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SUMMARY

A study of long term survival of 1,487 patients given an allogenic bone marrow transplant for
acute myelogenous leukemia and 729 patients given a transplant for severe aplastic anemia
was conducted by the International Bone Marrow Transplant registry. One aim of this study
is to determine if the mortality rates of these patients returns after some period of time to
the same mortality rate as in the general population. To examine this question a model for
the relative mortality of a bone marrow transplant patient relative to a matched individual in
the general population is presented. This model allows for di�erent relative mortality rates
depending on the risk factors the patient may have. We discuss an estimation procedure for
this model and construct a test that the mortality rate in the transplanted population is the
same as in the reference population over a given time interval.

1 Introduction

Allogenic bone marrow transplantation has been a common treatment for leukemia, aplastic
anemia and genetic disorders. In the past twenty years the number of patients treated
by means of this therapy has greatly increased1 so that now this is a standard treatment
for patients with acute myelogenous leukemia (AML)2 and severe aplastic anemia (SAA)3.
While the short term e�ects of this treatment modality have been studied extensively, with
few exceptions4 there has been little study of the long term e�ects on patient survival.

Numerous studies have been conducted to determine risk factors for bone marrow trans-
plants. These studies have focused on making comparisons between bone marrow trans-
plantation patients or on comparisons of the e�ectiveness of transplantation therapy to
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chemotherapy. These studies, based on a Cox regression model5, provide relative risk esti-
mates of treatment modalities or prognostic indications. All estimates are relative to other
patients with the disease.

With increasing follow-up of transplant patients it is natural to ask if bone marrow
transplant in fact \cures" all patients or some subgroup of patients. Here, by \cured" we
mean the patient's mortality rate has returned to the same mortality rate as one would expect
in a person of the same age and gender in the general population. While it is not reasonable
to expect a return to the standard mortality rate of the general population immediately after
transplant, it is possible that after some time the excess mortality directly related to the
therapy may have washed out. Of interest is the estimation of this time of \cure" or the
testing at a �xed time point to determine if the patient has been cured. It is also highly
likely that this cure time may depend on some risk factors either known at the time of
transplantation or by some point in time in the patients post transplant recovery process.

Twenty-�ve years ago the International Bone Marrow Transplant Registry (IBMTR) was
found with the goal of collecting data on consecutive allogeneic marrow transplants from
member centers6. The IBMTR is a volunteer organization of 406 transplant teams worldwide
that report all their consecutive cases to a central statistical center. Approximately 40% of
the allogeneic transplants performed are reported to the Registry. Extensive data on patient
risk factors is collected at the time of transplantation on most patients and patient follow-up
information is obtained every six months.

In this note we shall present a model for the excess relative mortality due to transplanta-
tion in a group of 1,487 AML and 729 SAA patients from 14 countries. All patients included
in the sample were alive and free of their primary disease at two years post transplant, so
that all deaths observed in the sample are from causes not related to the short term toxicity
of the transplant itself. All patients were transplanted between 1980 and 1993. This is a
subsample of a larger sample previously reported4 on which we were able to obtain current
published life table information. Table 1 shows the distribution of the number of cases by
the country where the patient was transplanted. Standard mortality tables were obtained
for these countries by sex and for the US by sex and race (black versus non-black).

Of the 1,487 AML patients 160 died, while 34 of the 729 SAA patients died. For the AML
patients the median follow-up was 6.2 years with a range of 2-16.7 years. For the aplastic
anemia patients the median follow-up time was 6.7 years with a range of 2-16.8 years. The
median age of the AML patients at the time of transplantation was 22.4 years (range 0.5-56.6
years) and was 18.8 years (range 0.2-69.4 years) for SAA patients.

