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Abstract

Detrending is often performed when analyzing FMRI data in order
to remove any linear (or higher-order) drift and offset from the signal.
When performing simple linear regression after detrending, the results
obtained are not identical to those obtained by multiple linear regression.
In fact, even if there is no error in the data, detrending and simple
linear regression are unable to determine exactly the correct coefficients
in simulations. In addition, the choice of reference function, whether it
be a square wave of ones and zeros or negative ones and ones, also affects
the obtained result. Particular care should be taken when detrending
and using a zero-one square wave as a reference function. The t-statistics
for such a case do not give an accurate estimation of the error in the
data, yielding too many false negatives.
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1 Introduction

When fitting the FMRI signal to an idealized reference function such as a
square wave, the method of detrending followed by simple linear regression is
often used where an estimated linear trend (and offset) is subtracted and the
difference fit to the reference function. The motivation for this is that there is
often linear drift that occurs throughout time in the FMRI signal (such as due
to patient motion), in addition to an offset in the signal itself. The multiple
linear regression method [6, 5, 8] takes no such step, instead dealing with any
possible drift simultaneously with the reference function. Detrending followed
by simple linear regression is in general not equivalent to multiple regression
[3], so if the offset and trend are removed, care should be taken in how the data
is analyzed. This paper will only look at the square wave reference function
and its use in block design FMRI.

2 Mathematics

2.1 Model

The determination of whether functional activation has occurred in a block-
design FMRI experiment is based upon the regression coefficients from the fit of
the BOLD signal to an idealized reference function [1, 2] which is often taken to
be a square wave. The equation to be fit for each (assumed to be independent)
voxel is given by

y = X β + ε.
n × 1 n × (q + 1) (q + 1) × 1 n × 1

(1)

In Eq. 1, y is a vector containing the observed signal for each of n time points.
The design matrix X has dimensions n × (q + 1). An example in which q = 2
is given in Table 1, where it has columns which consist of an n dimensional
column of ones (which corresponds to the intercept term), a column of the first
n counting numbers which may or may not be centered about their mean (this
vector is for the linear trend), and a column of the n-dimensional reference
function. The matrix containing the first set of column vectors (in this case
two) is denoted by x1 and the matrix containing the last set of column vectors
(the reference function) by x2, so that X = (x1, x2). The vectors β and ε have
dimensions (q + 1)× 1 and n× 1 respectively. They contain the coefficient and
error vectors respectively.
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x1 x2

1 1 0 or -1
1 2 0 or -1
...

...
...

1 n-1 1
1 n 1

Table 1: The design matrix X, containing x1 and x2.

2.2 Coefficients

The multiple regression method estimates the coefficients of the model given
in Eq. 1 above. To estimate the coefficients β̂m, the error elements of ε are
assumed to be independently normally distributed with common mean zero
and variance σ2, so that the likelihood of the observations is found to be the
normal distribution

f(y) = (2πσ2)−n/2e−(y−Xβ)′(y−Xβ)/2σ2

. (2)

It is noted [7], that by performing some algebra in the exponent of the above
likelihood,

(y − Xβ)′(y − Xβ) = (β − β̂m)′(X ′X)(β − β̂m) + y′[In − X(X ′X)−1X ′]y, (3)

where β̂m is defined to be

β̂m = (X ′X)−1X ′y. (4)

Having done this, the likelihood becomes

f(y) = (2πσ2)−n/2e−[(β−β̂m)′(X′X)(β−β̂m)+C]/(2σ2), (5)

where

C = y′[In − X(X ′X)−1X ′]y

= (y − Xβ̂m)′(y − Xβ̂m) (6)

does not depend on β. It is seen that the value of β which maximizes the
likelihood (or minimizes the exponent) in Eq. 5 is given by β = β̂m.

The matrix (X ′X) given by

A = (X ′X) =

(
x′

1x1 x′
1x2

x′
2x1 x′

2x2

)
, (7)

is a partitioned matrix [6] whose inverse is given by

(X ′X)−1 =

(
B11 B12

B21 B22

)
(8)
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where the matrix elements for the inverse of X ′X are given by

B11 = (A11 − A12A
−1
22 A21)

−1 (9)

B22 = (A22 − A21A
−1
11 A12)

−1 (10)

B12 = −A−1
11 A12B22 (11)

B21 = −A−1
22 A21B11. (12)

This gives estimates for the last set of coefficients

β̂2,m = [−(x′
2x2)

−1x′
2x1[x

′
1x1 − x′

1x2(x
′
2x2)

−1x′
2x1]

−1x′
1

+ [x′
2x2 − x′

2x1(x
′
1x1)

−1x′
1x2]

−1x′
2]y. (13)

where β̂m = (β̂1,m, β̂2,m)′.

