,Z0)

dMgli(u)

Yg(u)

]

+
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (mr)
gl (s, t; Z0)}�Ω−1

g

× cov

[∫ ∞

0
{Zi − Z̄g(u)} dMgli(u),

∫ t

s
F̃

(hj)
gl (u; s,Z0)

dMgli(u)

Yg(u)

]

=
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g

1

n
E
(∫ ∞

0
{Zi − Z̄g(u)}⊗2d[Mgli](u)

)
Ω−1

g Q̃
(mr)
gl (s, t; Z0)

+
k∑

g=1

∑
l �=g

n∑
i=1

E

(∫ t

s
F̃

(hj)
gl (u; s,Z0)F̃

(mr)
gl (u; s,Z0)

n d[Mgli](u)

{Yg(u)}2

)

+
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g E

{∫ t

s

Zi − Z̄g(u)

Yg(u)
F̃

(mr)
gl (u; s,Z0)d[Mgli](u)

}

+
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (mr)
gl (s, t; Z0)}�Ω−1

g E

{∫ t

s

Zi − Z̄g(u)

Yg(u)
F̃

(hj)
gl (u; s,Z0)d[Mgli](u)

}

=
k∑

g=1

∑
l �=g

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g VglΩ
−1
g Q̃

(mr)
gl (s, t; Z0)

+
k∑

g=1

∑
l �=g

E

[∫ t

s
F̃

(hj)
gl (u; s,Z0)F̃

(mr)
gl (u; s,Z0)

n dNgl(u)

{Yg(u)}2

]

+
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (hj)
gl (s, t; Z0)}�Ω−1

g E

{∫ t

s

Zi − Z̄g(u)

Yg(u)
F̃

(mr)
gl (u; s,Z0)dNgli(u)

}

+
k∑

g=1

∑
l �=g

n∑
i=1

{Q̃ (mr)
gl (s, t; Z0)}�Ω−1

g E

{∫ t

s

Zi − Z̄g(u)

Yg(u)
F̃

(hj)
gl (u; s,Z0)dNgli(u)

}
. (A9)

Let Cgl be defined as in Appendix 1. Then F̃
(hj)
gl (u; s,Z0) is the (h, j)th entry of

P(s, u−; Z0)CglP(s, u; Z0)
−1. It follows from (A7) and (A9) that

cov
[
n1/2

{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}]
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a
=

k∑
g=1

∑
l �=g

∫ t

s
vec{P(s, u−; Z0)CglP(s, u; Z0)

−1}{Z0 − eg(u)}�du Ω−1
g VglΩ

−1
g

×
∫ t

s
{Z0 − eg(u)} vec�{P(s, u−; Z0)CglP(s, u; Z0)

−1} du

+
k∑

g=1

∑
l �=g

E

[∫ t

s
vec{P(s, u−; Z0)CglP(s, u; Z0)

−1}

× vec�{P(s, u−; Z0)CglP(s, u; Z0)
−1} n dNgl(u)

{Yg(u)}2

]

+ 2
k∑

g=1

∑
l �=g

n∑
i=1

∫ t

s
vec{P(s, u−; Z0)CglP(s, u; Z0)

−1}{Z0 − eg(u)}� du Ω−1
g

× E

[∫ t

s

Zi − Z̄g(u)

Yg(u)
vec�{P(s, u−; Z0)CglP(s, u; Z0)

−1} dNgli(u)

]
.

