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Abstract

Recently Rowe and Logan (2004) introduced a complex fMRI activation model in

which multiple regressors were allowed, hypothesis tests were formulated in terms of

contrasts, and the phase was directly modeled as a fixed unknown quantity which

may be estimated voxel by voxel. This model was shown to achieve higher detection

power over the usual magnitude-only normal model especially at decreased signal-to-

noise ratios. Here, we extend this model to allow for a dynamic rather than constant

phase. It is seen that this dynamic phase complex fMRI model has identical regression

coefficients and activation F-statistics as that of the magnitude-only model although

derived with the phase included. It is also seen that the maximum likelihood estimate

of the variance in this model is not consistent.

1 Introduction

It is well known that due to phase imperfections, fMRI voxel time course measurements

appear in both the real and imaginary channels [2, 5, 6]. Recently Rowe and Logan (2004)
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introduced a complex fMRI activation model [9] in which multiple regressors were allowed,

hypothesis tests were formulated in terms of contrasts, and the phase was directly modeled

as a fixed unknown quantity [7] which may be estimated voxel by voxel. This model was

shown to achieve higher detection power over the usual magnitude-only normal model [1, 3]

especially at a decreased signal-to-noise ratio (SNR). Here, we extend this model to allow

for a dynamic rather than constant phase.

Task related magnitude-only activation maps can be generated from complex valued voxel

time courses that account for temporal changes in the phase. We will show that inference on

task-related activation is equivalent between the dynamic phase complex fMRI model and

the magnitude-only model in terms of having identical regression coefficients and likelihood

ratio F-statistics although derived with the phase included. However, a detailed examination

shows that the maximum likelihood estimate of the variance in the dynamic phase model is

inconsistent, because the number of parameters increases with the sample size. An unbiased

estimate can be obtained which is identical to the unbiased variance estimate from the

magnitude-only model. Therefore the magnitude-only model results can be directly derived

from a complex data model which allows for a dynamic phase.

2 Model

The complex fMRI activation model of Rowe and Logan (2004) can be written more

generally as

y =


 A1 0

0 A2





 X 0

0 X





 β

β


 + η

2n × 1 2n× 2n 2n × 2(q + 1) 2(q + 1) × 1 2n× 1

(2.1)

where the observed vector of data y = (y′R, y
′
I)

′ is the vector of observed real values stacked on

the vector of observed imaginary values and the vector of errors η = (η′R, η
′
I)

′ ∼ N (0,Σ⊗Φ)

is similarly defined. Here we specify that Σ = σ2I2 and Φ = In. Further, A1 and A2 are

are square diagonal matrices with tth diagonal element cos θt and sin θt, respectively. Note

that if θt = θ for all t, then A1 = cos θIn, A2 = sin θIn, and this becomes the constant

phase complex model proposed by Rowe and Logan (2004). If there is a single constant
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column in X, then it can be shown that this reduces to a constant magnitude and different

phase temporal fMRI model that is analogous to a previously presented constant magnitude

different phase spatial MRI model [10].

This model generalization allows for dynamic temporal changes in the phase. This implies

that one can test the hypotheses regarding task related changes in the magnitude of the

complex voxel time courses while accounting for dynamic temporal changes in the phase,

expressed as H0 : Cβ = 0. For example, with a model with β0 representing an intercept, β1

representing a linear drift over time, and β2 representing a contrast effect of a stimulus. Then

to test whether the coefficient for the reference function or stimulus is 0, set C = (0, 0, 1), so

that the hypothesis is H0 : β2 = 0.

2.1 Parameter Estimates

As with the usual magnitude-only normal regression model and the constant phase com-

plex nonlinear multiple regression model, we can obtain unrestricted maximum likelihood

estimates of the parameters as derived in the appendix to be

θ̂t = tan−1

(
yIt
yRt

)
, t = 1, . . . , n

β̂ = (X ′X)−1X ′
(
Â1yR + Â2yI

)
,

σ̂2 =
1

2n


y −


 Â1Xβ̂

Â2Xβ̂





′ 
y −


 Â1Xβ̂

Â2Xβ̂




 , (2.2)

where Â1 and Â2 are diagonal matrices with cos θ̂t and sin θ̂t as the tth diagonal element. Note

that the estimate of the regression coefficients is a temporally “weighted” linear combination

of estimates from the real and imaginary parts.