The estimated coefficients β̂2,d for the last set of coefficients in the detrend
followed by simple linear regression method (without an intercept) is obtained
as follows. First subtract the estimated offset and linear trend then form the
equation

z = y − x1β̂1,d = x2β2 + δ (14)

where δ is another n × 1 error vector with elements which are independently
normally distributed with common mean zero and variance γ2. In the above
equation, β̂1,d is given by (x′

1x1)
−1x′

1y. By the same steps as the previously
described multiple regression method, the estimated regression coefficient for
the detrend followed by simple linear regression method (without an intercept)
is

β̂2,d = (x′
2x2)

−1x′
2z

= (x′
2x2)

−1x′
2(y − x1β̂1,d)

= (x′
2x2)

−1x′
2(I − x1(x

′
1x1)

−1x′
1)y

= [(x′
2x2)

−1x′
2 − (x′

2x2)
−1x′

2x1(x
′
1x1)

−1x′
1]y. (15)

It is easily seen that the coefficients estimates in Eqs. 13 and 15 are not
identical. These two expressions are only equivalent if x1 and x2 are orthogonal
(i.e. x′

1x2 is the zero vector). This is not the case since an offset vector of 1’s
and a linear trend cannot both be orthogonal to the reference function. In fact,
a relationship between these two coefficients has been presented [4].

2.3 T-Statistics

The distribution for the vector of estimated regression coefficient from mul-
tiple regression which is a multivariate-t distribution were found by making
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a change in variable and marginalizing in the likelihood, and finally making
another change of variable [7]. The resulting marginal distribution is

f(β̂m) =
γ

[(X ′X)−1 + (β̂m − β)C−1(β̂m − β)′]n/2
(16)

where γ is a normalizing constant. Using the property that the marginal dis-
tribution of any element of β̂m is student-t distributed, the t-statistic for the
estimated coefficients from multiple linear regression are

tk =
β̂k,m − βk

[(n − q − 1)−1Vkk(y − Xβ̂k,m)′(y − Xβ̂k,m)]1/2
, (17)

where k denotes the coefficient number (0, ..., q). The terms n and q refer to
the n × (q + 1) dimensions of X (for this papers example, q = 2). The matrix
V is given by V = (X ′X)−1.

For the detrend followed by simple linear regression method (without an
intercept), the t-statistics for x2 are similarly found as above and given by

v` =
β̂`,d − β`

[(n − q2)−1P``(z − x2β̂2,d)′(z − x2β̂2,d)]1/2
(18)

for ` = q1 + 1, . . . , q.

In this equation, P is given by (x′
2x2)

−1 (note that for this papers example, P
is a scalar). The parameter q2 = q − q1 (which is one for this papers example).
Under the null hypothesis, βk = 0 and β` = 0,

tk =
β̂k,m

[(n − q − 1)−1Vkk(y − x1β̂1,m − x2β̂2,m)′(y − x1β̂1,m − x2β̂2,m)]1/2
(19)

and

v` =
β̂`,d

[(n − q2)−1P``(y − x1β̂1,d − x2β̂2,d)′(y − x1β̂1,d − x2β̂2,d)]1/2
. (20)

It is useful to recognize that the t-statistics for this detrend method gives
more degrees of freedom, and that neither the estimated coefficients (the nu-
merators) nor their standard errors (the denominators) are equivalent.

Detrending and Regression with Intercept

It is quite common both to detrend and to use a 0, 1 square wave refer-
ence function, so it is important to investigate why the results it gives will be

5



different than using a −1, 1 square wave reference function or using multiple
regression.

The choice of a 0, 1 reference function can cause problems, because when
detrending, the offset has been subtracted, but the reference function the data
is fit to has values of 0 and 1, where the data actually has some negative
values. To overcome this particular point, it is possible to include an additional
intercept term when performing regression after detrending. If the vector of
ones for the inclusion of an additional intercept term is denoted by x∗, then the
estimated last set of coefficients (containing the reference function) are given
by

β̂2,d∗ = (x′
3x3)

−1x′
3z = [(x′

3x3)
−1x′

3 − (x′
3x3)

−1x′
3x1(x

′
1x1)

−1x′
1]y (21)

where x3 = (x∗, x2).