Using this result, (A5), and elementary properties of the vec-operator and Kronecker prod-

ucts of matrices, we find that

cov
{
P̂(s, t; Z0)

}
a
=

k∑
g=1

∑
l �=g

∫ t

s
vec{P(s, u−; Z0)CglP(u, t; Z0)}{Z0 − eg(u)}� du

1

n
Ω−1

g VglΩ
−1
g

×
∫ t

s
{Z0 − eg(u)} vec�{P(s, u−; Z0)CglP(u, t; Z0)} du

+
k∑

g=1

∑
l �=g

E

[∫ t

s
vec{P(s, u−; Z0)CglP(u, t; Z0)}

× vec�{P(s, u−; Z0)CglP(u, t; Z0)} dNgl(u)

{Yg(u)}2

]

+
2

n

k∑
g=1

∑
l �=g

n∑
i=1

∫ t

s
vec{P(s, u−; Z0)CglP(u, t; Z0)}{Z0 − eg(u)}�du Ω−1

g

× E

[∫ t

s

Zi − Z̄g(u)

Yg(u)
vec�{P(s, u−; Z0)CglP(u, t; Z0)} dNgli(u)

]
. (A10)

Now let

F
(hj)
gl (u; s, t,Z0) = Phg(s, u−; Z0){Plj(u, t; Z0) − Pgj(u, t; Z0)},

Q
(hj)
gl (s, t; Z0) =

∫ t

s
F

(hj)
gl (u; s, t,Z0){Z0 − eg(u)} du.

Then the (h, j)th entry of P(s, u−; Z0)CglP(u, t; Z0) is F
(hj)
gl (u; s, t,Z0). It follows from (A10)

29



that

cov
{
P̂hj(s, t; Z0), P̂mr(s, t; Z0)

}
a
=

k∑
g=1

∑
l �=g

{Q (hj)
gl (s, t; Z0)}� 1

n
Ω−1

g VglΩ
−1
g Q

(mr)
gl (s, t; Z0)

+
k∑

g=1

∑
l �=g

E

[∫ t

s
F

(hj)
gl (u; s, t,Z0)F

(mr)
gl (u; s, t,Z0)

dNgl(u)

{Yg(u)}2

]

+
1

n

k∑
g=1

∑
l �=g

n∑
i=1

{Q (hj)
gl (s, t; Z0)}�Ω−1

g E

{∫ t

s

Zi − Z̄g(u)

Yg(u)
F

(mr)
gl (u; s, t,Z0) dNgli(u)

}

+
1

n

k∑
g=1

∑
l �=g

n∑
i=1

{Q (mr)
gl (s, t; Z0)}�Ω−1

g E

{∫ t

s

Zi − Z̄g(u)

Yg(u)
F

(hj)
gl (u; s, t,Z0) dNgli(u)

}
,

which can be estimated uniformly consistently by (6). �

Appendix 3

The Klein-Keiding Lin-Ying Markov model

We assume that regularity conditions like those given at the beginning of Appendix 2

hold. In particular, pr{YX1(u) = 1 for all u ∈ [s, v]} > 0,

E

(
sup

u∈[s,v]

∣∣∣YX1(u)ZX1(u)⊗2{β�
XZX1(u)}2

∣∣∣
)

< ∞,

and VX := E
[∫∞

0 {ZX1(u) − Z̄X(u)}⊗2 dNX1(u)
]

is positive definite, for X ∈ E . Then by the

same arguments as in Appendix 2, we have

1

n
YX(u) → π

(0)
X (u),

1

n

n∑
i=1

YXi(u)ZXi(u) → π
(1)
X (u), Z̄X(u) → eX(u),

all uniformly in u ∈ [s, v] in probability, where

π
(0)
X (u) = E{YX1(u)}, π

(1)
X (u) = E{YX1(u)ZX1(u)}, eX(u) = π

(1)
X (u)/π

(0)
X (u).

To establish Theorem 3, we start with the following lemma.
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Lemma A3. Let X ∈ E and let gl ∈ J (X). Define

ΩX = E
[∫ ∞

0
YX1(u){ZX1(u) − Z̄X(u)}⊗2 du

]
, MX(t) =

n∑
i=1

MXi(t).

