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Summary

In the last two decades a large number of papers have been published on the topic of anal-

ysis of multiple endpoints in clinical trials. We provide a comprehensive review of this

vast literature focusing on the statistical aspects. We make comparisons between compet-

ing procedures, present some new developments and extensions/modifications of existing

procedures, make recommendations for use and note some open problems for research.

Keywords: Multiple comparisons; multiple tests; one-sided multivariate tests; Bonferroni

test; chi-bar squared distribution; multivariate normal distribution; clinical decision rules;

global tests; endpoint specific tests; closure method; resampling; adjusted p-values; family-

wise error rate.
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1. Introduction

Most clinical trials are conducted to compare a treatment group with a control group

on multiple endpoints. Often, the treatment is expected to have a positive effect on all

endpoints. Depending on the nature of the disease the endpoints may be grouped into

primary and secondary types. We mainly focus on the case where all endpoints are primary

and provide a comprehensive review of the vast literature and some new results focusing on

the statistical aspects. Shorter review articles by Chi (1998), Huque and Sankoh (1997),

Sankoh, Huque and Dubey (1997), Sankoh, Huque, Russell and D’Agostino (1999) and

Zhang, Quan, Ng and Stepanavage (1997) also discuss some clinical aspects with examples.

Broadly speaking, there are two inferential goals when dealing with multiple endpoints.

Goal 1 is to establish an overall treatment effect using a test of the global null hypothesis of

no differences on any of the endpoints against a one-sided alternative. Goal 2 is to identify

the individual endpoints on which the treatment is better than the control. We review

procedures proposed for both these goals, make comparisons and propose some extensions.

Section 2 sets the notation. Section 3 discusses test procedures for Goal 1 and Section 4

discusses test procedures for Goal 2. In Section 5 we discuss some clinical decision rules

that have been proposed in practice for drug approval purposes (see, e.g., Chi 2000) which

typically involve both the primary and secondary endpoints.

2. Notation and Preliminaries

Suppose that there are two independent treatment groups with n1 and n2 subjects on

each of whom m ≥ 2 endpoints are measured. Treatment 1 is the test treatment and

treatment 2 is the control. Let xijk denote the measurement on the kth endpoint for the

jth subject in the ith treatment group. For treatment group i (i = 1, 2), assume that

xij = (xij1, xij2, . . . , xijm)′, j = 1, 2, . . . , ni, are independent and identically distributed

(i.i.d.) random variables (r.v.’s) from an m-variate normal distribution with mean vector

µi = (µi1, µi2, . . . , µim)′ and covariance matrix Σi. In the homoscedastic case, we assume

Σ1 = Σ2 = Σ (say). The elements of Σ are

σkk = Var(xijk) and σk` = Cov(xijk, xij`) (1 ≤ k 6= ` ≤ m).
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The corresponding correlation matrix will be denoted by R with elements

ρk` = Corr(xijk, xij`) =
σk`√
σkkσ``

(1 ≤ k 6= ` ≤ m).

In the heteroscedastic case, Σ1 and Σ2 are not assumed to be equal. The elements of Σi will

be denoted by σi,k` (i = 1, 2; 1 ≤ k ≤ ` ≤ m). The corresponding correlation matrices will

be denoted by R1 = {ρ1,k`} and R2 = {ρ2,k`}, respectively.

Let δ = µ1 − µ2 = (δ1, δ2, . . . , δm)′ denote the vector of mean differences. To establish

an overall treatment effect (Goal 1), usually a single global null hypothesis of no difference

is tested against a one-sided alternative:

H0 : δ = 0 vs. H1 : δ ∈ O+, (2.1)

where 0 is the null vector and

O+ = {δ|δ ≥ 0, δ 6= 0}

is the positive orthant. To identify the endpoints on which the treatment is better than the

control (Goal 2), usually multiple null hypotheses are tested against one-sided alternatives:

H0k : δk = µ1k − µ2k = 0 vs. H1k : δk = µ1k − µ2k > 0 (1 ≤ k ≤ m). (2.2)

In this case it is required to control the familywise error rate (FWE), defined as

FWE = Pr{at least one true H0k is rejected},

at a specified level α regardless of which particular H0k are true. This is called the strong

FWE control (Hochberg and Tamhane 1987, p. 3), which will be assumed throughout.

Let xi· = (xi·1, xi·2, . . . , xi·m)′ denote the vector of sample means of the ni subjects from

the ith group and let Σ̂i denote the sample covariance matrix from the ith group with

νi = ni− 1 degrees of freedom (d.f.) (i = 1, 2). In the homoscedastic case, we use the pooled

estimate of Σ given by Σ̂ = ((n1 − 1)Σ̂1 + (n2 − 1)Σ̂2)/(n1 + n2 − 2) with n1 + n2 − 2 d.f.

Denote the elements of Σ̂ by σ̂k` (1 ≤ k ≤ ` ≤ m).

3. Global Tests

In this section we focus on the global hypothesis testing problem (2.1). We first dis-

cuss the tests proposed for the homoscedastic case and then offer their extensions for the

heteroscedastic case.
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3.1 Homoscedastic Case

3.1.1 Exact Likelihood Ratio (LR) Tests

It is well-known that because Hotelling’s T 2 test is designed for the omnibus (two-sided)

alternative H2 : δ 6= 0, it lacks power for the one-sided alternative H1 of (2.1) (Meier

1975, O’Brien 1984). Kudô (1963) derived an exact LR test when Σ is known for the one-

sample problem which can be easily extended to the two-sample problem as follows. Let δ̂

be the projection of x1· − x2· in the positive orthant with respect to the distance function

d(u, v) = (u− v)′Σ−1(u− v). Then the LR test rejects for large values of

(
n1n2

n1 + n2

)
δ̂
′
Σ−1δ̂.

The null distribution of this statistic is a chi-bar-squared (χ2) distribution, which is a

weighted sum of central χ2
k (0 ≤ k ≤ m) distributions, where χ2

0 = 0; see Robertson,

Wright and Dikstra (1988). The weights are called the level probabilities that depend on Σ.

This test is not easy to implement because of the difficulty of finding δ̂ and the complicated

nature of its null distribution.