There are a number of factors that have been shown to be predictive of survival following
a transplant. One important factor is the development of graft-versus-host disease (GVHD).
Two types of GVHD can occur, acute GVHD which occurs in the �rst 100 days post trans-
plant and chronic GVHD which occurs after 100 days. We include as risk factors for survival
a binary indicator of whether the patient had acute GVHD, an indicator of whether a patient
had chronic GVHD prior to two years that was still active at two years, and indicator of
whether a patient had chronic GVHD prior to two years that was resolved at two years. Age
of the patient at the time of transplantation has been found to be associated with survival
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in transplant studies using the Cox model. While we shall be making an adjustment for age
by using the age speci�c survival rates from published life tables, it is still of interest to see if
young patients have a di�erent \cure" rate then older patients. We divided the patients into
three age groups: children (age�16 years), young patients (16-25 years) and older patients
(> 25 years). A �nal covariate to be considered is the stage of the disease at the time of
transplantation. For AML patients we classify patients as having early (transplanted in �rst
complete remission), intermediate (transplanted in a second or later complete remission) or
advanced (transplanted in relapse) disease. For SAA patients patients are classi�ed as hav-
ing earlier disease (time from diagnosis to transplant less than one year) or advanced disease
(time from diagnosis to transplant more than one year). Table 2 summarizes the covariates
for the two diseases.

To examine the e�ects of these covariates on survival the standard Cox regression model
was �t to the data. For this model the hazard rate of an individual with covariate vector Z
is of the form

h(tjZ) = h0(t) expf

tZg; (1.1)

where 
 is the vector of covariates and h0(t) is a baseline hazard rate. Here the risk coef-
�cients, 
, provide information on the relative e�ects of the covariates on survival among
transplant patients and h0(t) is the death rate for, in our example, a child transplant patient
with early disease who has had neither type of GVHD. The results of �tting the standard
Cox model are given in Table 3. These results show that for AML transplant patients, those
with active chronic GVHD and intermediate or advanced disease tend to have lower survival,
relative to other AML transplant patients. For SAA patients those with either acute GVHD
or active chronic GVHD and advanced disease, tend to have lower survival, relative to other
SAA transplant patients.

In the next section we present a model for the survival of bone marrow transplant patients
relative to the survival rates in the general population. The estimated relative mortality is
allowed to be e�ected by a patient's risk factors at the time of transplant. We develop a
test of the hypothesis that the relative mortality is equal to one over a given time interval.
This is a test that the mortality rate in the treated population over this interval is the same
as that in the general population. In Section 3 we return to the example to determine at
various times after transplant if a patient with a certain set of covariates has a mortality
rate which has returned to normal.

2 A Model for Excess Relative Mortality

For each patient we assume that the mortality rate of a patient of the same age and sex (and
possibly race) is known. At a time, t, after transplant let �i(t) be the standard mortality
rate of the patient in the general population. Note that if the patient were transplanted at
age a, then �i(u) is the mortality rate in the general population of a patient of age a + u.
For the ith patient we have covariates Zi = (Zi1; � � � ; Zip)

t.
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The death rate of the ith patient at t years post transplant is modeled as:

�i(tjZi) = �0(t)�i(t) expf�
tZig; (2.2)

where �0(t) is a baseline relative mortality due to transplantation and �t = (�1; � � � ; �p) is
a p-vector of covariate to be estimated from the data. Note that this model is of the form
of the usual proportional hazards regression model with the inclusion of a time dependent
covariate, ln[�i(t)] with a regression parameter constrained to be one.

Model (2.2) was orginally proposed by Andersen et al7 as a model for relative mortality.
When �0(t) is �xed at one this is the model of Breslow et al8. When there are no covariates
this is the model of Andersen and V�th9.

To estimate parameters of the model, let Ti be the on study time and �i be the death
indicator (�i = 1 if Ti is a death, 0 otherwise) for the ith patient. De�ne the counting
process Ni(t) = IfTi � t; �i = 1g and Yi(t) = IfTi � tg, where If�g is the indicator function.
Let �N(t) =

P
iNi(u), S0(t;�) =

P
i Yi(t)�i(t) expf�

tZig. De�ne the p-vector S1(t;�) =P
iZiYi(t)�i(t) expf�

tZig and the p � p matrix S2(t;�) =
P

iZiZ
t
iYi(t)�i(t) expf�

tZig.
Using standard counting process techniques10 the log partial likelihood is

L(�) =
X
i

Z T

0

�tZidNi(u)�
Z T

0

lnfS0(u;�)gd �Ni(u); (2.3)

where T is the maximum on study time. The maximum partial likelihood estimators of �
are found by solving the score equations