Then, under the regularity conditions stated above, we have the following:

(i) n1/2(β̂X − βX)
a
= Ω−1

X n−1/2
n∑

i=1

∫ ∞

0
{ZXi(u) − Z̄X(u)} dMXi(u);

(ii) n1/2
∫ t

s
d
{
ÂX0(u, β̂X) − AX0(u)

}
a
= −

∫ t

s
e�

X(u) du n1/2(β̂X − βX)

+ n1/2
∫ t

s

dMX(u)

YX(u)
, for t ∈ [s, v];

(iii) n1/2
∫ t

s
d
{
Âgl(u; Z0) − Agl(u; Z0)

}
a
=
∫ t

s
{Zgl0 − eX(u)}�du n1/2(β̂X − βX)

+ n1/2
∫ t

s

dMX(u)

YX(u)
, for t ∈ [s, v];

(iv) n1/2
∫ ·
s d{Âgl(u; Z0) −Agl(u; Z0)} converges weakly on [s, v] to a zero-mean Gaussian

process, Ugl(·; Z0) say, the variance function of which can be estimated uniformly consistently

by

∫ ·

s

n dNX(u)

{YX(u)}2 +
∫ ·

s
{Zgl0 − Z̄X(u)}�du Ω̂

−1

X V̂XΩ̂
−1

X

∫ ·

s
{Zgl0 − Z̄X(u)} du

+ 2
∫ ·

s
{Zgl0 − Z̄X(u)}� du Ω̂

−1

X

n∑
i=1

∫ ·

s

{ZXi(u) − Z̄X(u)} dNXi(u)

YX(u)
.

Proof. Same arguments as in the proof of Lemma A2. �

Proof of Theorem 3. (i) Let U (·; Z0 ) = {Ugl(·; Z0); g, l = 1, . . . , k} be a k × k matrix-

valued process. Here, for g �= l and gl ∈ ∪X∈EJ (X), the Ugl(·; Z0) are independent zero-mean

Gaussian processes as given by Lemma A3(iv); for g �= l and gl /∈ J , Ugl(·; Z0) = 0; and

Ugg(·; Z0) = −∑l �=g Ugl(·; Z0). Then n1/2
∫ ·
s d{Â(u; Z0) − A(u; Z0)} converges weakly on [s, v]

to U (·; Z0). It follows from Lemma 1 that n1/2{P̂(s, ·; Z0)−P(s, ·; Z0)} converges weakly on

[s, v] to the zero-mean Gaussian process

∫ ·

s
P(s, u−; Z0) dU (u; Z0)P(u, ·; Z0).
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(ii) Again, as in the beginning of the proof of Theorem 1(ii) in Appendix 1, from Lemma 1,

we may also derive (A1) in the current context.

Let P(s, u; Z0)
−1 =

{
P hj(s, u; Z0); h, j = 1, . . . , k

}
and let

H̃
(hj)
gl (u; s,Z0) = Phg(s, u−; Z0){P lj(s, u; Z0) − P gj(s, u; Z0)},

F̃
(hj)
X (u; s,Z0) =

∑
gl∈J (X)

H̃
(hj)
gl (u; s,Z0), (A11)

Q̃
(hj)
X (s, t; Z0) =

∫ t

s

∑
gl∈J (X)

[
H̃

(hj)
gl (u; s,Z0){Zgl0 − eX(u)}

]
du. (A12)

Denote the (h, j)th entry of n1/2
{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}

by ξ
(n)
hj (s, t; Z0). Then, from

(A1), by applying Lemma A3 (i) and (iii), we have

ξ
(n)
hj (s, t; Z0)

a
=

k∑
g=1

k∑
l=1

∫ t

s
Phg(s, u−; Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}
P lj(s, u; Z0)

=
k∑

g=1

∑
l �=g

∫ t

s
H̃

(hj)
gl (u; s,Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}

=

(∑
X∈E

∑
gl∈J (X)

+
∑

g �=l, gl /∈J

) ∫ t

s
H̃

(hj)
gl (u; s,Z0)d

{
n1/2(Âgl − Agl)(u; Z0)