The t-statistics for this method are given by

vm∗ =
β̂m,d∗

[(n − q2 − 1)−1Pmm(z − x3β̂2,d∗)′(z − x3β̂2,d∗)]1/2

=
β̂m,d∗

[(n − q2 − 1)−1Pmm(y − x1β̂1,d − x3β̂2,d∗)′(y − x1β̂1,d − x3β̂2,d∗)]1/2

(22)

where m denotes the coefficient number, m = ∗, q1+1, . . . , q and P = (x′
3x3)

−1.
Note that there is an extra degree of freedom is subtracted off in the denomi-
nator due to the addition of another intercept.

3 Methods

3.1 Monte Carlo Simulation

Before performing the regression with data from an FMRI experiment, these
three methods of estimating the coefficients and t-statistics were investigated
by performing simulations. The simulation formulated the design matrix X =
(x1, x2), where the matrix containing the first set of regressors x1 was a 128×2
vector containing a column of ones and a column of the counting numbers
from 1 to 128 (which may or may not be centered about zero, this was seen
to have no effect upon the resulting coefficients for β2). The matrix containing
the second set of regressors x2, was a single column vector which consisted
of a −1, 1 square wave of period 16 time points. The coefficient vector was
arbitrarily chosen to be β′ = [3, 3, 3]. Independent random error terms from
a normal distribution with mean zero and variance three were generated. The
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values for the simulated data y were constructed from Eq. 1 since X, β, and
ε were known. Coefficients are estimated using detrending followed by simple
linear regression and multiple linear regression.

3.2 FMRI Experiment

Estimates of regression coefficients and t-statistics are computed for real
FMRI data. Both detrending followed by simple regression and multiple re-
gression were implemented. The FMRI task used was bilateral finger tapping at
3 T, using gradient echo EPI. Five axial slices were imaged, with 3.4×1.7×1.7
mm voxels, and a 96 × 96 matrix with a 21.76 cm field-of-view. The TE was
41.6 ms and TR was 1000 ms. The finger tapping task was 20 s on and 20 s off
per block. The total time of the task was 340 seconds, so finger tapping was
off first and off last.

4 Results

4.1 Monte Carlo simulation

Two different sets of Monte Carlo simulations were conducted. One with the
error variance σ2 = 0 and the other with σ2 = 3. For both simulations, a −1, 1
reference function was used to form the data.

The first simulation was with the error variance chosen to be σ2 = 0. As
shown in Table 2, if a −1, 1 reference function used to estimate the coefficients,
then the estimated coefficients were similar. If a 0, 1 reference function used to
estimate the coefficients, then the detrend followed by simple linear regression
method without an intercept yielded the same estimates as those with the
−1, 1 reference function. With a 0, 1 reference function, the multiple linear
regression and detrend followed by simple linear regression with an intercept
methods yielded estimates which were approximately twice their previous value
with the −1, 1 reference function.

Also shown in Table 2, if a −1, 1 reference function were used to compute the
t-statistics, the two detrending methods produced identical results as did using
a 0, 1 reference function for the detrending followed by simple linear regression
with an intercept term. Using either a −1, 1 or a 0, 1 reference function and
multiple linear regression produced the same result of very large t-statistics.
Using a 0, 1 reference function for detrending followed by simple linear regres-
sion without an intercept term produced a t-statistic which is strikingly smaller
than the other methods.
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-1,1 0,1
coef t-stat coef t-stat

Detrend+slope regression 2.9648 103.4875 2.9648 11.1381
Multiple linear regression 3 ≈ 1014 6 ≈ 1014

Detrend+intercept&slope regression 2.9648 103.0793 5.9297 103.0793

Table 2: Coefficient estimates and t-statistics for the simulation with the three
methods and two reference functions. No error was used (σ2 = 0). Note that
when detrending and using a 0, 1 reference function without intercept, the t-
statistics are lower than the other cases.

The second simulation was with an error variance arbitrarily selected to be
σ2 = 3. As shown in Table 3, if a −1, 1 reference function used to estimate
the coefficients, then the estimated coefficients were similar. If a 0, 1 reference
function used to estimate the coefficients, then the detrend followed by simple
linear regression method without an intercept yielded the same estimates as
those with the −1, 1 reference function. With a 0, 1 reference function, the
multiple linear regression and detrend followed by simple linear regression with
an intercept methods yielded estimates which were approximately twice their
previous values with the −1, 1 reference function.