U(�; T ) =
X
i

Z T

0

dNi(u)�
Z T

0

S1(u;�)

S0(u;�)
d �N(u) = 0; (2.4)

and information matrix is given by

I(�; T ) =
Z T

0

8<
:S2(u;�)

S0(u;�)
�

"
S1(u;�)

S0(u;�)

#29=
; d �N(u): (2.5)

The estimated covariance matrix of the �̂'s is given by �̂ = I(�̂; T )�1.
The cumulative relative mortality due to transplantation, for an individual with a covari-

ate vector Z0, over the interval [s; t] is given by

A(s; t;Z0) = A0(s; t) expf�
tZ0g; (2.6)

where

A0(s; t) =
Z t

s
�0(u)du: (2.7)

The quantity A0(s; t) can be estimated consistently by

Â0(s; t) =
Z t

s

d �N(u)

S0(u; �̂)
: (2.8)
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Applying Andersen et al10 Corollary VII.2.6. with Yi(t) replaced by Yi(t)�i(t), it can
be shown that a consistent estimator for the variance of Â(s; t;Z0) = Â0(s; t) expf�̂tZ0) is
given by

V ar
h
Â(s; t;Z0)

i
=
�
expf�̂

t
Z0g

�
2
(Z t

s

d �N(u)

S0(u; �̂)2
+ Ŵ

t
�̂Ŵ

)
; (2.9)

where

Ŵ =
Z t

s

(
S1(u; �̂)

S0(u; �̂)
�Z0

)
d �N(u)

S0(u; �̂)
: (2.10)

Using Â(s; t;Z0) and V ar[Â(s; t;Z0)] we may test the hypothesis that the mortality rate
for an individual with a set of covariates, Z0, is the same as in the general population over

the interval [s; t]. If the mortality rates are equal over the interval then �0(u)e
�

t

Z0 = 1, for
all u 2 [s; t] and A(s; t;Z0) = (t� s). The test statistic is given by

Q(s; t) =
Â(s; t;Z0)� (t� s)

V ar[Â(s; t;Z0)]1=2
(2.11)

which has a large sample standard normal distribution when the null hypothesis is true.
Large positive values of Q(s; t) favor the alternative hypothesis (since relative rates lower
than one are not biologically feasible) so that the null hypotheses is rejected when Q(s; t) is
larger than the appropriate upper percentile of a standard normal.

3 Estimates of Relative Mortality for BMT Patients

To apply the inference procedure discussed in the previous Section to BMT patients with
AML or SAA we �rst need to obtain the population mortality rates, �i(�), for each patient.
To obtain these rates we asked IBMTR team members in each of the countries listed in
Table 1 to provide us with population mortality data. For all countries, except the United
Kingdom, this information came to us in the form of a life table. For the UK population
death rates, by sex, for the year 1991 were obtained directly from the O�ce of Population
Census and Surveys. Unabridged life table estimates of the population survival probabilities
by sex were obtained from government sources for the 1992 Australian, 1988 Brazilian,
1985-7 Canadian, 1986-1990 Danish, 1992 Japanese, 1985-6 Spanish, 1991 Swedish and 1989
American (by race) survival. These provide the values of the population survival rate, S(x),
for ages x = 0; 1; 2; � � �. For the Netherlands, based on the 1980-4 life table, estimates of
S(x) were available at ages 0:5; 1:5; 2:5; � � � years. Estimates for other countries were from
abridged tables. For the 1986-7 German (FRG) life table, estimates of S(x) were available
for x = 0; 1; 2; 5; 10; � � �. For Italy (1985 table) and Portugal (1991 tables), estimates were
available at x = 0; 1; 5; 10; � � �.
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From these tables we compute the population mortality rate, �(a), at age a by assuming
a constant mortality over the interval reported in the population life table. Under this
assumption for an unabridged life table we have

�(a) = � ln[S(x + 1)]� (� ln[S(x)]); for x � a < x+ 1;

while for a table with �ve year intervals we compute

�(a) = � ln[S(x+ 5)]� (� ln[S(x)])=5; for x � a < x+ 1:

Once the population mortality rates are computed the value of �i(t) for a patient of age ai
at transplant is given by �(ai+ t), where �(�) is from the proper age (race) and sex matched
population. Using these population rates we obtain the estimates of the relative mortality
risk coe�cients by maximizing (2.3). The estimates are given in Table 4.