}

a
=
∑
X∈E

∑
gl∈J (X)

∫ t

s
H̃

(hj)
gl (u; s,Z0){Zgl0 − eX(u)}�du n1/2(β̂X − βX)

+
∑
X∈E

∑
gl∈J (X)

∫ t

s
H̃

(hj)
gl (u; s,Z0)n

1/2 dMX(u)

YX(u)

=
∑
X∈E

{Q̃ (hj)
X (s, t; Z0)}�n1/2(β̂X − βX)

+
∑
X∈E

∫ t

s
F̃

(hj)
X (u; s,Z0)n

1/2 dMX(u)

YX(u)

a
=
∑
X∈E

n∑
i=1

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X n−1/2
∫ ∞

0
{ZXi(u) − Z̄X(u)} dMXi(u)

+
∑
X∈E

n∑
i=1

∫ t

s
F̃

(hj)
X (u; s,Z0)n

1/2 dMXi(u)

YX(u)
. (A13)

Notice that in (A13), the MXi(·) are orthogonal martingales with optional variation

processes given by [MXi](·) = NXi(·). Therefore,

cov
{
ξ

(n)
hj (s, t; Z0), ξ(n)

mr (s, t; Z0)
}
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a
=
∑
X∈E

n∑
i=1

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X

1

n
cov

[∫ ∞

0
{ZXi(u) − Z̄X(u)} dMXi(u)

]
Ω−1

X Q̃
(mr)
X (s, t; Z0)

+
∑
X∈E

n∑
i=1

cov

{∫ t

s
F̃

(hj)
X (u; s,Z0)n

1/2 dMXi(u)

YX(u)
,
∫ t

s
F̃

(mr)
X (u; s,Z0)n

1/2 dMXi(u)

YX(u)

}

+
∑
X∈E

n∑
i=1

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X

× cov

[∫ ∞

0
{ZXi(u) − Z̄X(u)} dMXi(u),

∫ t

s
F̃

(mr)
X (u; s,Z0)

dMXi(u)

YX(u)

]

+
∑
X∈E

n∑
i=1

{Q̃ (mr)
X (s, t; Z0)}�Ω−1

X

× cov

[∫ ∞

0
{ZXi(u) − Z̄X(u)} dMXi(u),

∫ t

s
F̃

(hj)
X (u; s,Z0)

dMXi(u)

YX(u)

]

=
∑
X∈E

n∑
i=1

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X

1

n
E
(∫ ∞

0
{ZXi(u) − Z̄X(u)}⊗2d[MXi](u)

)

× Ω−1
X Q̃

(mr)
X (s, t; Z0)

+
∑
X∈E

n∑
i=1

E

(∫ t

s
F̃

(hj)
X (u; s,Z0)F̃

(mr)
X (u; s,Z0)

n d[MXi](u)

{YX(u)}2

)

+
∑
X∈E

n∑
i=1

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X E

{∫ t

s

ZXi(u) − Z̄X(u)

YX(u)
F̃

(mr)
X (u; s,Z0)d[MXi](u)

}

+
∑
X∈E

n∑
i=1

{Q̃ (mr)
X (s, t; Z0)}�Ω−1

X E

{∫ t

s

ZXi(u) − Z̄X(u)

YX(u)
F̃

(hj)
X (u; s,Z0)d[MXi](u)

}

=
∑
X∈E

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X VXΩ−1
X Q̃

(mr)
X (s, t; Z0)

+
∑
X∈E

E

[∫ t

s
F̃

(hj)
X (u; s,Z0)F̃

(mr)
X (u; s,Z0)

n dNX(u)

{YX(u)}2

]

+
∑
X∈E

n∑
i=1

{Q̃ (hj)
X (s, t; Z0)}�Ω−1

X E

{∫ t

s

ZXi(u) − Z̄X(u)

