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Abstract

In functional magnetic resonance imaging, voxel time courses after Fourier “image

reconstruction” are complex valued as a result of phase imperfections due to magnetic

field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on

magnitude time courses [1, 2]. Here we propose to directly model the entire complex

or bivariate data rather than just the magnitude data. A nonlinear multiple regression

model is used to model activation on the complex signal, and a likelihood ratio test

is derived to determine activation in each voxel. We investigate the performance of

the model on a real dataset, then compare the magnitude and complex models under

varying signal to noise ratios in a simulation study with varying activation effects.

1 Introduction

In magnetic resonance imaging, we aim to image the density of “spinning” protons in a real

valued physical object. The equations of Physics work out that the Fourier transform (FT)

of the proton spin density (PSD) is a spatial frequency spectrum. We will obtain the spatial

frequency spectrum and perform an inverse Fourier transform (IFT) to obtain the proton

∗Corresponding Author: Daniel B. Rowe, Department of Biophysics, Medical College of Wisconsin, 8701

Watertown Plank Road, Milwaukee, WI 53226, dbrowe@mcw.edu.
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spin density. This is done by taking successive measurements in time of a real valued signal,

a voltage in a wire. The time axis is transformed to the spatial frequency or k-space axis.

This physical signal or voltage is real valued, but it is “complex demodulated.” In measuring

the signal, there can be either one or two A to D converters. If there is a single A to D

converter, successive signal measurements are alternately multiplied by either a cosine or a

sine to obtain real (inphase) and imaginary (quadrature) parts. These two measurements

are then shifted either half a step forward or backward to temporally align them. If there

are two A to D converters, two measurements are then taken at the same time with one

multiplied by a cosine and the other by a sine. This discretely measured complex valued

signal is the discrete FT of the PSD. A discrete IFT is applied to the discretely measured

signal. The original object or PSD is real valued but due to phase imperfections, a complex

image of PSD’s is produced [3].

After Fourier image reconstruction, each voxel contains a time course of real and imagi-

nary components of the measured PSD. Magnitude images are produced by taking the square

root of the sum of squares of the real and imaginary parts of the measured PSD in each voxel

at each time point. Nearly all fMRI studies obtain a statistical measure of functional acti-

vation based on magnitude image time courses. When this is done, phase information in the

data is discarded. This is illustrated in Figure 1, where the real, imaginary, magnitude, and

phase images are shown at a single point in time, for the example dataset discussed later.

Magnitude models typically assume normally distributed errors; alternatively, one can

assume that the original real and imaginary components of the PSD have normally dis-

tributed errors. Independent normally distributed errors on the measured complex signal

or equivalently complex PSD translates to a Rician distributed magnitude image that is

approximately normal for large signal to noise ratios.

When computing magnitude image time courses and activations, the signal to noise

ratio (SNR) may not be large enough for this approximate normality to hold. This is

increasingly true with higher voxel resolutions. In addition, phase information or half of the

numbers is discarded. A more accurate model should properly model the noise and use all

the information contained in the real and imaginary components of the data.

Previous models for complex activation have been proposed [4, 5, 6]. Previous simple
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Figure 1: Real, imaginary, magnitude, and phase images at a fixed point in time.

(a) Real image (b) Imaginary image

(c) Magnitude image (d) Phase image

linear regression models by Scharf and Friedlander (1994) and Lai and Glover (1997) did not

accurately model the phase, while we correctly account for it through a nonlinear multiple

regression model. A subsequent model by Nan and Nowak (1999) correctly assumed that the

phase imperfections for the baseline and signal were the same, but was limited to a single

baseline and signal model because of their model parameterization. In addition, their model

did not directly estimate the regression coefficients or phase angle. We reparameterize and

extend the model proposed by Nan and Nowak (1999) to a multiparameter baseline and

signal model. We formulate the hypothesis test in terms of contrasts, which allows for more
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elaborate hypothesis testing such as deconvolution and comparisons between multiple task

conditions. Finally, our parameterization allows us to estimate the phase angle directly

instead of the sine and cosine of the phase angle. We compare the results of the proposed

model to a strict magnitude model in terms of thresholded activation maps on a real dataset.

Finally, simulations are performed comparing our model to a magnitude model for various

signal to noise ratios and task related effects.