Perlman (1969) derived an exact LR test for the one-sample problem when Σ is unknown.

However, the null distribution of the resulting test statistic is not free of Σ and the test is

biased. Perlman did provide sharp lower and upper bounds on the null distribution that

are free of Σ. An exact LR test has not been derived for the two-sample problem in this

case. In addition to the computational and analytical difficulties mentioned above, the LR

tests suffer from a more basic problem that they can sometimes reject H0 in favor of the

one-sided alternative H1 even when all sample mean differences x1·k − x2·k are negative; see,

e.g., Follman (1995) and Silvapulle (1997). They can also be non-monotone in the sense

that if the differences x1·k−x2·k become more negative, the test statistic can get larger, thus

increasing the chance of rejecting H0. These anomalies result when the endpoints are highly

positively correlated.

Tang (1994) gave an almost unbiased and uniformly more powerful test than Perlman’s

test. Wang and McDermott (1998) solved the problem of nuisance parameter Σ by deriving

a LR test conditional on the sample covariance matrix Σ̂. Sen and Tsai (1999) gave a
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Stein-type two-stage test that is free of Σ. It also has other desirable properties such as

unbiasedness and monotonicity.

Perlman and Wu (1999) vigorously defended LR tests, noting that the alternative tests

(e.g. those proposed by Berger 1989, Tang 1994 and Wang and McDermott 1998) that are

less biased and more powerful also suffer from lack of monotonicity and nonintuitive rejection

regions. Cohen and Sackrowitz (1998) suggested cone ordered monotone tests to ameliorate

these difficulties. However, their rejection regions are not entirely satisfactory either since,

e.g., in the bivariate case, their test can reject H0 if one difference is highly negative and

the other difference is highly positive. Thus the problem of appropriate one-sided tests in

multiparameter situations remains not fully resolved.

3.1.2 Approximate Likelihood Ratio (ALR) Tests

To obviate the computational and analytical difficulties of Kudô’s exact LR test, Tang,

Gnecco and Geller (1989) proposed an approximate likelihood ratio (ALR) test for known

Σ. As extended to the two-sample problem, their test is as follows: First compute the

transformation

u =

√
n1n2

n1 + n2

A(x1· − x2·), (3.1)

where A is any positive definite symmetric matrix such that A′A = Σ−1 and AΣA′ = I.

Then u ∼ N(θ, I), where θ =
√

n1n2

n1+n2
Aδ and the hypotheses (2.1) become

H0 : θ = 0 vs. H1 : θ ∈ A(δ),

where A(δ) is the polyhedral cone:

A(δ) =

{√
n1n2

n1 + n2

Aδ | δ ∈ O+

}
.

The matrix A used in the transformation is not unique. Tang et al. gave a method using

the Cholesky decomposition for choosing A such that the center direction of A(δ) coincides

with the center direction of O+. An alternative method is the left-root symmetric method

of Läuter, Kropf and Glimm (1998) which is both scale and order invariant. After choosing

A, the cone alternative A(δ) is approximated by O+. Then the ALR statistic equals

g(u) =
m∑

k=1

{max(uk, 0)}2 . (3.2)
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The null distribution of g(u) is the χ2 distribution with symmetric binomial probability

weights given by

PrH0{g(u) > c} =
m∑

k=0

{(
m

k

)
2−mPr

(
χ2

k > c
)}

. (3.3)

If Σ is unknown and an estimate Σ̂ is used in its place for computing u using (3.1) then

the above χ2 distribution provides too liberal an approximation to the exact null distribution

of g(u) (Reitmeir and Wassmer 1996). The liberalism is very high when the error d.f. ν are

small in relation to m. For example, for m = 6, the estimated type I error rate for a nominal

0.05-level test is 0.3550 for ν = 10, 0.1066 for ν = 30 and 0.0830 for ν = 50. To overcome

this problem, Tamhane and Logan (2001) proposed the following approximation:

PrH0{g(u) > c} ≈
m∑

k=0

(
m

k

)
2−mPr

{(
νk

ν −m + 1

)
Fk,ν−m+1 > c

}
, (3.4)

where F0,ν−m+1 = 0. We refer to this as the F - approximation. This approximation matches

the first moment of g(u) exactly and the second moment approximately. Based on simula-

tions, it was shown to be extremely accurate even for small ν. For example, for m = 6, the

estimated type I error rate for a nominal 0.05-level test using this approximation is 0.0464

for ν = 10, 0.0476 for ν = 30 and 0.0510 for ν = 50.

The ALR test, although easier to apply, suffers from the same anomalies that the exact

LR tests suffer. Therefore our recommendation is to use these global tests with caution.

If several endpoints show moderate negative differences or if even a few show very large

negative differences, then these tests should not be used because the a priori assumption of

positive treatment effects in all endpoints is questionable.

3.1.3 Ordinary Least Squares (OLS) and Generalized Least Squares (GLS) Tests

O’Brien (1984) chose to bypass the analytical and computational difficulties of the LR

tests by restricting the mean difference vector µ1 − µ2 to a ray: λ(
√

σ11, . . . ,
√

σmm)′ where

λ ≥ 0. Specifically, if δk/
√

σkk = λk denotes the standardized treatment effect for the kth

endpoint then he assumed that λk = λ ≥ 0 for all k. In that case the hypothesis testing

problem (2.1) reduces to

H0 : λ = 0 vs. H1 : λ > 0. (3.5)
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This problem can be solved by using a univariate regression framework that models the

standardized responses as

yijk =
xijk√
σkk

=
µk√
σkk

+
λ

2
Iijk + εijk (i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m), (3.6)

where µk = (µ1k + µ2k)/2, Iijk = +1 if i = 1 and −1 if i = 2, and εijk ∼ N(0, 1) r.v.’s with

correlations

Corr(εijk, εi′j′`) = ρk` if i = i′ and j = j′, Corr(εijk, εi′j′`) = 0 otherwise.

Note that the vectors yij = (yij1, yij2, . . . , yijm)′ are independent, each with covariance (cor-

relation) matrix R = {ρk`}. Initially assume that R is known.