YX(u)
F̃

(mr)
X (u; s,Z0)dNXi(u)

}

+
∑
X∈E

n∑
i=1

{Q̃ (mr)
X (s, t; Z0)}�Ω−1

X E

{∫ t

s

ZXi(u) − Z̄X(u)

YX(u)
F̃

(hj)
X (u; s,Z0)dNXi(u)

}
. (A14)

Let Cgl be defined as in Appendix 1. Then H̃
(hj)
gl (u; s,Z0) is the (h, j)th entry of

P(s, u−; Z0)CglP(s, u; Z0)
−1. It follows from (A11), (A12) and (A14) that

cov
[
n1/2

{
P̂(s, t; Z0)P(s, t; Z0)

−1 − I
}]

a
=
∑
X∈E

∫ t

s

∑
gl∈J (X)

[
vec{P(s, u−; Z0)CglP(s, u; Z0)

−1}{Zgl0 − eX(u)}�
]
du Ω−1

X VXΩ−1
X
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×
∫ t

s

∑
gl∈J (X)

[
{Zgl0 − eX(u)} vec�{P(s, u−; Z0)CglP(s, u; Z0)

−1}
]
du

+
∑
X∈E

E

[∫ t

s

∑
gl∈J (X)

vec{P(s, u−; Z0)CglP(s, u; Z0)
−1}

× ∑
gl∈J (X)

vec�{P(s, u−; Z0)CglP(s, u; Z0)
−1} n dNX(u)

{YX(u)}2

]

+ 2
∑
X∈E

n∑
i=1

∫ t

s

∑
gl∈J (X)

[
vec{P(s, u−; Z0)CglP(s, u; Z0)

−1}{Zgl0 − eX(u)}�
]
du Ω−1

X

× E

[∫ t

s

ZXi(u) − Z̄X(u)

YX(u)

∑
gl∈J (X)

vec�{P(s, u−; Z0)CglP(s, u; Z0)
−1} dNXi(u)

]
.

Using this result, (A5), and elementary properties of the vec-operator and Kronecker prod-

ucts of matrices, we find that

cov
{
P̂(s, t; Z0)

}
a
=
∑
X∈E

∫ t

s

∑
gl∈J (X)

[
vec{P(s, u−; Z0)CglP(u, t; Z0)}{Zgl0 − eX(u)}�

]
du

1

n
Ω−1

X VXΩ−1
X

×
∫ t

s
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]
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+
∑
X∈E

E
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s

∑
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vec{P(s, u−; Z0)CglP(u, t; Z0)}
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gl∈J (X)
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+
2
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. (A15)

Now let

H
(hj)
gl (u; s, t,Z0) = Phg(s, u−; Z0){Plj(u, t; Z0) − Pgj(u, t; Z0)},

F
(hj)
X (u; s, t,Z0) =

∑
gl∈J (X)

H
(hj)
gl (u; s, t,Z0),

Q
(hj)
X (s, t; Z0) =

∫ t

s

∑
gl∈J (X)

[
H

(hj)
gl (u; s, t,Z0){Zgl0 − eX(u)}

]
du.
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Then the (h, j)th entry of P(s, u−; Z0)CglP(u, t; Z0) is H
(hj)
gl (u; s, t,Z0). It follows from (A15)

that

cov
{
P̂hj(s, t; Z0), P̂mr(s, t; Z0)

}
a
=
∑
X∈E
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∑
X∈E

n∑
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F

(mr)
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F

(hj)
X (u; s, t,Z0) dNXi(u)

}
,

which can be estimated uniformly consistently by (13). �
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Fig. 1. A six-state bone marrow transplant model.
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Fig. 2. The results of fitting the five Markov regression models to the bone marrow transplant
data. (a) Predicted probabilities of leukaemia-free survival, (b) standard errors of predicted
probabilities of leukaemia-free survival.
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Table 1: Estimated probabilities of being in states 1 to 6 and the associated standard
errors at 100 days, 6 months, 1 year and 2 years post-transplant under each of the
five Markov regression models, for a male patient aged over 28 years with a female
donor, given that the patient was initially in state 1 at time 0.

