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Abstract:

A SAS macro to extend the Cox proportional haz-
ards regression model to allow for positive stable
frailties is presented. This macro computes, using a
modi�ed EM algorithm, estimates of the model pa-
rameters and their respective standard errors. The
likelihood ratio test of the independence assumption
is also provided. An example data set is used to
illustrate the macro.

1 Introduction

Frailty or random e�ects models are useful in sur-
vival analysis for modeling associations between in-
dividuals in certain groups. For example, if one is
interested in studying risk factors for a particular
disease outcome or the e�ectiveness of some treat-
ment, it is reasonable to believe that siblings who
share a common genetic code and early environmen-
tal exposure will have event times more closely re-
lated than non-siblings. In human (or animal) stud-
ies, the family (or litter) forms natural groupings,
and thus dependencies, between study subjects.

One way to model the dependence of the event
times is through the introduction of a common ran-
dom e�ect (either environmental or genetic), called
a frailty. In this model, individuals in a natu-
ral group share an unobservable random covariate,
W , which acts multiplicatively on the hazard rate
of each group member. If the realization of W is
greater than one, then all members of the group
tend to experience the event of interest at an early
time, while the opposite occurs ifW is less than one.
Hence a positive association between group members
is induced by the frailty.

Although frailty models are becoming increas-
ingly appealing in survival analysis, they are
not widely used. One reason for this is the
lack of any user-friendly software. This paper
presents a SAS macro for positive stable frailty

model, which is now available on our Web site:
http://www.biostat.mcw.edu/SoftMenu.html.
Section 1 outlines the positive stable frailty model.

Section 2 describes the SAS macro and its output.
Section 3 gives an example to illustrate the macro,
using data from Mantel et al. (1977) on a litter-
matched tumorigenesis experiment. Finally, the dis-
cussion summarizes the positive stable frailty model
and the SAS macro.

2 The Positive Stable Frailty Model

2.1 The Positive Stable Frailty Distribution

Suppose that we have data on the event times and
covariate values of n individuals from some popula-
tion. Our sample consists ofMi � 1 individuals from
the ith subgroup of the population, i = 1; : : : ; B.
Individuals within the ith subgroup have dependent
event times due to some unobserved covariate infor-
mation summarized in a frailty, Wi. Note that, in
this formulation, subgroups of size one are allowed
and in such a case that individual is a�ected by his
or her own frailty.
For the jth individual in the ith subgroup, let Xij

denote the time to the event of interest. Let Zij be
a vector of potential covariates associated with this
individual. Suppose that, conditional on the frailty
Wi, the hazard rate for this individual is of the form

�(xjZij ;Wi) =Wi�0(x) exp(�
0Zij); (1)

where �0(x) is an arbitrary baseline hazard rate and
� is a p-vector of unknown parameters. Notice that
if Wi = 1 for all i, then the frailty model reduces to
the usual Cox (1972) model for independent data.
Here, as suggested by Hougaard (1986), we as-

sume that the Wi's are independent and identically
distributed positive stable variates with Laplace
transform

Lap(s) = E(e�sW ) = exp(�s�); 0 < � � 1:

Small values of � re
ect greater heterogeneity be-
tween subgroups and thus a stronger association



among subgroup members. The strength of associa-
tion between two individuals, measured by Kendall's
� , is (1 � �), with � = 1 corresponding to inde-
pendence between group members. Note that when
� = 1 the Wi's are equal to 1 with probability one.
A traditional method of assessing the e�ects of

risk factors is to examine the relative risk of expe-
riencing the event of interest for an individual with
covariate vector Z1 as compared to an individual
with covariate vector Z2. From model (1), for two
individuals within a subgroup (i.e., sharing a com-
mon value of frailty), the conditional relative risk
is

RR within = expf�0(Z1 � Z2)g:

But in general, for two randomly selected members
of the population with covariates Z1 and Z2, the
unconditional relative risk is (Shu, 1997)

RR between = expf��0(Z1 � Z2)g:

2.2 Semi-parametric Estimation Via the

EM Algorithm

To estimate �, �, and cumulative baseline hazard
rate �0(x) =

R x
0 �0(u)du, a semi-parametric EM al-

gorithm (Dempster et al., 1977) based on a pro�le
likelihood for the conditional proportional hazards
model is implemented in the SAS macro. Suppose
our data, based on a sample of size n, consists of
the triple (Tij ; Iij ;Zij); i = 1; : : : ; B; j = 1; : : : ;Mi,
where for the jth individual in the ith subgroup,
Tij is the time on study, Iij is the event indicator
(Iij = 1 if the event has occurred; Iij = 0 if the
lifetime is right censored) and Zij is the vector of
covariates or risk factors. To apply the EM algo-
rithm, we treat the observed data as the incomplete
data and the unobserved frailties, Wi's, as the miss-
ing information. First, note that for �xed �, if we
could observe theWi's, the augmented log likelihood
is equal to, up to a term free of the unknown param-
eters,

L1(�;�0; data; w1; : : : ; wB)

=

BX
i=1

MiX
j=1

�
Iij
�
�0Zij + ln�0(Tij)

�

� wi�0(Tij) exp(�
0Zij)

�
: (2)

The estimating algorithm proceeds by �rst mak-
ing an initial guess at the values of � (and thus at
�0(�)). The initial estimates are obtained by a stan-
dard Cox's program. To apply the E-step of the
algorithm we need to compute the expected value of

Wi, conditional on the observed data. Wang et al.
(1995) showed that

E[Wijdata] =
E
h
WDi+1

i exp(�HiWi)
i

E
h
WDi

i exp(�HiWi)
i ; (3)

i = 1; : : : ; B;

where

Hi =

MiX
j=1

�0(Tij) exp(�
0Zij); (4)

and Di =
PMi

j=1 Iij is the observed number of deaths
in the ith group. To evaluate (3) we have the fol-
lowing lemma from Wang et al. (1995):

Lemma 1 If W follows a positive stable distribu-
tion, then

E[W q exp(�sW )] = (�s��1)q exp(�s�)J [q; s]; (5)

q = 0; 1; : : : ; s > 0

where J [q; s] =
Pq�1

m=0 
q;ms
�m� and 
q;m is a poly-

nomial of degree m given recursively by


q;0 = 1;

q;m = 
q�1;m +
q�1;m�1f(q � 1)=� � (q �m)g;

m = 1; : : : ; q � 2;

q;q�1 = �1�q�(q � �)=�(1� �):

Using (3) and (5), we substitute Ŵi = E[Wijdata]
into (2) for Wi in the E-step of the EM algorithm to
obtain

EW [L1(�;�0; data; w1; : : : ; wB)]

=

BX
i=1

MiX
j=1

�
Iij
�
�0Zij + ln�0(Tij)

�

� Ŵi�0(Tij) exp(�
0Zij)

�
: (6)

The M-step of the EM algorithm requires the max-
imization of (6) with respect to the unknown param-
eters, �. To obtain the updated estimate of �, note
that (6) contains the nuisance cumulative baseline
hazard rate, �0. Using the pro�le likelihood con-
struction technique proposed by Johansen (1983), if
we �rst �x �, Wang et al. (1995) showed that the
semi-parametric estimator of �0(t) is

�̂0(t) =
X

T(k)�t

d(k)P
l2R(T(k))

Ŵl exp(�
0Zl)

; (7)

where T(k) is the kth smallest death time, re-
gardless of subgroup (In the sequel, we shall de-
note T(1) < T(2) < � � � < T(D) as the D distinct event



times); d(k) is the number of deaths at T(k); R(T(k))

is the set of individuals at risk at time T(k); Ŵl is
the expected value of the frailty, given the data (See
(3)); and Zl is the covariate vector associated with
the lth individual in the sample. Substituting (7)
into (6) yields the pro�le log likelihood for �, up to
a term free of the parameter values,

L2(�)

=
DX
k=1

8<
:S(k)� � d(k) ln

2
4 X
l2R(T(k))

Ŵl exp(�
0Zl)

3
5
9=
; ;