The OLS estimate of λ and its standard deviation (SD) equal

λ̂OLS =
j ′(y1· − y2·)

m
= y1·· − y2·· and SD(λ̂OLS) =

1

m

√(
n1 + n2

n1n2

)
(j ′Rj),

where j is a vector of all 1’s of an appropriate dimension. Therefore the OLS statistic with

R replaced by the sample correlation matrix R̂ equals

tOLS =

√
n1n2

n1 + n2

j ′(y1· − y2·)√
j ′R̂j

 =
j ′t√
j ′R̂j

, (3.7)

where t is the vector of t-statistics

tk =

√
n1n2

n1 + n2

(
x1·k − x2·k√

σ̂kk

)
=

√
n1n2

n1 + n2

(y1·k − y2·k) (1 ≤ k ≤ m) (3.8)

for comparing the two treatment groups on the individual endpoints. Each tk is marginally

t-distributed under H0k with n1 + n2 − 2 d.f.

Since the errors εijk in the regression model (3.6) are not independent, the generalized

least squares (GLS) estimate of λ, which is also its maximum likelihood estimate (MLE), may

be preferred. The corresponding test is the Neyman-Pearson likelihood ratio test. Assuming

that Σ is known, O’Brien (1984) showed that

λ̂GLS =
j ′R−1(y1· − y2·)

j ′R−1j
and SD(λ̂GLS) =

√√√√(n1 + n2

n1n2

)(
1

j ′R−1j

)
.

The test statistic using this GLS estimate with the estimated correlation matrix R̂ substi-

tuted in place of R equals

tGLS =

√
n1n2

n1 + n2

j ′R̂
−1

(y1· − y2·)√
j ′R̂

−1
j

 =
j ′R̂

−1
t√

j ′R̂
−1

j
. (3.9)
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We see that both the OLS and GLS statistics are standardized weighted sums of the

individual t-statistics for the m endpoints. The OLS statistic uses equal weights, while the

GLS statistic uses unequal weights determined by the sample correlation matrix R̂. If some

endpoint is highly correlated with the others then the GLS statistic gives a correspondingly

lower weight to its t-statistic.

The exact small sample null distributions of tOLS and tGLS are not known. O’Brien (1984)

proposed a t-distribution with n1 +n2−2m d.f. as an approximation. For large sample sizes

the standard normal (z) distribution may be used as an approximation. The t-approximation

is exact for m = 1, but is conservative for m > 1; on the other hand, the z-approximation is

liberal. The convergence of tGLS to the standard normal distribution is slower than that of

tOLS because of the use of the estimated correlation matrix R̂ both in the calculation of λ̂GLS

and in the estimate of SD(λ̂GLS). Also, the simulation study by Reitmeir and and Wassmer

(1996) has shown that the powers of the OLS and GLS tests are comparable when used

to test subset hypotheses in closed testing procedures (see Section 4.1). Finally, the linear

combination j ′R̂
−1

used by the GLS test can have some negative weights, which can lead

to anomolous results; this problem does not occur with the OLS test. For all these reasons,

the OLS test is recommended.

Finally we note that Tang, Gnecco and Pocock (1993) have generalized the GLS test

statistic for an arbitrary ray alternative µ1−µ2 = λ(β1, . . . , βm)′, where the vector (β1, . . . , βm)′

with all positive elements is specified. However, if the observed mean difference x1· − x2· is

not close to this ray then the power of the test may be adversely affected. Since the vector

(β1, . . . , βm)′ is in general difficult to specify, Tang, Gnecco and Pocock suggest following the

maxmin approach (maximize the minimum power over all ray alternatives) of Abelson and

Tukey (1963).

3.1.4 Läuter’s Exact Tests

Läuter (1996) proposed a class of test statistics for the hypotheses (2.1) having the

property that they are exactly t-distributed with n1 + n2 − 2 d.f. under H0. Recall that

xi· = (xi·1, xi·2, . . . , xi·m)′ denotes the vector of sample means for the ith group (i = 1, 2) and
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let

x·· =
n1x1· + n2x2·

n1 + n2

= (x··1, x··2, . . . , x··m)′

denote the vector of overall sample means. Define the total cross-products matrix by

V =
2∑

i=1

ni∑
j=1

(xij − x··)(xij − x··)
′ = (n1 + n2 − 2)Σ̂ +

2∑
i=1

ni(xi· − x··)(xi· − x··)
′.

Let w = w(V ) be any m-dimensional vector of weights depending solely on V and w 6= 0

with probability 1. Using the results from the theory of spherical distributions (Fang and

Zhang 1990), Läuter (1996) showed that

tw =

√
n1n2

n1 + n2

 w′t√
w′Σ̂w


is t-distributed with n1 + n2 − 2 d.f. under H0. Various choices for w were discussed by

Läuter, Kropf and Glimm (1998). We will focus on the standardized sum (SS) statistic

(denoted by tSS) for which w equals (1/
√

v11, 1/
√

v22, . . . , 1/
√

vmm)′, where

vkk =
2∑

i=1

ni∑
j=1

(xijk − x··k)
2

is the kth diagonal element of V . The SS test statistic can be expressed as the t-statistic:

tSS =

√
n1n2

n1 + n2

(
y1· − y2·

σ̂y

)
,

calculated on the sum of the standardized observations for each patient:

yij =
m∑

k=1

xijk√
vkk

(i = 1, 2; 1 ≤ j ≤ ni),

where

yi· =
1

ni

ni∑
j=1

yij (i = 1, 2) and σ̂y =

√√√√∑2
i=1

∑ni
j=1(yij − yi·)

2

n1 + n2 − 2
.

3.1.5 Asymptotic Power Comparison of O’Brien’s OLS and Läuter’s SS Tests

The OLS statistic is the sum of the tk-statistics (3.8), which are obtained by standardiz-

ing the individual endpoints by their pooled within group sample standard deviations. On

the other hand, the SS statistic is obtained by standardizing the data on each endpoint by

its pooled total group sample standard deviation and then computing an overall t-statistic.
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Because the total pooled standard deviation overestimates the true standard deviation since

it includes the between treatment group difference, the power of the SS test would be ex-

pected to be adversely affected. In this section we compare the powers of the two tests in

the asymptotic case where n1 = n2 = n (say) and n →∞.