Time Post- AG Cox KK Cox Aalen AG-LY KK-LY
State transplant Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE)

1 100 days 0.539 (0.029) 0.533 (0.028) 0.543 (0.028) 0.590 (0.015) 0.566 (0.014)
(Tx) 6 months 0.423 (0.028) 0.420 (0.028) 0.414 (0.028) 0.443 (0.017) 0.421 (0.014)

1 year 0.339 (0.029) 0.336 (0.029) 0.321 (0.027) 0.330 (0.020) 0.325 (0.017)
2 years 0.307 (0.029) 0.307 (0.029) 0.290 (0.027) 0.261 (0.026) 0.296 (0.025)

2 100 days 0.192 (0.022) 0.204 (0.022) 0.178 (0.022) 0.181 (0.012) 0.210 (0.011)
(A) 6 months 0.108 (0.018) 0.120 (0.019) 0.114 (0.019) 0.106 (0.011) 0.139 (0.011)

1 year 0.071 (0.016) 0.074 (0.016) 0.073 (0.016) 0.078 (0.013) 0.083 (0.012)
2 years 0.060 (0.015) 0.060 (0.014) 0.059 (0.015) 0.080 (0.021) 0.048 (0.013)

3 100 days 0.033 (0.007) 0.035 (0.006) 0.040 (0.010) 0.041 (0.007) 0.045 (0.006)
(C) 6 months 0.103 (0.017) 0.101 (0.016) 0.113 (0.018) 0.124 (0.011) 0.130 (0.009)

1 year 0.142 (0.022) 0.136 (0.021) 0.149 (0.021) 0.162 (0.014) 0.164 (0.012)
2 years 0.148 (0.023) 0.142 (0.022) 0.164 (0.023) 0.175 (0.020) 0.164 (0.019)

4 100 days 0.040 (0.009) 0.033 (0.007) 0.048 (0.013) 0.039 (0.007) 0.032 (0.005)
(AC) 6 months 0.085 (0.016) 0.081 (0.015) 0.058 (0.015) 0.085 (0.009) 0.070 (0.007)

1 year 0.083 (0.018) 0.086 (0.017) 0.086 (0.018) 0.087 (0.011) 0.085 (0.011)
2 years 0.075 (0.018) 0.077 (0.018) 0.085 (0.018) 0.075 (0.016) 0.086 (0.016)

5 100 days 0.178 (0.023) 0.175 (0.022) 0.173 (0.021) 0.130 (0.010) 0.126 (0.010)
(D) 6 months 0.208 (0.025) 0.205 (0.024) 0.214 (0.024) 0.163 (0.013) 0.159 (0.012)

1 year 0.241 (0.027) 0.243 (0.027) 0.240 (0.025) 0.211 (0.017) 0.207 (0.016)
2 years 0.265 (0.029) 0.268 (0.029) 0.255 (0.026) 0.254 (0.024) 0.247 (0.022)

6 100 days 0.019 (0.005) 0.020 (0.005) 0.019 (0.009) 0.019 (0.005) 0.020 (0.005)
(R) 6 months 0.072 (0.013) 0.074 (0.013) 0.086 (0.017) 0.079 (0.009) 0.081 (0.009)

1 year 0.124 (0.019) 0.125 (0.019) 0.131 (0.021) 0.133 (0.014) 0.136 (0.013)
2 years 0.145 (0.022) 0.146 (0.022) 0.148 (0.023) 0.154 (0.020) 0.158 (0.018)

AG, Andersen-Gill; KK, Klein-Keiding; LY, Lin-Ying; Est., estimated probability; SE, stan-
dard error.
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