2 Model

In MRI/fMRI, we aim to image a real valued physical object ρ(x, y) and obtain a measured

object ρm(x, y) by measuring a 2D complex valued signal sm(kx, ky) at spatial frequencies

(kx, ky). This signal consists of a true complex valued signal s(kx, ky) plus a random complex

noise term δ(kx, ky) with real and imaginary components that are assumed to be indepen-

dent and identically normally distributed. Even if there were no phase imperfections, it is

necessary to observe the imaginary parts of this signal because we phase encode for proper

image formation. After image reconstruction, we obtain a complex valued measured object

plus complex valued noise.

Neglecting the voxel location and focusing on a particular voxel, the complex valued

image measured over time in a given voxel is

ρmt = [ρRt + ηRt] + i[ρIt + ηIt]

where (ηRt, ηIt)
′ ∼ N (0,Σ) and Σ = σ2I2. The distributional specification is on the real and

imaginary parts of the image and not on the magnitude.

A nonlinear multiple regression model is introduced individually for each voxel that

includes a phase error θ in which at time t, the measured proton spin density is given by

ρmt = [x′tβ cos θ + ηRt] + i[x′tβ sin θ + ηIt] (2.1)

where ρt = x′tβ = β0+β1x1t+ · · ·+βqxqt. The phase imperfection in Equation 2.1 is assumed

to be fixed but unknown, not changing over time, but measured with error. Just as in Nan

and Nowak (1999), we have also found this phase specification to be reasonable.
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In fMRI, we take repeated measurements over time while a subject is performing a task.

In each voxel, we compute a measure of association between the observed time course and a

preassigned reference function that characterizes the experimental paradigm.

2.1 Magnitude Activation

The typical method to compute activations [1, 2] is to use the magnitude |ρmt| which is

denoted by yt and written as

yt =
[
(x′tβ cos θ + ηRt)

2 + (x′tβ sin θ + ηIt)
2
]1

2 . (2.2)

The magnitude model in Equation 2.2 discards any information contained in the phase, given

by

φt = tan−1

[
ρIt + ηIt
ρRt + ηRt

]
.

The magnitude is not normally distributed but is Rician distributed. Both the magnitude

and the phase are approximately normal for large SNR’s [7, 8] as outlined in the appendix.

The special case of the Rician where there is no signal is known as the Rayleigh distribution.

It is known [3] that a histogram of noise outside the brain without any signal is Rayleigh

distributed.

The Rician distribution is approximately normal for large signal to noise ratios (small

relative error variance). This can be shown by completing the square in Equation 2.2 and

proceeding as follows

yt =
{
[x′tβ]2 + [η2

Rt + η2
It] + 2[x′tβ][ηRt cos θ + ηIt sin θ]

}1
2

= [x′tβ]

{
1 +

2[ηRt cos θ + ηIt sin θ]

[x′tβ]
+

[η2
Rt + η2

It]

[x′tβ]2

} 1
2

≈ x′tβ + εt (2.3)

where εt = ηRt cos θ + ηIt sin θ ∼ N(0, σ2). Again, the cos θ and sin θ arise from phase

imperfections. If there were no phase imperfection, then θ = 0. In this derivation, the

approximation
√

1 + u ≈ 1 + u/2 was used for |u| � 1. This model can also be written as

y = X β + ε

n × 1 n× (q + 1) (q + 1) × 1 n× 1
(2.4)
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where ε ∼ N (0, σ2Φ) and Φ is the temporal correlation matrix, often taken to be Φ = In

after suitable pre-processing of the data.

The unconstrained maximum likelihood estimates of the vector of regression coefficients

β̂ and the error variance σ̂2 are derived in the appendix and given by

β̂ = (X ′X)−1X ′y,

σ̂2 = (y −Xβ̂)′(y −Xβ̂)/n . (2.5)

To construct a generalized likelihood ratio test of the hypothesis H0 : Cβ = 0 vs. Ha : Cβ 6=

0, we maximize the likelihood under the constrained null hypothesis as in the appendix. This

leads to constrained MLE’s

β̃ = Ψβ̂,

σ̃2 = (y −Xβ̃)′(y −Xβ̃)/n, (2.6)

where
Ψ = Iq+1 − (X ′X)−1C ′[C(X ′X)−1C ′]−1C. (2.7)