An examination of Table 4 shows that there is a signi�cant e�ect of age on the relative
mortality rate. Patients who are younger are dying at a faster rate than older patients
relative to the age matched mortality rates in the general population. Note that in the
standard Cox model (Table 2), where comparisons are between transplanted patients, there
is no age e�ect for either disease. If there is no e�ect of age on transplant outcomes then
the �nding of an age e�ect in the relative mortality model is not surprising since younger
patients have a lower population mortality rate. For both diseases the estimates of the e�ects
of the other covariates are similar in the Cox model and the relative mortality model.

In Figures 1 and 2 we plot a smoothed estimate of the relative mortality rate,
�̂0(t) exp(�̂Z0) for an AML and SAA patient in each of the three age groups. The plots
are for patients who had not had graft-versus-host disease and were in the early disease
state. These estimates were obtained by smoothing the estimates of A(0; t;Z0) using an
Epanechnikov kernel smoothing routine with a bandwidth of 2 years (See Gasser and M�uller11

(1979)). From these �gures it appears that for young AML patients there is little evidence
of a \cure", while for older patients there is some evidence that after about 10 years after
transplantation the risk of death may have returned to the baseline population mortality
rate. For young SAA patients it appears that their mortality rates are similar to those in
the general population after about six years, while older SAA patients appear to have the
same mortality rate at two years after transplant.

The above observations can be con�rmed using the test described in the previous Section.
To perform the test we set t equal to 12.6 years after transplant for AML and 12.4 years
for SAA patients. These values were the times at which the last event occurred in the
respective samples. For AML patients we test at s = 8 and 10 years if the mortality rate is
the same for an AML patient as in the general population over the period [s; t] using (2.10)
for selected values of the covariates. The results are in Table 5. From this table we see that
with the exception of old patients with early disease or old patients with no chronic GVHD
and advanced disease the test rejects the hypothesis that the mortality rate has returned to
normal over the period 8-12.6 years. For all patients over the interval 10-12.6 years there is
no evidence that the mortality rate is di�erent from the reference population.

6



For SAA patients the results presented in Table 6 show a di�erent pattern. Here it
appears that for patients over age 16 with no adverse risk factors the mortality rate is the
same as in the general population after two years post transplant. For patient over age 25
with a single risk factor (active GVHD, prior history of acute GVHD or late disease) their
rate is the same as in the general population after 4 years, while if they have 2 or more risk
factors the death rate is the same after 6 years. For young patients there is no di�erence
between their mortality and the reference rates after 6 years if they have one of the risk
factors present.

4 Discussion

The techniques discussed here for estimation of the relative mortality rate are simple exten-
sions of the Cox proportional hazards model. They are extended to include left truncated
data by a simple rede�nition of the risk set. The assumption of a proportional e�ect of
the covariates on the relative mortality can be tested by using a time dependent covariate
approach as in the usual proportional hazards regression model.

The test statistic (2.11) has little power to detect a relative mortality rate which crosses

one over the interval [s; t]. While it is mathematically possible that
R t
s �0(u)e

�
t

Z0du = (t�s)

and �0(u)e
�

t

Z0 6= 1 for all u 2 [s; t], this would require that treated patients have a lower
mortality rate than matched individuals in the general population. In most situations this
is not biologically plausable.

As noted earlier these models have been suggested by other authors and estimates of
A(s; t;Z0) are found in these papers. For this statistic the calculation of the variance of the
estimator, requires some care since the estimator of A(s; t;Z0) does not have independent
increments.