(8)

where S(k) is the sum of the covariate vectors of
individuals who died at time T(k).
Iterating between the E and M steps until conver-

gence yields an estimate of �(�) for this �xed value
of �. For these parameter values we then compute
the full unaugmented likelihood given by (Wang et
al., 1995)

LFull(�;�(�);�0; data)

=
BX
i=1

(
Di [ln � + (� � 1) lnHi]

� [Hi]
� + lnfJ [Di; Hi]g

+

MiX
j=1

Iij [�(�)
0Zij + ln�0(Tij)]

)
: (9)

In the SAS macro, (9), which is a function of
� only, is maximized by a golden search technique
(Press et al., 1992) after initially bracketing a max-
imum through a grid search method.

In summary, the estimation routine proceeds as
follows:

Step 0. Using a modi�ed Cox regression program,
obtain initial estimates of � and �0 from (8)
and (7) respectively, with Ŵl = 1 (i.e., � = 1).

Step 1. Fix �. Using the current values of �, �, and
�0, compute Ŵl = E[Wljdata] from (3) and (5).

Step 2. Update the estimate of � (and �0) using
(8) (and (7)).

Step 3. Iterate between Steps 1 and 2 until conver-
gence of �.

Step 4. Repeat Steps 1-3 to construct the pro�le
likelihood for � using (9) and search for that
value of � which maximizes (9) using the search
method mentioned above.

2.3 Standard Errors of the Estimates

In this section, we use the same approach proposed
by Andersen et al. (1997) to estimate the standard
errors of the model parameter estimates. To sim-
plify notations, we denote the baseline hazard rate
estimates as � = (�(1); : : : ; �(D))

0, where

�(k) = �̂0(T(k)) =
d(k)P

l2R(T(k))
Ŵl exp(�

0Zl)
; (10)

k = 1; : : : ; D:

Substituting (7) into (4), we get the estimator of Hi

as:

Hi(�;�) =

MiX
j=1

�̂0(Tij) exp(�
0Zij)

=

MiX
j=1

DX
k=1

Yij(T(k))�(k) exp(�
0Zij); (11)

where Yij(t) = I(Tij � t).
Now substituting (10) and (11) into (9), we can

rewrite the observed log likelihood as:

L(�;�;�)

=

BX
i=1

�
Di fln � + (� � 1) ln[Hi(�;�)]g

� [Hi(�;�)]
� + ln fJ [Di; Hi(�;�)]g

�

+

BX
i=1

MiX
j=1

Iij�
0Zij +

DX
k=1

d(k) ln[�(k)]: (12)

Note that L is a function of (1 + p+D) parameters
(�; �1; : : : ; �p; �(1); : : : ; �(D)). Careful di�erentiation
of (12) with respect to these parameters yields the
observed information matrix. The estimated covari-
ance matrix of � and (�1; : : : ; �p) is the upper left
hand (1+ p)� (1+ p) submatrix of the full informa-
tion matrix. Details can be found in Shu (1997).

3 The SAS Macro for the Positive

Stable Frailty Model

The main part of the macro is the statistical analysis
using the positive stable frailty model based on the
EM algorithm. The �nal results are summarized in
an analysis of variance table that will list the indi-
vidual e�ects (including the dependence parameter
and covariates) and each e�ect's degrees of freedom,



maximum likelihood estimate, standard error, Wald
test p-value, and relative risk (both within group
and between group). Also reported are Kendall's �
and the last computed value of the log full likeli-
hood. The likelihood ratio test of the independence
assumption that � = 1 is performed automatically
and the degrees of freedom, chi-square statistic and
the corresponding p-value are printed.
Note that, for comparison's sake, the analysis

of variance table and the log partial/full likelihood
from the usual Cox independence model are printed
�rst in the summary report of the �nal results.
To make the best use of the macro, there are sev-

eral printing and output data set options that the
user may wish to specify. The printing options in-
clude the report of grouping information, the itera-
tion history and/or a summary table from it, the es-

timated variance-covariance matrix of �̂ and �̂, and
con�dence limits for the relative risks (it's also pos-
sible to change the con�dence coeÆcient for the rel-
ative risks). The output data set options are: (1)

a data set containing �̂, �̂, the estimated variance-
covariance matrix of �̂ and �̂, and the last computed
value of the log full likelihood; (2) a data set con-
taining ordered event times, baseline hazard rates,
standard errors of the baseline hazard rates, and
�̂; and (3) a data set containing the grouping vari-
able, survival time, censoring status, covariates, es-
timated linear predictor, cumulative baseline hazard
rate, and �̂.