Then the likelihood ratio statistic is given by

−2 log λM = n log

(
σ̃2

σ̂2

)
. (2.8)

This has an asymptotic χ2
r distribution, where r is the rank of C, and is asymptotically

equivalent to the usual t− or F -tests associated with statistical parametric maps. For ex-

ample, with a model with β0 representing an intercept, β1 representing a linear drift over

time, and β2 representing an effect of a stimulus. Then to test whether the coefficient for the

reference function or stimulus is 0, set C = (0, 0, 1), so that the hypothesis is H0 : β2 = 0.

The LR test has an asymptotic χ2
1 distribution and is asymptotically equivalent to the usual

t tests for activation given by

t2 =
β̂2

SE(β̂2)
.

We use the χ2 representation for ease of comparability with the complex activation model.
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2.2 Complex Activation

Alternatively, we can represent the observed data at time point t as a 2× 1 vector instead

of as a complex number

 yRt

yIt


 =


 x′tβ cos θ

x′tβ sin θ


 +


 ηRt

ηIt


 , t = 1, . . . , n .

This model can also be written as

y =


 X 0

0 X





 β cos θ

β sin θ


 + η

2n× 1 2n × 2(q + 1) 2(q + 1) × 1 2n × 1

(2.9)

where it is specified that the observed vector of data y = (y′R, y
′
I)

′ is the vector of observed

real values stacked on the vector of observed complex values and the vector of errors η =

(η′Rt, η
′
It)

′ ∼ N (0,Σ ⊗ Φ) is similarly defined. Here we assume that Σ = σ2I2 and Φ = In.

Due to the multiparameter baseline and signal model in Equation 2.9, this is a general-

ization of the simple linear regression model by Nan and Nowak (1999) where there is only

a mean and signal reference function. Previous simple linear regression models by Scharf

and Friedlander (1994) and Lai and Glover (1997) did not accurately model the phase, while

we correctly account for it through a nonlinear multiple regression model. Our generaliza-

tion allows for more elaborate hypothesis testing frameworks, such as deconvolution and

comparisons between task conditions.

As with the magnitude model, we can obtain unrestricted maximum likelihood estimates

of the parameters as derived in the appendix to be

θ̂ =
1

2
tan−1

[
2β̂ ′

R(X ′X)β̂I

β̂ ′
R(X ′X)β̂R − β̂ ′

I(X
′X)β̂I

]

β̂ = β̂R cos θ̂ + β̂I sin θ̂,

σ̂2 =
1

2n


y −


 X 0

0 X





 β̂ cos θ̂

β̂ sin θ̂






′ 
y −


 X 0

0 X





 β̂ cos θ̂

β̂ sin θ̂





 , (2.10)

where

β̂R = (X ′X)−1X ′yR,

β̂I = (X ′X)−1X ′yI .
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Note that the estimate of the regression coefficients is a weighted average of estimates from

the real and imaginary parts.

The maximum likelihood estimates under the constrained null hypothesis H0 : Cβ = 0

are derived in the appendix and given by

θ̃ =
1

2
tan−1

[
2β̂ ′

RΨ(X ′X)β̂I

β̂ ′
RΨ(X ′X)β̂R − β̂ ′

IΨ(X ′X)β̂I

]

β̃ = Ψ[β̂R cos θ̃ + β̂I sin θ̃],

σ̃2 =
1

2n


y −


 X 0

0 X





 β̃ cos θ̃

β̃ sin θ̃






′ 
y −


 X 0

0 X





 β̃ cos θ̃

β̃ sin θ̃





 , (2.11)

where Ψ is as defined in Equation 2.7 for the magnitude model.