The limiting null and non-null distributions of tOLS and tSS are normal, and their powers

for α-level tests can be expressed as follows (for derivations, see Logan 2001):

PowerOLS = Φ

(
−zα +

a′δ√
a′Σa

√
n

2

)

and

PowerSS = Φ

(
−zα +

b′δ√
b′Σb

√
n

2

)
,

where zα is the (1−α)th quantile of the standard normal distribution, a = (a1, a2, . . . , am)′, b =

(b1, b2, . . . , bm)′, and

ak =
1

σk

√
2

and bk =
1

σk

√
2 + λ2

k/2
(1 ≤ k ≤ m).

Therefore

PowerOLS ≥ PowerSS ⇐⇒ a′δ√
a′Σa

≥ b′δ√
b′Σb

. (3.10)

It is easy to show that

a′δ√
a′Σa

=

∑m
k=1 λk√∑m

k=1

∑m
`=1 ρk`

and
b′δ√
b′Σb

=

∑m
k=1 λk/

√
1 + λ2

k/4√∑m
k=1

∑m
`=1 ρk`/

√
(1 + λ2

k/4)(1 + λ2
`/4)

,

where ρk` = 1 if k = `. Comparison of the powers of the two tests reduces to comparison of

the two expressions above.

Consider the case λ1 > 0 and λk = 0 for k > 1. Then we have

a′δ√
a′Σa

=
λ1√∑m

k=1

∑m
`=1 ρk`

and

b′δ√
b′Σb

=
λ1/

√
1 + λ2

1/4√∑m
k=2

∑m
`=2 ρk` + 2

∑m
k=2

(
ρ1k/

√
1 + λ2

1/4
)

+ 1/(1 + λ2
1/4)

.
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It is simple algebra to show that the inequality (3.10) is strict in this case. Thus, if only one

endpoint has a positive treatment effect then the OLS test is more powerful to detect this

effect than the SS test. In fact,

lim
λ1→∞

λ1/
√

1 + λ2
1/4√∑m

k=2

∑m
`=2 ρk` + 2

∑m
k=2

(
ρ1k/

√
1 + λ2

1/4
)

+ 1/(1 + λ2
1/4)

=
2√∑m

k=2

∑m
`=2 ρk`

< ∞,

and therefore the power of the SS test is bounded away from 1 when λ1 → ∞. This

undesirable property of the SS test was shown by Frick (1996).

Next consider the case λk = λ > 0 for all k, which is the assumption underlying the OLS

test. In this case we have

a′δ√
a′Σa

=
b′δ√
b′Σb

=
mλ√∑m

k=1

∑m
`=1 ρk`

,

and therefore PowerOLS = PowerSS. It is interesting to note that in this case the OLS test

has the highest power (among all comparable configurations in the positive orthant). On the

other hand, in the previous case, when in a single endpoint has a treatment effect, the OLS

test has the least power (again, among all comparable configurations in the positive orthant)

and the SS test has even lower power. We conjecture that the OLS test is asymptotically at

least as powerful as the SS test under all configurations, but we do not have a proof of this

conjecture.

3.1.6 Follman’s x2
+ Test

Follman (1996) proposed an ad-hoc test, which relates to a slightly different alternative

hypothesis

H1 :
m∑

k=1

(µ1k − µ2k) > 0.

Unfortunately this alternative hypothesis is not very meaningful since it is dependent on the

scaling used for the endpoints. His test is simple to apply: reject the global null hypothesis

if Hotelling’s T 2 test is significant at level 2α and
∑m

k=1(x1·k − x2·k) > 0. Thus we reject the

null hypothesis in favor of a one-sided alternative if we reject a two-sided test at level 2α and

the average endpoint mean difference is > 0. Note that this test modifies the rejection region
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of Hotelling’s T 2 test by eliminating outcomes with negative differences on all endpoints, but

it’s rejection region is not monotone.

3.2 Heteroscedastic Case

3.2.1 Approximate Likelihood Ratio (ALR) Test

In Tamhane and Logan (2001) we proposed to extend the ALR test to the heteroscedastic

case as follows. Let

Ωi =
1

ni

Σi (i = 1, 2)Ω = Ω1 + Ω2 and Σ =
n1n2

n1 + n2

Ω.

The sample estimates of these matrices are denoted by putting carets over them; thus Ω̂i =

(1/ni)Σ̂i, Ω̂ = Ω̂1 + Ω̂2 and

Σ̂ =
n1n2

n1 + n2

Ω̂.

The transformation matrix A in (3.1) is chosen such that A′A = Σ̂
−1

and AΣ̂A′ = I.

We suggested the same F approximation (3.4) to the null distribution of g(u) in the

heteroscedastic case, but with the following Welch-Satterthwaite estimated d.f. ν derived by

Yao (1965) for the multivariate Behrens-Fisher problem:

1

ν
=

1

(d′Ω̂
−1

d)2

(d′Ω̂
−1

Ω̂1Ω̂
−1

d)2

n1 − 1
+

(d′Ω̂
−1

Ω̂2Ω̂
−1

d)2

n2 − 1

 ,

where d = (x1·−x2·). Note that Yao derived this formula (also using the moment matching

method) to approximate the distribution of

u′u =
(

n1n2

n1 + n2

)
(x1· − x2·)

′Σ̂
−1

(x1· − x2·)

by Hotelling’s T 2
m,ν =

(
νm

ν−m+1

)
Fm,ν−m+1 distribution with an estimated ν. We simply ex-

tended Yao’s approximation to the F distribution. Our simulations for selected values of

m, n1 = n2 = n,Σ1 and Σ2 showed that this approximation is quite accurate for controlling

the type I error probability at the nominal level α = 0.05 for m = 4 if n ≥ 20 and for m = 8

if n ≥ 30.
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3.2.2 Ordinary Least Squares (OLS) and Generalized Least Squares (GLS) Tests

Pocock, Geller and Tsiatis (1987) extended O’Brien’s GLS test to the heteroscedastic case

as follows. Initially assume that Σ1 and Σ2 are known. Then the statistic for comparing the

treatment with the control on the kth endpoint is

zk =
x1·k − x2·k√

σ1,kk/n1 + σ2,kk/n2

(1 ≤ k ≤ m). (3.11)

Let z = (z1, z2, . . . , zm)′ and R̄ = (n1R1 + n2R2)/(n1 + n2). In analogy with (3.9), Pocock

et al. proposed the statistic

zGLS =
j ′R̄

−1
z√

j ′R̄
−1

j
.

