Matched Studies in Medical Research

John Klein, PhD
Professor of Biostatistics

Sponsored By:
Clinical and Translational Science Institute (CTSI), &
Division of Biostatistics
Speaker Disclosure

In accordance with the ACCME policy on speaker disclosure, the speaker and planners who are in a position to control the educational activity of this program were asked to disclose all relevant financial relationships with any commercial interest to the audience. The speaker and program planners have no relationships to disclose.
CME Evaluations

Please help us by filling out an evaluation, even if you are not eligible for CME credit.
What is a Matched Pairs Design?

- Data consisted of observations of treatment outcome and control outcome on subjects that are paired.
- Pairing is done in the hope that all other factors are the same within a pair.
- Comparison of treatment and controls is between like subjects.
Examples
Biological Matching

• Diabetic Retinopathy LASER
 – Patient eyes randomized to treatment or not.
 – Event time to loss of vision

• Effects of Skin Graft HLA matching on burn patients
 – Patient’s with extensive burns given grafts which are 8/8 match or mismatched HLA
 – Time to graft failure measured
Examples

Biological Examples

• Study of a surgical device to show tumor cells
 – Mice have tumor implanted in one flank
 – Mouse injected with radioactive iodine. Theory is tumor will pick up iodine have higher radioactivity count then opposite side.
 – Small pen like counter used to measure radioactive count
 – Experiment complicated by iodine absorption in thymus
Examples
Tests Based on Matched subjects

• Comparison of drug 6-MP with placebo (Freireich et al. Blood 1963)
 – Multicenter trial of 6-MP as a remission maintenance therapy for children with acute leukemia
 – At each hospital patients in remission following prednisone therapy matched on disease status and one of pair randomized to 6-MP one to placebo
 – Study measured time to relapse
Tests Based on matched subjects
Retrospective studies

- Studies using retrospective large cohort samples
- Number of treated cases is small
- Number of control cases is large
- Each treated case is matched on some key risk factors to a treated case
Test Based on matched studies
Prospective studies

• Studies require a relatively homogenous population so it is easy to find a match

• Can match on only a few characteristics
Advantages of Design

• Allows comparison of like to like patients

• Allows additional data collection on smaller cohort of patients

• Simpler to understand
Disadvantages of design
Retrospective Studies

• Don’t use all the data
 – Cases without control deleted
 – In survival outcomes some pairs with censored outcomes are deleted

• Can not examine risk factors used to match subjects

• Outcome may depend on how you matched
Disadvantages of design
Prospective Studies

• Logistics
 – Need to find match
 – What to do while waiting
 – How to randomize
 – Need similar measurement for each pair

• Dropouts
 – What to do with pair when there is a drop-out—keep as solo, drop pair, find new match
Alternatives to Matched Designs

• Regression Adjusted Analysis
• Stratified Analysis
• Propensity Score Adjusted Designs
 – Fit Logistic regression model to chance a subject got treatment
 – Predicted probability is a propensity score
 – Stratify analysis, match on propensity score, use propensity in regression to make adjustment for risk factors
Example of Matched Pair Design
Crossover Designs

• Two treatments A and B
• Patients randomized to one of two scenarios
 1. Treatment A ->washout-> Treatment B
 2. Treatment B-> washout-> Treatment A
• If there is no carryover effect (Effect of A in 1 same as effect in 2) then the crossover study is analyzed as a matched pairs using
Tests in Crossover Design

μ_j—Patient effect \quad τ—Effect of Treatment A

λ_A (λ_B)—Carryover effect of A (B) in Period 1

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Difference</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>$\mu_j + \tau$</td>
<td>$\mu_j + \lambda_A$</td>
<td>$\tau - \lambda_A$</td>
<td>$2\mu_j + \tau + \lambda_A$</td>
</tr>
<tr>
<td>B/A</td>
<td>μ_k</td>
<td>$\mu_k + \tau + \lambda_B$</td>
<td>$\tau + \lambda_B$</td>
<td>$2\mu_k + \tau + \lambda_B$</td>
</tr>
</tbody>
</table>

• Comparison of sums in two arms tests for carryover effect—Independent two sample test

• No carryover use paired test on crossover differences

• Significant carryover effect use independent two sample test on period 1 data only
Advantages of Crossover Trials
No Carryover

• To obtain the same number of observations as a parallel design fewer patients need to be recruited
• To obtain the same power or precision as a parallel design fewer patients are needed
Disadvantages of Crossover Designs

• Dropouts
• Not reasonable for disease where the patient may deteriorate over time
• Complicated Analysis
• Period by treatment interactions
• Carryover effects
• For last two problems the data in the first period only is used
Approach 1 to Analysis of Paired Data

Data

\((X_1, Y_1), \ldots, (X_n, Y_n)\)

- Compute difference between individuals within a pair. Base tests on \(d_i = (X_i - Y_i)\). Test if the \(d_i\)'s are sampled from a population centered at zero.