In looking at the results in Tables 5 and 6 there is an obvious multiple testing problem in
performing tests at di�erent time points and at multiple covariate values. One could argue
that some type of a corrected signi�cance level should be used to make the comparisons of
interest. We choose not to do so since our goal is to provide the investigator with only a
crude notion of when the patients mortality rate has returned to normal and the p-values
computed serve as measures of evidence against this hypothesis.

The ability to determine whether and when the mortality rate of a transplant recipients
returns to that of a normal population is important for several reasons. First, it can help
guide stratigies for long-term medical follow-up of transplant recipients. Patient groups with
persistently high mortality rates relative to the general population can be targeted for more
frequent or intensive surveillance and study. Second, patients whose risk is similar to that
of the general population can be reassured. This reassurance can signi�cantly improve the
quality of life for the transplant survivor. Finally, the convincing demonstration of risks
similar to the general population may allow transplant survivors to obtain life and health
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insurance. This is currently a di�cult and serious problem facing many transplant survivors.
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Table 1. Country Of Transplant For Study Patients

COUNTRY SEX/RACE AML SAA

AUSTRALIA MALE 67 28
FEMALE 57 20
TOTAL 124 48

BRAZIL MALE 15 81
FEMALE 12 42
TOTAL 27 123

CANADA MALE 60 31
FEMALE 50 12
TOTAL 110 43

DENMARK MALE 11 9
FEMALE 13 4
TOTAL 24 13

ENGLAND (UK) MALE 99 37
FEMALE 88 26
TOTAL 187 63

GERMANY MALE 68 33
FEMALE 62 22
TOTAL 130 55

ITALY MALE 53 18
FEMALE 51 11
TOTAL 104 29

JAPAN MALE 18 15
FEMALE 23 9
TOTAL 41 24

NETHERLANDS MALE 41 8
FEMALE 35 6
TOTAL 76 14

PORTUGAL MALE 5 6
FEMALE 5 1
TOTAL 10 7

SPAIN MALE 53 44
FEMALE 52 25
TOTAL 105 69

SWEDEN MALE 27 14
FEMALE 28 3
TOTAL 55 17

USA MALE/BLACK 8 14
FEMALE/BLACK 13 7

MALE/NON BLACK 232 119
FEMALE/NON BLACK 241 84

TOTAL 494 224

TOTAL 1487 729
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Table 2. Frequencies of Covariates

COVARIATE AML SAA
Acute GVHD

Yes 368 (24.7%) 145 (19.9%)
None 1119 (75.3%) 584 (80.1%)

Chronic Gvhd
None 875 (58.8%) 465 (63.8%)

Resolved By 2 Years 236 (15.9%) 81 (11.1%)
Active At 2 Years 376 (25.3%) 183 (25.1%)

Age
<16 Years 332 (22.4%) 284 (39.0%)
16-25 Years 350 (23.5%) 251 (34.4%)
>25 Years 805 (54.1%) 194 (26.6%)

Disease Stage
Early 1132 (75.1%)

Intermediate 162 (10.9%) 642 (88.1%)
Advanced 193 (13.0%) 87 (11.9%)
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Table 3. Results Of Standard Cox Regression Analysis

AML SAA

Risk Factor �̂ SE p �̂ SE p
Acute GVHD

Yes 0.270 0.176 0.125 1.029 0.349 0.003

Chronic GVHD 0.08681 0.0011

Resolved 0.295 0.224 0.188 0.592 0.616 0.337
Active 0.398 0.185 0.032 1.468 0.408 >0.001

Age 0.08341 0.9581

16-25 0.141 0.260 0.588 -0.084 0.395 0.831
>25 0.438 0.224 0.050 0.032 0.424 0.940

Disease Stage < 0:0011

Intermediate 0.607 0.224 0.007
Advanced 0.647 0.200 0.001 1.117 0.380 0.003

1. Two degree of freedom Wald test of e�ect of factor on survival.
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Table 4. Results Of Relative Mortality Regression Analysis