However, this is just an ad-hoc extension. Furthermore, the covariance (correlation) matrix

of z is not R̄, but Γ = {γk`} with elements

γk` =
σ1,k`/n1 + σ2,k`/n2√

(σ1,kk/n1 + σ2,kk/n2)(σ1,``/n1 + σ2,``/n2)
(1 ≤ k < ` ≤ m).

As a result, zGLS as defined by Pocock et al. does not have the standard normal distribution

under H0. In the following we correctly derive the OLS and GLS statistics.

We use the following definition for the standardized treatment effect in the heteroscedastic

case.:

λk =
δk√

σ1,kk + σ2,kk

(1 ≤ k ≤ m).

As in O’Brien (1984), assume that λk = λ ≥ 0 for all k. To test the hypotheses (3.5),

standardize the observations as

yijk =
xijk√

σ1,kk + σ2,kk

(i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m).

Then yij = (yij1, yij2, . . . , yijm)′ are independently distributed as N(ξi,Γi), where ξi has

elements

ξik =
µik√

σ1,kk + σ2,kk

(1 ≤ k ≤ m)

and Γi has elements

γi,k` =
σi,k`√

(σ1,kk + σ2,kk)(σ1,`` + σ2,``)
(1 ≤ k ≤ ` ≤ m)
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for i = 1, 2. Note that ξ1k − ξ2k = λ for all k. Also note that Γ1 and Γ2 are not correlation

matrices, and Γ = Γ1 + Γ2 if n1 = n2.

The hypotheses (3.5) can be tested by using a univariate regression framework as in (3.6):

yijk = ξk +
λ

2
Iijk + εijk (i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m), (3.12)

where ξk = (ξ1k + ξ2k)/2, Iijk = +1 if i = 1 and −1 if i = 2, and εij = (εij1, εij2, . . . , εijm)′

are independently distributed as N(0,Γi). Using the same methods as those used in the

homoscedastic case, the OLS and GLS statistics are as given below; for derivations, see

Logan (2001).

Assuming that Σ1 and Σ2 are known, it is straightforward to show that

λ̂OLS =
j ′(y1· − y2·)

m
= y1·· − y2·· and SD(λ̂OLS) =

√√√√j ′
(

Γ1

n1

+
Γ2

n2

)
j.

Hence the OLS statistic with the Γi replaced by their sample estimates Γ̂i equals

tOLS =
j ′(y1· − y2·)√

j ′(Γ̂1/n1 + Γ̂2/n2)j
, (3.13)

where the elements of Γ̂i are given by

γ̂i,k` =
σ̂i,k`√

(σ̂1,kk + σ̂2,kk)(σ̂1,`` + σ̂2,``)
.

For n1 = n2 = n, the above OLS statistic reduces to

tOLS =
j ′t√
j ′Γ̂j

,

where t is a vector of t-statistics

tk =
(x1·k − x2·k)√

σ̂1,kk/n1 + σ̂2,kk/n2

(1 ≤ k ≤ m) (3.14)

for comparing the two treatment groups on the individual endpoints. These statistics

are marginally approximately t-distributed under H0k with d.f. estimated by the Welch-

Satterthwaite formula:

νk =
(σ̂1,kk/n1 + σ̂2,kk/n2)

2

σ̂2
1,kk/n

2
1(n1 − 1) + σ̂2

2,kk/n
2
2(n2 − 1)

(1 ≤ k ≤ m).
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Next we derive the GLS test. Assuming that Σ1 and Σ2 are known, it can be shown that

λ̂GLS =
4j ′ (Γ1/n1 + Γ2/n2)

−1 (y1· − y2·)

j ′[(I −B)Γ−1
1 /n1 + (I + B)Γ−1

2 /n2]j

and

SD(λ̂GLS) =
4
√

j ′ (Γ1/n1 + Γ2/n2)
−1 j

j ′[(I −B)Γ−1
1 /n1 + (I + B)Γ−1

2 /n2]j
,

where

B = (n1Γ
−1
1 − n2Γ

−1
2 )(n1Γ

−1
1 + n2Γ

−1
2 )−1.

Hence the GLS statistic with the Γi replaced by their sample estimates Γ̂i equals

tGLS =
j ′(Γ̂1/n1 + Γ̂2/n2)

−1(y1· − y2·)√
j ′
(
Γ̂1/n1 + Γ̂2/n2

)−1
j

. (3.15)

For n1 = n2 = n, this reduces to

tGLS =
j ′Γ̂

−1
t√

j ′Γ̂
−1

j
,

where the tk in t = (t1, t2, . . . , tm)′ are defined in (3.14).

3.3 p-Value Based Tests

Thus far we have assumed a multivariate normal setup. In practice, the endpoints can

be quite diverse — some may be approximately normally distributed (e.g., change in tumor

size), some may follow a survival distribution with possible censoring (e.g., remission time),

some may be binary (e.g., death) and some may be ordinal (e.g., patient’s or physician’s

assessment of disease condition on a five-point scale). Testing of the global null hypothesis

H0 based on such diverse metrics is facilitated by condensing the evidence of treatment

efficacy on each endpoint in terms of its p-value. Denote the marginal p-value for testing the

null hypothesis H0k by pk (1 ≤ k ≤ m).

The simplest p-value based test is the Bonferroni test, which rejects H0 at level α if

pmin = min
1≤k≤m

pk < α/m. (3.16)

Assuming the multivariate normal setup, this is equivalent to rejecting if the maximum tk-

statistic exceeds the upper α/m critical point of an appropriate t-distribution (exact in the

homoscedastic case, approximate in the heteroscedastic case).



