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Introduction

In ?, we introduced a unified hierarchical Bayesian semiparametric model for genetic associa-
tion studies of quantitative traits in the presence of population stratification. The model uses
a Dirichlet Process Mixture (DPM) construction to account for stratification in making asso-
ciation inference. It also involves a nonparametric sparsity prior to accommodate the expec-
tation that most genetic markers are unrelated to the phenotype in a large association screen.
In this technical report, we describe the necessary computational details for implementing the
DPM model (C code available from http://www.biostat.mcw.edu/software/SoftMenu.html).
We begin with a short description of the DPM model, and then discuss its implementation
through Markov chain Monte Carlo (MCMC) sampling.

Consider a continuous phenotype Yi observed on a sample of N unrelated individuals.
Suppose each individual is then genotyped at L Single Nucleotide Polymorphism (SNP)
markers. The extension to more polymorphic markers is straightforward, although the avail-
able C code does not currently implement such a case. Define Vli = 1 (0 otherwise) if the ith

individual is homozygous for the reference (or minor) allele at the lth SNP, and Wli = 1 (0
otherwise) if the individual is heterozygous at that SNP. Then let βl1 and βl2 represent the
regression effects for individuals heterozygous and homozygous respectively at the lth SNP.
Finally, let Xli = [Wli Vli] and βl = [βl1, βl2]. The hierarchical DPM model can then be
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defined as follows.

L (Yi|µi, τε) =
τ

1/2
ε√
2π

exp

[
−τε
2

(Yi − µi)2

]
µi = β0i +

L∑
l=1

Xliβl

L (Wli, Vli|θli) =
2Wlieθli(2Vli+Wli)

(1 + eθli)2 i = 1, .., N l = 1, .., L

β0i, θ1i, ..., θLi|G
i.i.d∼ G i = 1, .., N

G|αG, G0 ∼ DP (αG, Go)

G0 = N (β0;µ0, τ0)
L∏
l=1

N (θl;µθ, τθ)

βl|H
i.i.d∼ H l = 1, .., L

H|αH , H0 ∼ DP (αH , H0)

H0 = πδ(0,0)(·) + (1− π)MVN2 (Mβ, Tβ)

π ∼ Beta (c1, d1)

τε ∼ Gamma (η1, λ1)

αG ∼ Gamma (η2, λ2) and αH ∼ Gamma (η3, λ3)

Note: Throughout the document, we use the following parametrization of gamma density,
X ∼ Gamma (α, λ),

f(x) ∝ xα−1e−λx

In the above formulation, θli = logit (πli) where πli presents the reference allele frequency
for the ith individual at the lth SNP. δ(0,0)(·) represents a Dirac delta function indicating a
point mass at (0, 0). In addition, N(x;µ, τ) denotes a normal density with mean µ and
precision τ and MVNp(x;M,T ) represents a p-dimensional multivariate normal with mean
vector M and precision matrix T. For each of the Dirichlet Processes, we have assumed
gamma priors for the scalar mass parameters αG and αH following ?; alternatively they
could be taken as to be fixed constants. Figure 1 displays the model as a directed acyclic
graph (DAG).
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Figure 1: DAG for Hierarchical DPM Model of Quantitative Traits

Posterior Computations

We now describe in full detail the necessary steps to implement posterior inference using

MCMC sampling. Given an initial state Θ0 =
[
θ

(0)
i for all i, β

(0)
l for all l, τ

(0)
ε , α

(0)
G , α

(0)
H

]
,

iterate through the following steps.

STEP 1: Update for θi

In order to update θi = [β0i, θ1i, ..., θLi] we employed a Metropolis-Hastings based algorithm
described in ? (algorithm 5). The algorithm of Neal utilizes the notion of a configuration in
updating each θi. At a given MCMC iteration, the θi will have clustered to a set of Kθ < N
distinct values denoted as θ∗ =

[
θ∗1, ..., θ

∗
Kθ

]
. Note that each element of θ∗ represents an L+1

dimensional vector containing the regression parameter β0 and the logit of allele frequencies
at each SNP. We then define the configuration indicators si where si = j if and only if
θi = θ∗j . Finally let nj represent the number of si currently equal to j.
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Step 1a: Perform the following proposal step for R iterations. For i = 1, 2, ..., N ; propose
a new distinct atom membership (s∗i ) for the ith observation. The approach of ? uses the
conditional prior as a proposal distribution for s∗i . Let s(−i) denote the set of all configuration

indicators minus si, and let n
(−i)
j denote the number of sc = j for c = 1, 2, .., i−1, i+ 1, .., N .

P
(
s∗i = j|s(−i)

)
=

n
(−i)
j

αG +N − 1
for j = 1, 2, .., Kθ and

P
(
s∗i = Kθ + 1|s(−i)

)
=

αG
αG +N − 1

Note that if s∗i = Kθ + 1 is proposed then a new value θKθ+1 needs to be sampled from
G0. Accept the move to s∗i with the following probability.

P (si, s
∗
i ) = min [1, R] where

R =
L(Yi,W·i, V·i|θ∗s∗i )
L(Yi,W·i, V·i|θ∗si)

and

L(Yi,W·i, V·i|θ∗j ) = L(Yi|Wli, Vli, β
∗
0j, τε, βl ∀l)×

L∏
l=1

L(Wli, Vli|θ∗j )

When updating the configuration indicators si, there are two potential moves which would
alter the number of distinct points in θ∗. If n

(−i)
si = 0 (i.e. the ith observation is currently a

singleton), unless a proposal of s∗i = Kθ + 1 is accepted, there is now one less distinct point

in θ∗. Therefore, Kθ = Kθ − 1. Similarly, if n
(−i)
si > 0 and a proposal of s∗i = Kθ + 1 is

accepted, then Kθ = Kθ + 1.