The estimated regression coefficients for the dynamic phase complex activation model

can be shown to be equivalent to the usual magnitude-only ones as follows

β̂ = (X ′X)−1X ′
(
Â1yR + Â2yI

)

= (X ′X)−1X ′vec

(
yRt√

y2
Rt + y2

It

yRt +
yIt√

y2
Rt + y2

It

yIt

)

= (X ′X)−1X ′yM (2.3)
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where here vec(·) is used to denote an n dimensional vector whose tth element is given by its

scalar argument and yM = vec
(√

y2
Rt + y2

It

)
.

The maximum likelihood estimates under the constrained null hypothesis H0 : Cβ = 0

are similarly derived in the appendix and given by

θ̃t = tan−1

(
yIt
yRt

)
, t = 1, . . . , n

β̃ = Ψβ̂,

σ̃2 =
1

2n


y −


 Ã1Xβ̃

Ã2Xβ̃





′ 
y −


 Ã1Xβ̃

Ã2Xβ̃






Ψ = Iq+1 − (X ′X)−1C ′[C(X ′X)−1C ′]−1C , (2.4)

where Ã1 and Ã2 are diagonal matrices with cos θ̃t and sin θ̃t as the tth diagonal element. The

restricted regression coefficients can also be shown to be equivalent to the magnitude-only

model because the multiplicative factor Ψ is identical in both cases.

2.2 Activation Statistics

The likelihood ratio statistic in Equation A.3 with some algebra can be written as

F =
(n− q − 1)

r

(
λ−1/n − 1

)
=

(n− q − 1)

r

β̂ ′C ′[C(X ′X)−1C ′]−1Cβ̂

2nσ̂2
. (2.5)

Note that since

2nσ̂2 =


y −


 Â1Xβ̂

Â2Xβ̂





′ 
y −


 Â1Xβ̂

Â2Xβ̂






=
n∑

t=1

[
y2
Rt − 2yRt(x

′
tβ̂) cos θ̂t + β̂xtx

′
tβ̂ cos2 θ̂t + y2

It − 2yIt(x
′
tβ̂) sin θ̂t + β̂xtx

′
tβ̂ sin2 θ̂t

]

=
n∑

t=1

[yMt− x′tβ̂]2 (2.6)

equals the error sum of squares from the magnitude-only model, the F statistic and equivalent

likelihood ratio statistic is identical to the one from the magnitude-only model. In either case

the F statistic follows the same distribution. If the signal-to-noise ratio is large so that yMt

is approximately normal, then F follows an Fr,n−q−1 distribution under the null hypothesis,
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where r is the full row rank of C. Otherwise, one might use the Ricean distribution [4, 8] to

derive the proper distribution of the F statistic. In either case, the estimates of β and the

likelihood ratio test depend only on the magnitude data.

Note from (2.6) that the maximum likelihood estimate of σ2 from the dynamic phase

complex model is inconsistent, since it can be shown as follows that its expected value does

not converge in probability or tend to its populaton value as the sample size tends to infinity

E
(
σ̂2
)

=
1

2n
E

{
n∑

t=1

[yMt − x′tβ̂]2

}

=
1

2n

{
(n− q − 1)σ2

}

p→ σ2

2
.

An unbiased estimate of the variance can be obtained by simply using the unbiased estimate

of the variance from the magnitude-only model.