17

The problems associated with the Bonferroni test have been well-documented; see, e.g.,

O’Brien (1984), Pocock, Geller and Tsiatis (1987): (i) it is overly conservative especially if m

is large or the endpoints are highly correlated, and (ii) it is powerful if only one endpoint has

a large treatment effect, but not if most or all endpoints have moderate treatment effects.

It should be noted that the Bonferroni test is a union-intersection (UI) test when H0

is viewed as H0 =
⋂m

k=1 H0k. Therefore rejection of H0 implies rejection of any H0k with

pk < α/m; this implied multiple test procedure for testing null hypotheses on the individual

endpoints controls the FWE at level α (Hochberg and Tamhane 1987, pp. 28 -29).

An improvement on the Bonferroni test was proposed by Simes (1986). To apply the

Simes test first order the p-values: p(1) ≥ p(2) ≥ · · · ≥ p(m) and denote the corresponding

hypotheses by H0(1), H0(2), . . . , H0(m). Then reject H0 if

p(k) <
(m− k + 1)α

m
for some k = 1, 2, . . . ,m. (3.17)

Simes proved that this is an α-level test under the assumption that the p-values are inde-

pendent. Sarkar and Chang (1997) showed that this result also holds for statistics having

TP2 distributions. Sarkar (1998) further extended the proof to statistics having MTP2 and

certain scale mixtures of MTP2 distributions.

4. Endpoint-Specific Tests

4.1 Closed Tests

Kropf (1988) and Lehmacher, Wassmer and Reitmeir (1991) suggested that the closure

method of Marcus, Peritz and Gabriel (1976) be used to test hypotheses (2.2) on individual

endpoints. Let M = {1, 2, . . . ,m} be the index set of all endpoints and let K ⊆ M be any

nonempty subset of M . Then the closure method tests and rejects an intersection hypothesis

H0K =
⋂

k∈K(H0k : δk = 0) at level α iff all intersection hypotheses H0L for L ⊇ K are tested

and rejected at level α. The test procedure is applied in a step-down manner beginning

with the test of the overall null hypothesis H0 = H0M and testing the null hypotheses on

subsets K of M of successively lower dimensions in case of rejections of the null hypotheses

on the corresponding supersets. All we need to apply this procedure is an appropriate α-level
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global test of each null hypothesis H0K for K ⊆ M . Any of the global tests discussed in the

previous section can be used for this purpose.

4.2 Normal Theory Based Tests

It is conceivable to test the null hypotheses H0k of (2.2) on the individual endpoints

using the test statistics tk from (3.8) in the homoscedastic case and from (3.14) in the het-

eroscedastic case. To control the FWE at level α, we would need the upper α critical point

of max1≤k≤m tk under the overall null hypothesis H0 in each case. However, the joint dis-

tribution of (t1, t2, . . . , tm) is not multivariate t even in the homoscedastic case because the

standard deviations
√

σ̂kk used to standardize the tk statistics are different though correlated

for k = 1, 2, . . . ,m. Furthermore these correlations (as well as those between the numerators

of the tk statistics) are unknown being the correlations between the corresponding end-

points. Therefore the standard Dunnett-type (1955) test or its stepwise versions (Dunnett

and Tamhane 1991, 1992) cannot be applied to test the hypotheses H0k.

4.3 Procedures Based on Adjusted p-Values

Let pk be the p-value for testing H0k as discussed in Section 3.3 and let Pk be the

corresponding r.v. This p-value is not adjusted for multiplicity of tests on all H0k. A

way to control the FWE at level α is to find multiplicity adjusted p-values (see Dunnett and

Tamhane 1991, 1992 and Wright 1992), denoted by p̃k, and reject H0k if p̃k < α (1 ≤ k ≤ m).

The adjusted p-values corresponding to a single-step test procedure (see Hochberg and

Tamhane 1987, Ch. 2 ) are given by

p̃k = PrH0

(
min

1≤`≤m
P` ≤ pk

)
(1 ≤ k ≤ m). (4.1)

The joint distribution of (P1, P2, . . . , Pm) is unknown because of the unknown correlations

among the endpoints. Therefore an approximation is often needed. The simplest such

approximation is the Bonferroni adjustment (corresponding to the Bonferroni test) given by

p̃k = mpk (1 ≤ k ≤ m).

Various sharpened versions of the Bonferroni adjusted p-values are available based on the

S̆idák (1968) inequality and its modifications. The S̆idák adjustment assumes that the P`’s
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are independent and is given by

p̃k = 1− (1− pk)
m (1 ≤ k ≤ m).

If the P`’s are positively dependent then this adjustment is conservative. Armitage and

Parmar (1986) gave the following ad- hoc approximation to the adjusted p-values that takes

into account the correlations between the endpoints:

p̃k = 1− (1− pk)
mf

(1 ≤ k ≤ m),

where f is an empirically determined function of the ρk`’s. Dubey (1985) suggested using a

different function fk = 1−ρk for each k, where ρk is the average of the correlations of the kth

endpoint with the others. However, it is readily seen from the definition (4.1) of the adjusted

p-value that f must be a symmetric function of all correlations. Therefore ρk in Dubey’s

formula should be replaced by ρ, namely, the average of all ρk`’s. Notice that if all ρk` = 0

then we get the S̆idák adjustment and if all ρk` = 1 then p̃k = pk, i.e., there is no adjustment.

Tukey, Ciminera and Heyse (1985) suggested using f = 1/2, i.e., p̃k = 1 − (1 − pk)
√

m,

which assumes that the average correlation is 1/2. An analytic approximation to p̃k for

jointly normally distributed endpoints was proposed by James (1991). Finally, Westfall and

Young’s (1989,1993) resampling method, which is distribution-free and implicitly takes the

correlations between the endpoints into account can always be applied to estimate the p̃k.

For multivariate binary endpoints, a bootstrap method was given by Westfall and Young

(1989) which was further extended to many other multiple testing problem in their 1993

book. Chen (1998) proposed using the generalized estimating equation (GEE) approach to

estimate the unknown correlations of binary endpoints to find the adjusted p-values.