AML SAA

Risk Factor �̂ SE p �̂ SE p
Acute GVHD

Yes 0.241 0.175 0.170 1.351 0.396 <0.001

Chronic GVHD 0.06781 .0031

Resolved 0.300 0.225 0.182 0.468 0.626 0.454
Active 0.414 0.183 0.023 1.344 0.407 0.001

Age <0.0011 <0.0011

16-25 -0.716 0.260 0.006 -0.863 0.395 0.029
>25 -1.339 0.224 <0.001 -1.614 0.426 <0.001

Disease Stage 0.0031

Intermediate 0.666 0.224 0.003
Advanced 0.463 0.201 0.021 1.168 0.360 0.001

1. Two degree of freedom Wald test of e�ect of factor on survival.
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Table 5. p-Values Of The Test That The Mortality Rate For A Transplanted
Patient Is The Same As In The General Population Over The Interval [s,12.6]

For An AML Patient Without Acute GVHD

Age Chronic Disease stage p-value when p-value when
GVHD s=8 s=10

<16 None Early 0.0118 0.2594
16-25 None Early 0.0370 0.3917
>25 None Early 0.1631 0.6360
<16 Active Early 0.0078 0.2222
16-25 Active Early 0.0177 0.3016
>25 Active Early 0.0581 0.4570
<16 None Intermediate 0.0064 0.2070
16-25 None Intermediate 0.0125 0.2655
>25 None Intermediate 0.0338 0.3796
<16 Active Intermediate 0.0051 0.1899
16-25 Active Intermediate 0.0081 0.2259
>25 Active Intermediate 0.0116 0.2943
<16 None Advanced 0.0075 0.2188
16-25 None Advanced 0.0165 0.2935
>25 None Advanced 0.0519 0.4399
<16 Active Advanced 0.0057 0.1973
16-25 Active Advanced 0.0098 0.2428
>25 Active Advanced 0.0229 0.3306
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Table 6. p-Values Of The Test That The Mortality Rate For A Transplanted
Patient Is The Same As In The General Population Over The Interval [s,12.4]

For An Aplastic Anemia Patient

Age Chronic Disease Acute p-value p-value p-value p-value
GVHD State GVHD when when when when

s=2 s=4 s=6 s=8
<16 None Early No 0.0011 0.0843 0.3641 0.4244
16-25 None Early No 0.1561 0.7968 0.9534 0.9207
>25 None Early No 0.9985 1.0000 1.0000 1.0000
<16 Active Early No <0.0001 0.0051 0.0749 0.1459
16-25 Active Early No 0.0001 0.0232 0.1810 0.2623
>25 Active Early No 0.0048 0.1910 0.5454 0.5691
<16 None Late No <0.0001 0.0064 0.0859 0.1597
16-25 None Late No 0.0003 0.0359 0.2308 0.3093
>25 None Late No 0.0133 0.3195 0.6865 0.6800
<16 Active Late No <0.0001 0.0021 0.0440 0.1031
16-25 Active Late No <0.0001 0.0037 0.0615 0.1283
>25 Active Late No <0.0001 0.0099 0.1107 0.1888
<16 None Early Yes 0.0039 0.0234 0.0982 0.1610
16-25 None Early Yes 0.0102 0.0610 0.2054 0.2736
>25 None Early Yes 0.0481 0.2453 0.5350 0.5602
<16 Active Early Yes 0.0023 0.0130 0.0611 0.1151
16-25 Active Early Yes 0.0030 0.0174 0.0774 0.1360
>25 Active Early Yes 0.0049 0.0296 0.1180 0.1836
<16 None Late Yes 0.0023 0.0135 0.0632 0.1178
16-25 None Late Yes 0.0032 0.0191 0.0835 0.1434
>25 None Late Yes 0.0059 0.0354 0.1359 0.2031
<16 Active Late Yes 0.0020 0.0112 0.0540 0.1055
16-25 Active Late Yes 0.0021 0.0123 0.0583 0.1113
>25 Active Late Yes 0.0025 0.0147 0.0675 0.1234
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