- Examples of tests for continuous data
 - Paired t-test
 - Sign test
 - Sign Rank Test
 - McNemar’s test
Approach 2 to Analysis of Paired Data

Data

\((X_1, Y_1), \ldots, (X_n, Y_n)\)

- \(X\) has mean \(\mu_X (M_X)\)
- Variance \(\sigma_X^2\)
- \(Y\) has mean \(\mu_Y (M_Y)\)
- Variance \(\sigma_Y^2\)
- \(\text{Cov}(X, Y) = \sigma_{xy}\)

- Test based on \((M_X - M_Y)\)
- Variance of \((M_X - M_Y) = \text{Var}[M_X] + \text{Var}[M_Y] - 2 \text{Cov}[M_X, M_X]\)
- Test Statistic

\[
T = \frac{(M_X - M_Y)}{(S_X^2/n + S_Y^2/n - 2*S_{xy}/n)}
\]
Two Approaches with Normal Data

• \((M_X - M_Y) = \text{average values of the } d\text{'s in approach 1}\)
• \(\text{Var}[M_X - M_Y] = \text{Variance of } d\text{'s in approach 1}\)
• Two tests give same result
• Note when \(S_{xy} = 0\) the T test is not the usual two sample t-test in textbooks since that assumes equal variances
Affect of Incorrect Use of Unpaired t-test

- Paired samples of size 20
- Data Bivariate Normal (1,1), $\sigma_x = \sigma_y = 1$, Correlation ρ, 100,000 samples

<table>
<thead>
<tr>
<th>ρ</th>
<th>Unpaired</th>
<th>Paired</th>
<th>ρ</th>
<th>Unpaired</th>
<th>Paired</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.157</td>
<td>0.048</td>
<td>0.9</td>
<td>0.000</td>
<td>0.049</td>
</tr>
<tr>
<td>0.8</td>
<td>0.145</td>
<td>0.051</td>
<td>0.8</td>
<td>0.000</td>
<td>0.049</td>
</tr>
<tr>
<td>0.7</td>
<td>0.133</td>
<td>0.050</td>
<td>0.7</td>
<td>0.001</td>
<td>0.050</td>
</tr>
<tr>
<td>0.6</td>
<td>0.120</td>
<td>0.050</td>
<td>0.6</td>
<td>0.004</td>
<td>0.050</td>
</tr>
<tr>
<td>0.5</td>
<td>0.108</td>
<td>0.051</td>
<td>0.5</td>
<td>0.007</td>
<td>0.049</td>
</tr>
<tr>
<td>0.4</td>
<td>0.096</td>
<td>0.050</td>
<td>0.4</td>
<td>0.013</td>
<td>0.050</td>
</tr>
<tr>
<td>0.3</td>
<td>0.087</td>
<td>0.051</td>
<td>0.3</td>
<td>0.021</td>
<td>0.051</td>
</tr>
<tr>
<td>0.2</td>
<td>0.073</td>
<td>0.050</td>
<td>0.2</td>
<td>0.030</td>
<td>0.051</td>
</tr>
<tr>
<td>0.1</td>
<td>0.061</td>
<td>0.049</td>
<td>0.1</td>
<td>0.039</td>
<td>0.050</td>
</tr>
<tr>
<td>0</td>
<td>0.051</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Number of Patients needed—Paired vs. parallel design

• Assume testing mean difference = 0 versus mean difference = Δ
• Two sided test with 5% type one error
• Data normal with standard deviations of 1
• Either use paired t-test for paired data test or an unpaired t-test with assumed equal variances for the parallel design
• Values from Proc Power in SAS
Comparison of Sample Sizes Needed

<table>
<thead>
<tr>
<th>Difference in Means = 0.5</th>
<th>Difference in Means = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired Design---Number of Pairs</td>
<td>Paired Design---Number of Pairs</td>
</tr>
<tr>
<td>rho</td>
<td>80% power</td>
</tr>
<tr>
<td>-.5</td>
<td>97</td>
</tr>
<tr>
<td>-.3</td>
<td>84</td>
</tr>
<tr>
<td>-.1</td>
<td>72</td>
</tr>
<tr>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>.1</td>
<td>59</td>
</tr>
<tr>
<td>.3</td>
<td>46</td>
</tr>
<tr>
<td>.5</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parallel Design</th>
<th>Parallel Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>N per arm</td>
<td>64 per arm</td>
</tr>
<tr>
<td>N total</td>
<td>128 patients</td>
</tr>
</tbody>
</table>
Examples