Another approach to sharpen the Bonferroni adjustment is to use a stepwise procedure

for testing. The adjusted p-values for a step-down test procedure are given by

p̃(m) = PrH0

(
min

1≤`≤m
P` ≤ p(m)

)
and

p̃(k) = max
[
p̃(k+1), PrH0

(
min

1≤`≤k
P` ≤ p(k)

)]
for k = 1, . . . ,m− 1. (4.2)

Conservative approximations to the above adjusted p-values can be obtained by using the

Bonferroni inequality and are given by

p̃(m) = mp(m) and p̃(k) = max
[
p̃(k+1), kp(k)

]
(1 ≤ k ≤ m− 1).
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These approximations correspond to Holm’s (1979) step-down test procedure, which rejects

H0(k) iff p(`) < α/` for ` = k, k + 1, . . . ,m. This procedure can be derived by using the

Bonferroni test (3.16) to test subset null hypotheses in the closure method.

Hommel (1988) derived a stepwise procedure by using the Simes test (3.17) to test subset

null hypotheses in the closure method. Hochberg (1988) offered a slightly conservative but

a much simpler procedure. It is of step-up type in that it is the exact opposite of Holm’s

step-down procedure in terms of sequence of testing. The adjusted p-values for the Hochberg

procedure are given by

p̃(1) = p(1) and p̃(k) = min
[
p̃(k−1), kp(k)

]
(2 ≤ k ≤ m).

Hochberg’s procedure accepts H0(k) iff p(`) ≥ α/` for ` = 1, 2, . . . , k. Troendle (1996) gave a

bootstrap-based permutational step-up procedure.

4.4 A Hybrid Method Combining Global and Endpoint-Specific Tests

As we have seen, there are two main approaches to identify the significant endpoints: (i)

adjusting the p-values of individual endpoints, and (ii) using the closure method that employs

one of the global tests to test subset null hypotheses. The first approach is more powerful

when only a few endpoints have positive treatment effects, while the second approach is more

powerful when all or most of the endpoints have an effect. A test procedure with a more

uniform power performance can be obtained by combining these two approaches along the

lines of Hothorn’s (1999) Tmax testing principle.

In Logan and Tamhane (2001) we gave a closed testing procedure by combining two

tests for testing each intersection hypothesis: (i) the Bonferroni pmin test and (ii) O’Brien’s

OLS test. According to this latter hybrid method, the adjusted p-value for any intersection

hypothesis H0K =
⋂

k∈K H0k is defined as

p̃K = PrH0

{
min

(
min
k∈K

Pk, PK,OLS

)
≤ min

(
min
k∈K

pk, pK,OLS

)}
, (4.3)

where, as before, the lower case p’s denote the unadjusted observed p-values (e.g., pk is the

p-value for H0k and pK,OLS is the p-value for H0K using the OLS test) and the upper case P ’s

denote the corresponding r.v.’s. In Logan (2001) a third test was added, namely the ALR
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test. In a closed testing procedure, a hypothesis H0K is rejected at level α iff all hypotheses

H0L for L ⊃ K are rejected at level α and p̃K < α. In pratice, the p̃K defined in (4.3) need

to be estimated by bootstrap resampling. C language programs for this purpose for both

the homoscedastic as well as the heteroscedastic case are posted on the first author’s home

page (http://users.iems.northwestern.edu/∼ajit).

The simulation results given in Logan and Tamhane (2001) demonstrate that the hybrid

method is quite powerful for detecting individual endpoint treatment effects and more robust

to the configuration of the mean differences than both the Bonferroni pmin test and the OLS

test. It is found to be especially advantageous when the correlations between the endpoints

are low and the treatment effects are similar for all endpoints. There is very little loss

of power in other situations. The only drawback of the combined test is the additional

computation.

Clinical researchers often choose the endpoints that measure related, yet different aspects

of disease recovery. In this sense very highly correlated endpoints are less informative. As

a result, typical correlations range between 0.2 to 0.6, rarely exceeding 0.7 or 0.8. For such

settings the hybrid method offers worthwhile power gains.

4.5 Decision Rules Based on Endpoint-Specific Tests

Inferences on individual endpoints may be mainly of scientific interest or means to arrive

at a decision on the efficacy of the treatment for regulatory approval purposes. A simple

decision rule is to conclude that the treatment is effective if at least r of the m endpoints show

a significant improvement, where r (1 ≤ r ≤ m) is a prespecified integer. For r = 1 we have

a union-intersection (UI) testing problem. The Bonferroni test (3.16) offers a conservative

solution to this problem; a more accurate UI test (e.g., using resampling) can be used instead.

If r = m then we have an intersection-union (IU) testing problem (Berger 1982):

H0 :
m⋃

k=1

(δk ≤ 0) vs. H1 :
m⋂

k=1

(δk > 0).

An IU test for this problem is Laska and Meisner’s (1989) MIN test, which rejects H0 if

all tk are significant at level α. Note that the null hypothesis for this test is taken as the

full complement of the positive orthant. Over this null hypothesis, the least favorable (LF)
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configurations at which the type I error probability is maximized (= α) can be shown to be

of the type δk = 0 for some k and δ` → ∞ for ` 6= k. Cappizi and Zhang (1996) argued

that the resulting MIN test is overly conservative. If the null hypothesis is restricted to

H0 :
⋂m

k=1(δk = 0) as in (2.1) then a much less conservative test is obtained. Snappin (1987)

proposed a less conservative MIN-type test that uses the estimated mean differences in place

of the above LF configurations. Hochberg and Mosier (2001) assumed no treatment by effect

interaction. This restriction implies that H0 is a partial complement:

H0 :
m⋂

k=1

(δk ≤ 0).

In this case the LF configuration is δ1 = · · · = δm = 0, which results in a more powerful IU

test.

The above tests can be generalized for 1 ≤ r ≤ m by using the test statistic t(m−r+1); if

t(m−r+1) > cm,r,α then the hypotheses H(m−r+1), . . . , H(m) are rejected and so at least r out

of the m endpoints are shown to be significant at level α. The critical constants cm,r,α of

the null distribution of t(m−r+1) when t1, t2, . . . , tm have a multivariate t-distribution with a

common known correlation ρ have been tabulated by Tamhane, Liu and Dunnett (1988) for

selected values of m, r, α, ρ and error d.f. ν. However, those tables are not applicable in the

present problem because the statistics tk of (3.8) do not have a multivariate t-distribution;

furthermore, the correlations between them are unknown and unequal. This testing problem

remains unsolved.