Step 1b: After updating each si, let Kθ denote the current atoms in θ∗ where nj > 0.
For j=1,2,..,Kθ, update θ∗j . This entails a series of independent updates for each element of
θ∗j . Begin by sampling β∗0j from a Normal (µ∗, τ ∗) distribution, where

τ ∗ = njτε + τ0

µ∗ =
1

τ ∗

[
τε
∑
i:si=j

(
Yi −

L∑
l=1

Xliβl

)
+ τ0µ0

]

Then, for l = 1, 2, ..., L, the unnormalized log full conditional density for θ∗jl takes the
following form.

log
[
θ∗jl|s,W, V

]
= θ∗jl

∑
i:si=j

(2Vli +Wli)− 2nj log
(
1 + eθ

∗
lj
)
− τθ

2

(
θ∗lj − µθ

)2
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Although the above log target density does not take a standard distributional form, the
density is log-concave, and so a new value for θ∗jl can be sampled using Adaptive-Rejection
sampling (?).

STEP 2: Update for βl

In order to update each βl, we employed the Blocked Gibbs Sampler of ?. The Blocked Gibbs
Sampler is based on the stick-breaking representation of the Dirichlet Process, discussed in
the work of ?. Although the stick-breaking representation of the DP involves an infinite
sum of discrete points, in actual implementation, the Blocked Gibbs Sampler utilizes a finite
approximation, imposing a limit FL to the number of distinct atoms amongst the βl. Denote
this collection of distinct points as β∗ =

[
β∗1 , ...., β

∗
FL

]
. ? show that even for large sample

sizes, a limit of FL = 150 provides a suitable approximation to the Dirichlet Process. Because
of the point mass mixture construction in H0, without a loss of generality, we can include
the additional distinct point β∗0 to represent the cluster denoting no effect (i.e. βl1 = 0 and
βl2 = 0) with associated model weight π. Similar to the configuration representation for θi,
define the pointers zl where zl = j if and only if βl = β∗j for j = 0, 1, 2, ..., FL. Then define
mj as the number of zl currently equal to j.

Step 2a: For j = 1, 2, ..., FL; update β∗j . Note, because β∗0 represents the null effect clus-
ter, its value need not be updated. If mj = 0, then β∗j ∼ H0. Else draw β∗j ∼MVN2 (M∗, T ∗)
where

T ∗ = τεG
′
jGj + Tβ

M∗ = (T ∗)−1
[
τεG

′
j

(
Y −B0 −Xβ(−j))+ TβMβ

]
Y denotes a n × 1 column vector of the quantitative traits Yi. Similarly, B0 represents a
n× 1 column vector where the ith element is β0si . Gj is a n× 2 matrix whose ith row equals[ ∑
l:zl=j

Wli

∑
l:zl=j

Vli

]
. Finally, Xβ(−j) is a n×1 column vector whose ith element is

∑
c:zc 6=l

Xciβ
∗
zc .
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Step 2b: For l = 1, 2, ..., L; independently sample zl where,

P (zl = 0) ∝ πL (Y |s, β∗0 , τε)
P (zl = j) ∝ (1− π)pjL

(
Y |s, β∗j , τε

)
for j = 1, 2, .., FL

where

L(Y |s, β∗j , τε) ∝ exp

−τε
2

N∑
i=1

(
Yi − β0si −Xliβ

∗
j −

L∑
c 6=l

(Xciβzc)

)2


Step 2c: Update π and the stick-breaking weights (pj). Sample π ∼ Beta(c1 + m0, d1 +
(L−m0)). Then for j = 1, 2, .., FL; set

p1 = V1

pk = (1− V1)(1− V2) · · · (1− Vk−1)Vk for k = 2, 3, .., FL − 1

where

Vk ∼ Beta

(
αH
FL

+mk,
αH(FL − k)

FL
+

FL∑
c=k+1

mc

)
for k = 1, 2, ..., FL − 1

Then because the pj must sum to 1, pFL = 1−
FL−1∑
j=1

pj.

STEP 3: Updating the scalar mass parameters of the Dirichlet Process (αG, αH)

If αG and αH are given Gamma priors, then they can be updated using the following pro-
cedure described in ?. Assume there are KG and KH distinct atoms in the configuration
representations for both G and H at the current MCMC iteration.

STEP 3a: Update for αG

1. Sample xG|αG ∼ Beta(αG, N)

2. Let πG equal

πG =
η2 +KG − 1

η2 +KG − 1 +N(λ2 − log(XG))

3. Sample αG|xG, KG ∼

πG Gamma (η2 +KG, λ2 − log(xG)) + (1− πG) Gamma (η2 +KG − 1, λ2 − log(xG))
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STEP 3b: Update for αH

1. Sample xH |αH ∼ Beta(αH , L)

2. Let πH equal

πG =
η3 +KH − 1

η3 +KH − 1 + L(λ3 − log(XH))

3. Sample αG|xG, KG ∼

πH Gamma (η3 +KH , λ3 − log(xH)) + (1− πG) Gamma (η3 +KH − 1, λ3 − log(xH))

STEP 4: Update error precision τε

Sample τε ∼ Gamma(α∗, λ∗) where

α∗ =
N

2
+ η1

λ∗ = λ1 +
1

2

N∑
i=1

(
Yi − β0si −

L∑
l=1

Xliβ
∗
zl

)2
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