3 Conclusions

A generalization of the constant phase complex activation fMRI model of Rowe and Logan

(2004) was developed, where the phase angle is allowed to vary at each time point. It is

shown that the estimated regression coefficients and the likelihood ratio F statistic for this

dynamic phase complex fMRI model are equivalent to those in the usual magnitude-only

model. It is also seen that the maximum likelihood estimate of the variance in this model

is not consistent, but that a consistent variance estimate is obtained by simply using the

magnitude-only unbiased variance estimate. Therefore, inference on task-related magnitude

activation which is equivalent to that of the magnitude-only model can be derived directly

from the dynamic phase complex model.
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A Generalized Likelihood Ratio Test

A.1 Complex Model with θt

In applications using multiple regression including fMRI, we often wish to test linear

contrast hypothesis (for each voxel) such as

H0 : Cβ = γ vs H1 : Cβ 6= γ

θt 6= θt′ θt 6= θt′

σ2 > 0 σ2 > 0 ,

where C is an r × (q + 1) matrix of full row rank and γ is an r × 1 vector.

The likelihood ratio statistic is computed by maximizing the likelihood p(y|β, θ, σ2,X)

with respect to β, θ, and σ2 under the null and alternative hypotheses where θ′ = (θ1, . . . , θn).

Denote the maximized values under the null hypothesis by (β̃, θ̃, σ̃2) and those under the

alternative hypothesis as (β̂, θ̂, σ̂2). These maximized values are then substituted into the

likelihoods and the ratio taken. With the aforementioned distributional specifications, the

likelihood of the model is

p(y|X,β, θ, σ2) = (2πσ2)−
2n
2 e−

h
2σ2 (A.1)

where

h =


y −


 A1Xβ

A2Xβ





′ 
y −


 A1Xβ

A2Xβ






= β ′(X ′X)β − 2β ′X ′[A′
1yR +A′

2yI] + y′y

The logarithm of this likelihood can be writen as

LL = −n log(2π) − n log σ2 − 1

2σ2
β ′(X ′X)β − 1

2σ2
y′y

+
1

σ2

n∑

t=1

yRt cos θtx
′
tβ +

1

σ2

n∑

t=1

yIt sin θtx
′
tβ (A.2)

that we will use for maximization. Under the null hypothesis, the term ψ′(Cβ − γ)/2 needs

to be added to the logarithm of the likelihood for the Lagrange multiplier constraint.
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Unrestricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters and yields

∂LL

∂β

∣∣∣∣
β=β̂,θ=θ̂,σ2=σ̂2

= − 1

2σ̂2

[
2(X ′X)β̂ − 2X ′

(
Â1yR + Â2yI

)]

∂LL

∂θt

∣∣∣∣
β=β̂,θ=θ̂,σ2=σ̂2

= − 1

σ̂2

[
yRtx

′
tβ̂(−1) sin θ̂t + yItx

′
tβ̂ cos θ̂t

]
t = 1, . . . , n

∂LL

∂σ2

∣∣∣∣
β=β̂,θ=θ̂,σ2=σ̂2

−2n

2

1

σ̂2
+
ĥ

2

1

(σ̂2)2

where ĥ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the unrestricted model given in Equation 2.2.

Restricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood in Equation A.2 with respect to the parameters with the Lagrange

multiplier term ψ′(Cβ − γ)/2 added for the alternative hypothesis restriction and yields

∂LL

∂β

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

= − 1

2σ̃2

[
2(X ′X)β̂ − 2X ′

(
Ã1yR + Ã2yI

)]
+

1

2
C ′ψ̃

∂LL

∂θt

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

= − 1

σ̃2

[
yRtx

′
tβ̃(−1) sin θ̃t + yItx

′
tβ̃ cos θ̃t

]
t = 1, . . . , n

∂LL

∂ψ

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

=
1

2
(Cβ̃ − γ)

∂LL

∂σ2

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

= −2n

2

1

σ̃2
+
h̃

2

1

(σ̃2)2

where h̃ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the restricted model given in Equation 2.4.

Note that σ̂2 = ĥ/(2n) and σ̃2 = h̃/(2n). Then the generalized likelihood ratio is

λ =
p(y|β̃, σ̃2, θ̃,X)

p(y|β̂, σ̂2, θ̂,X)
=

(σ̃2)
−2n/2

e−2h̃n/(2h̃)

(σ̂2)−2n/2 e−2ĥn/(2ĥ)
, (A.3)

and Equation 2.5 follows.
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