An alternative rule is to declare that the treatment is effective if at least m1 < m

endpoints are significant at level α1 and the remaining m2 = m−m1 endpoints are significant

at level α2 > α1, the idea being to show that these latter endpoints tend in the positive

direction. Cappizi and Zhang (1996) suggested this rule when m = 2, m1 = m2 = 1 and

α1 = 0.05 and α2 = 0.10 or 0.20. However, as noted by Neuhäuser, Steinijans and Bretz

(1999), this rule does not control the FWE at α = 0.05.

5. Clinical Decision Rules Based on Primary and Secondary

Endpoints

The global and individual endpoint tests discussed in the previous two sections are useful
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for assessing the efficacy of a treatment under an intersection null hypothesis framework. The

MIN test is useful for dealing with a union null hypothesis. Often, protocols for drug approval

specify decision rules based on a combination of union and intersection null hypotheses. Many

examples of such decision rules are given in Chi (1998, 2000). In this section we present two

common types of clinical decision rules, give some examples, and discuss how formulating

these decision rules as a combination of union and intersection null hypotheses can lead to

FWE controlling procedures.

A typical decision rule leads to several paths for finding a significant treatment effect. For

example, given three endpoints (e.g., one primary and two secondary), one might conclude

effectiveness if either δ1 > 0 or (δ2 > 0 and δ3 > 0), i.e., if the primary endpoint shows an

effect or both secondary endpoints show an effect. As another example, given four endpoints,

two primary and two secondary, a possible decision rule might be to conclude effectiveness

if at least one primary endpoint and at least one secondary endpoint is significant, i.e., if

(δ1 > 0 or δ2 > 0) and (δ3 > 0 or δ4 > 0).

In each of the above cases, the decision rule corresponds to an alternative hypothesis,

from which an appropriate null hypothesis can be constructed by taking the complement.

Let H0i : δi ≤ 0 and H1i : δi > 0 for each endpoint i. Then the alternative hypothesis for

the first example is

H1 : H11

⋃
(H12

⋂
H13),

and the null hypothesis is

H0 : H01

⋂
(H02

⋃
H03) = (H01

⋂
H02)

⋃
(H01

⋂
H03).

Then applying the IU principle, we can test each intersection null hypothesis at level α and

conclude that the treatment is effective if both intersection null hypotheses are rejected.

Similarly for the second case, the alternative hypothesis is

H1 : (H11

⋃
H12)

⋂
(H13

⋃
H14),

and the null hypothesis is

H0 : (H01

⋂
H02)

⋃
(H03

⋂
H04).
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Again applying the IU principle, we can test each intersection null hypothesis at level α

and conclude effectiveness of the treatment if both intersection null hypotheses are rejected.

Neuhäuser, Steinijans and Bretz (1999) gave an example of this method using the Simes test

for each intersection null hypothesis, but any of the global tests proposed earlier in the paper

would also work.

A different type of rejection rule is obtained when we require that primary endpoints not

have a large negative effect. For example, with one primary and one secondary endpoint,

the treatment may be regarded as effective if δ1 > 0 or if δ2 > 0 and δ1 > −δ∗1 where δ∗1 > 0

is a specified constant representing a threshold of equivalence between the treatment and

control groups on endpoint 1. Define the hypotheses

H∗
01 : δ1 ≤ −δ∗1 and H∗

11 : δ1 > −δ∗1.

Then the rejection rule is equivalent to the alternative hypothesis

H1 : H11

⋃
(H12

⋂
H∗

11),

and the null hypothesis is its complement, namely

H0 : H01

⋂
(H02

⋃
H∗

01) = (H01

⋂
H02)

⋃
H∗

01.

Then both the intersection null hypothesis and the equivalency null hypothesis on primary

endpoint 1 can be tested at level α. If both are rejected, then we can conclude that the

treatment is effective at level α.

This idea of simultaneously testing superiority/equivalence (see, e.g., Dunnett and Gent

1996) can be easily extended to more endpoints in the same fashion. For example, consider a

case with three endpoints. The treatment is regarded effective if all endpoints are equivalent

(δi ≥ −δ∗i for i = 1, 2, . . . ,m) and furthermore at least one endpoint shows superiority

(δi > 0). Then the alternative hypothesis is

H1 : (H∗
11

⋂
H∗

12

⋂
H∗

13)
⋂

(H11

⋃
H12

⋃
H13),

with corresponding null hypothesis

H0 : (H∗
01

⋃
H∗

02

⋃
H∗

03)
⋃

(H01

⋂
H02

⋂
H03).
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Again using the IU principle, the resulting method is to test each equivalency hypothesis

at level α and to test the intersection hypothesis at level α as well. If all hypotheses are

rejected then conclude that the treatment is effective at level α.

As demonstrated above, test procedures can be constructed for desired clinical decision

rules which control the error rate at a pre-specified level α and incorporate both primary

and secondary endpoints in the analysis. The basic steps are to formulate the decision rule

as an alternative hypothesis, take the complement to form the null hypothesis, and apply

the IU principle to determine an appropriate α-level for each component hypothesis. The

methods discussed earlier in the paper can be used to test those components which are

actually intersection null hypotheses.

6. Concluding Remarks

In this paper we have given a comprehensive review of the statistical methods available

for analyzing multiple endpoints in clinical trials. There remain many unsolved problems.

Two important ones are (i) deriving one-sided multivariate tests that are unbiased, mono-

tone and have practically acceptable rejection regions (e.g., the rejection region should not

contain outcomes with large negative components), and (ii) providing a general mathemati-

cal framework for clinical decision rules based on primary and secondary endpoints, so that

it is not necessary to analyze each ad-hoc rule to see if it controls the FWE.
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27. Läuter, J. (1996). Exact t and F tests for analyzing studies with multiple endpoints.

Biometrics 52, 964 -970.
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