Also shown in Table 2, if a −1, 1 reference function were used to compute the
t-statistics, all three methods produced identical results as did using a 0, 1 ref-
erence function for multiple regression and detrending followed by simple linear
regression with an intercept term. Using a 0, 1 reference function for detrend-
ing followed by simple linear regression without an intercept term produced a
t-statistic which again is strikingly smaller than the other methods.

-1,1 0,1
coef t-stat coef t-stat

Detrend+slope regression 1.6837 11.8634 1.6837 6.7291
Multiple linear regression 1.7037 11.9178 3.4074 11.9178
Detrend+intercept&slope regression 1.6837 11.8166 3.3674 11.8166

Table 3: Multiple linear regression, detrending plus regression with intercept,
and detrending plus simple linear regression coefficients for a simulation which
computed y using a 0, 1 square wave reference function whose true coefficient
value was 3. The variance was σ2 = 3.
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4.2 FMRI Experiment

Estimates of coefficients and t-statistics for the FMRI data were found and
displayed using 3dDeconvolve [8] and AFNI [2].

Figure 1 contains the statistical map of estimated coefficients using a −1, 1
reference function and multiple linear regression. Coefficient maps for the two
detrend followed by simple linear regression methods using a −1, 1 reference
function and the detrend followed by simple linear regression without an in-
tercept using a 0, 1 reference function produced nearly identical results. For
brevity, these other statistical maps were omitted.

Figure 2 contains the statistical map of estimated coefficients using a 0, 1
reference function and multiple linear regression. The coefficient map using
a 0, 1 reference function for detrending followed by simple linear regression
produced a nearly identical map. This additional map was omitted for brevity.

Figure 3 contains a statistical map of t-statistics using a −1, 1 reference
function and multiple linear regression. Maps of t-statistics for the two detrend
followed by simple linear regression methods using a −1, 1 reference function,
the multiple linear regression using a 0, 1 reference function, and the detrend
followed by simple linear regression without an intercept using a 0, 1 reference
function produced similar results. Recall that it was shown that the t-statistics
for five of the six cases would be very similar in Table 3. For brevity, these
other statistical maps were omitted.

Figure 4 contains a statistical map of t-statistics using a 0, 1 reference func-
tion and detrending followed by simple linear regression without an intercept.
Note that for the detrend followed by simple linear regression case without an
intercept, the t-statistics for the 0, 1 reference function using the same thresh-
old values and same data, show fewer activations than the other cases. The
0, 1 reference function, when used after detrending, gives false negatives.
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5 Discussion

The method of detrending followed by simple linear regression will not make
a noticeable difference in the estimated coefficients or t-statistics when using
a −1, 1 reference function. However, the estimated coefficients and t-statistics
from detrending followed by simple linear regression without an intercept will
produce results different from the other two methods when using a 0, 1 reference
function.

The multiple linear regression and the detrend followed by simple linear
regression with an intercept methods and a 0, 1 reference function produced
similar coefficient estimates and t-statistics. The detrend followed by simple
linear regression without an intercept and a 0, 1 reference produced different
coefficient estimates and t-statistics than the other two methods using the same
reference function. The coefficient is only estimated correctly with multiple
regression only if the same reference function is used as that which produced
the data. The true t-statistic is estimated correctly irrespective of the reference
function only if the multiple regression method is used. The t-statistic for the
detrend followed by simple linear regression with an intercept produced results
very similar to multiple regression regardless of the reference function.

The detrend followed by simple linear regression method without an inter-
cept will consistently give an approximately correct estimate of the coefficient
regardless of the reference function. The detrend followed by simple linear re-
gression method without an intercept will only give an approximately correct
t-statistics if the data (i.e. the BOLD signal) originates from a −1, 1 reference
function. To overcome this, the second regression should include an intercept
term. It is not possible to determine whether the reference function centered
about zero or not centered around zero should be used. Both procedures should
be investigated.
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Figure 1: Estimated coefficients for the multiple regression case, −1, 1 reference
function. Nearly identical to all but the cases in Fig. 2.

Figure 2: Estimated coefficients for the multiple regression case, 0, 1 reference
function. Nearly identical to detrend followed by simple linear regression with
an intercept and 0, 1 reference function.
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Figure 3: The t-statistics for the multiple linear regression case, 0, 1 reference
function.

Figure 4: The t-statistics for the detrend followed by simple linear regression
method, 0, 1 reference function.
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