4 Example

This section illustrates the macro through a sim-
ple example. The data used is from Mantel et al.

(1977) who published a litter-matched tumorigene-
sis experiment with one drug treated rat and two
placebo treated rats per litter, 50 female litters and
50 male litters. It is conceivable that the risk of
tumor formation may depend on the genetic back-
ground shared within litters, but di�ering between
litters. Thus there could be an intra-litter correla-
tion in time to tumor appearance which is the event
of interest. Death before tumor appearance implies
censoring at the time of death.

We perform a semi-parametric analysis assuming
positive stable frailties for all the 100 litters (includ-
ing both female and male). The two covariates are
DRUG and SEX, which are the indicators of treat-
ment group and male rat, respectively. It will be
seen from the results that both the treatment and
sex are signi�cant (with p-values 0.0108 and 0.0001,
respectively) while the dependence parameter is not
signi�cant (p-value 0.5663).

The following SAS code demonstrates the simplest
possible macro invocation with no options.

/* Creating the data set */

data mydata;

infile 'mantel.dat';

input litter time censor drug sex;

run;

/* Macro loading */

%include 'ps_frail.macro';

/* Macro invocation */

%ps_frail(mydata)

The main SAS output from the example:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Summary of Final Results

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/*******************************************/

/* Usual Cox Independence Model */

/*******************************************/

Log partial likelihood = -200.4718

Log full likelihood = -228.9487

Analysis of Maximum Likelihood Estimates

VARIABLE DF Estimate Stderr p_Wald RR

DRUG 1 0.7848 0.3093 0.0112 2.1920

SEX 1 -3.0626 0.7248 0.0001 0.0468



/*******************************************/

/* Positive Stable Frailty Model */

/*******************************************/

Dependence Parameter: THETA= 0.9497

Kendall's TAU = 0.0503

Log full likelihood = -228.7531

Likelihood Ratio Test of Independence Model (H0: THETA=1)

DF Chi-square p-value

1 0.3912 0.5317

Analysis of Maximum Likelihood Estimates

EFFECT DF Estimate Stderr p_Wald RR_within RR_between

Depend Parm 1 0.9497 0.0876 0.5663 . .

DRUG 1 0.8023 0.3146 0.0108 2.2306 2.1425

SEX 1 -3.1808 0.7973 0.0001 0.0416 0.0488

5 Discussion

The positive stable frailty model is gaining popular-
ity in survival analysis. This SAS macro has made
the model more accessible and certainly many people
will take advantage of it. The macro calculates the
model parameter estimates and respective standard
errors and the con�dence limits for the relative risks.
It also performs a likelihood ratio test on the depen-
dence parameter to see whether we need the frailty
model or just Cox's independence model for a partic-
ular study. Nevertheless, the statistical analyses for
both models are reported. It is worth mentioning
that the results from Cox independence model are
the same as those of PROC PHREG (SAS/STAT
Changes and Enhancements through Release 6.11),
and that the model parameter estimates from the
positive stable frailty model are essentially identical
with those presented in Wang et al. (1995).

It should also be pointed out that the variance cal-
culations in Wang et al. (1995) are incorrect, since
the variability of the estimates of the baseline hazard
rates was not taken into account. This macro uses
a technique proposed by Andersen et al. (1997) to
obtain the variance estimates of the model parame-
ters.

This macro is mainly written in SAS/IML, which
is a high level programming language and is rela-
tively slow. For some large applications, extensive
computer time may be required. For the example in
Section 4, the CPU time needed is 2 minutes 8 sec-
onds on our Solaris 2.0 system. If we use only the

data for 50 female litters (leaving out the covariate
SEX in the model then), the CPU time will reduce
to 1 minute 35 seconds.
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