Biological Examples

• Study of a surgical device to show tumor cells
 – Mice have tumor implanted in one flank
 – Mouse injected with radioactive iodine. Theory is tumor will pick up iodine have higher radioactivity count then opposite side.
 – Small pen like counter used to measure radioactive count
 – Experiment complicated by iodine absorption in thymus
Number of radioactive counts in 60 seconds

<table>
<thead>
<tr>
<th>control flank</th>
<th>Tumor flank</th>
<th>difference</th>
<th>Rank of</th>
<th>diff</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>121</td>
<td>4</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>336</td>
<td>57</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>400</td>
<td>141</td>
<td>11</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>521</td>
<td>89</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>399</td>
<td>-56</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>798</td>
<td>197</td>
<td>12</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>43</td>
<td>14</td>
<td>4</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>69</td>
<td>11</td>
<td>3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>114</td>
<td>21</td>
<td>5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>156</td>
<td>68</td>
<td>9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>174</td>
<td>42</td>
<td>6</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>169</td>
<td>10</td>
<td>2</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Sign Test

• H_0: Median Difference = 0
• H_A: Median Difference > 0
• Test based on the number of positive differences $B = 11$, $n = 12$
• Reject H_0 if B is too large
• p-value $Pr[B > b_{obs} | p = 1/2]$ with $B \sim \text{Binomial}$ or

 • $Pr[Z > (b_{obs} - (n/2))/\{n/4\}^{1/2}]$ if n is large, $Z \sim \text{Normal}[0,1]$

Here $p = Pr[B \geq 11 | n = 12, p = 1/2] = 12 \cdot p^{12} + p^{12} = .003174$
Wilcoxon Sign Rank Test

- \(H_0 \): Median Difference = 0
- \(H_A \): Median Difference > 0
- Rank Absolute Values of Differences--- \(R_i \) rank of \(i^{th} \) pair
- Add up ranks associated with positive differences \(T^+ \)
- Compute \(E_o[T^+] = \frac{n(n+1)}{4} \), \(\text{Var}_o[T^+] = \frac{n(n+1)(2n+1)}{24} \)
- Standardized test statistic is \(Z = \frac{T^+ - E_o[T^+]}{\text{Var}_o[T^+]^{1/2}} \)
- \(p \)-value = \(\text{Pr}[Z > z] \), \(Z \sim \text{Normal}(0,1) \)

- In example \(T^+ = 71 \), \(E_o[T^+] = 39 \), \(\text{Var}_o[T^+] = 162.5 \), \(z = 2.51 \), \(p = 0.006 \)
Binary Data

McNemar Test

• Comparison of two skin creams
 – Put different cream on each arm
 – Measure yes or no did cream cure rash

<table>
<thead>
<tr>
<th></th>
<th>Cream A</th>
<th>Cream B</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>no</td>
<td>25</td>
<td>45</td>
</tr>
</tbody>
</table>

• Test based on n=25+45=70 discordant pairs
Binary Data

McNemar Test

• If no difference in treatments the chance of A yes, B No= chance of A no, B yes=1/2
• Test statistic based on $p=\frac{\text{Number A no, B yes}}{n}$
• Test statistic $Z=\frac{p-1/2}{\sqrt{0.5/n}}$
• Here $p=\frac{25}{70}=0.357$
• $Z=-2.39$
• $p=2\times\Pr[Z>-2.39]=0.0168$
Paired Survival Data
CTSI Supplemental Grant

- Paired data problems are more complex due to censoring
- Major complication is that in most techniques for comparison pairs where the patient with the smallest on study time is censored are omitted
- Coming soon an annotated bibliography of techniques on the CTSI webpage
Summary

• Paired data designs are a useful tool in medical studies
 – if they are analyzed by proper statistical techniques
 – if there is no expectation of studying variables patients are matched on
 – if the data is biologically matched
 – for crossover designs with no carryover effect
Summary

• Paired data designs may not be the best when they are drawn from large data bases
• Paired data designs require more logistical work then parallel data designs
• Paired data designs may suffer a loss of efficiency when patients drop out
• For many parameters point and interval estimation in paired designs is hard to do
Resources

- The **Clinical and Translation Science Institute (CTSI)** supports education, collaboration, and research in clinical and translational science: www.ctsi.mcw.edu

- The **Biostatistics Consulting Service** provides comprehensive statistical support www.mcw.edu/biostatistics.htm
Free Drop-In Consulting

- **MCW**: Tuesdays & Thursdays 1– 3 pm
 - Health Research Center, H2400
- **Froedtert**: Mondays, Wednesdays, Fridays 1 – 3 pm
 - Froedtert Pavilion, L772A- TRU offices
- **VA**: Every Monday, 9:30 – 10:30 am
 - VA Medical Center, Room 70-A 314-A
- **Marquette**: Every Tuesday, 8:30 – 10:30 am
 - School of Nursing-Clark Hall, Office of Research & Scholarship: 112D
Questions?