This formulation of the model requires us to correctly deal with the phase angle. An

alternative formulation is to let α1 = cos θ and α2 = sin θ. Then the model is

y =


 X 0

0 X





 α1β

α2β


 + η, α2

1 + α2
2 = 1 . (2.12)

With the model formulation in Equation 2.12 we can identify it as a reduced rank regression

model [9] with a sum of squares equal to 1 constraint on the α coefficients. In the same way

as before, the parameters can be estimated under the unconstrained model as derived in the

appendix to be

α̂1 = β̂ ′(X ′X)β̂R/[(β̂
′(X ′X)β̂R)2 + (β̂ ′(X ′X)β̂I)

2]1/2

α̂2 = β̂ ′(X ′X)β̂I/[(β̂
′(X ′X)β̂R)2 + (β̂ ′(X ′X)β̂I)

2]1/2

β̂ = α̂1β̂R + α̂2β̂I ,

σ̂2 =
1

2n


y −


 X 0

0 X





 α̂1β̂

α̂2β̂






′ 
y −


 X 0

0 X





 α̂1β̂

α̂2β̂





 . (2.13)

Again note that the estimate of the regression coefficients is a weighted average of estimates

from the real and imaginary parts.

Similarly, the maximum likelihood estimates under the constrained null hypothesis H0 :
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Cβ = 0 are derived in the appendix and given by

α̃1 = β̃ ′(X ′X)β̂R/[(β̃
′(X ′X)β̂R)2 + (β̃ ′(X ′X)β̂I)

2]1/2

α̃2 = β̃ ′(X ′X)β̂I/[(β̃
′(X ′X)β̂R)2 + (β̃ ′(X ′X)β̂I)

2]1/2

β̃ = Ψ(α̃1β̂R + α̃2β̂I),

σ̃2 =
1

2n


y −


 X 0

0 X





 α̃1β̃

α̃2β̃






′ 
y −


 X 0

0 X





 α̃1β̃

α̃2β̃





 (2.14)

In computing maximum likelihood estimates, an iterative maximization known as the

Iterative Conditional Modes (ICM) algorithm [10, 11] is used.

Then for either formulation (Equation 2.9 or 2.12) the generalized likelihood ratio statistic

for the complex activation model is

−2 log λC = 2n log

(
σ̃2

σ̂2

)
. (2.15)

This statistic has an asymptotic χ2
r distribution similar to the magnitude model statistic in

Equation 2.8.

3 Application to fMRI dataset

A bilateral finger tapping experiment was performed in a block design with 16s off followed

by eight epochs of 16s on and 16s off. Scanning was performed using a 1.5T GE Signa in

which 5 axial slices of size 96 × 96 were acquired. In image reconstruction, the acquired

data was zero filled to 128 × 128. After reconstruction, each voxel has dimensions in mm of

1.5625 × 1.5625 × 5, with TE= 47ms. Observations were taken every TR= 1000ms so that

there are 272 in each voxel. Data from a single axial slice through the motor cortex was

selected for analysis. Pre-processing using an ideal filter was performed to remove respiration

and low frequency physiological noise in addition to the removal of the first three points to

omit machine warm-up effects.

First we checked the validity of the complex model assumptions by examining observa-

tions outside the brain where there is no task-related activation. Proper modeling of the

noise is essential prior to modeling the signal. The phase angle was plotted against time to
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investigate stability of the phase over time; this was relatively constant over time, confirming

the observation of Nan and Nowak (1999), and is omitted for brevity. Next histograms of

the real (solid) and imaginary (striped) components are constructed separately and super-

imposed on one another in Figure 2(a). These appear to both be approximately normally

distributed with similar variances. Figure 2(b) contains histograms of the correlations be-

tween the real and imaginary components, again computed from the time series outside the

brain. These are distributed closely around 0, indicating that the assumption of indepen-

dence of the real and imaginary components is reasonable. Finally, an autoregressive order

1 (AR(1)) model was fit to the outside the brain time series and the correlation parameter ρ

for the complex (solid) and magnitude (striped) was estimated from the data and histograms

superimposed on one another. These are presented in Figure 2(c) where a 5% Bonferroni

adjusted threshold is ρDW = .26 for the magnitude model and ρDW = .19 for the complex

model. These thresholds were determined via Monte Carlo simulation by generating data

sets of the same length and model. Most of the correlations are between −0.2 and 0.2,

indicating little temporal autocorrelation of the data without signal.

Figure 2: No signal assessment of complex model.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

7

8

9
x 10

4 Outer brain histogram

y

N
(y

)

(a) Histogram of real and

imaginary data
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(c) Histogram of magnitude

and complex autocorrelation

estimates

After verifying the model assumptions, we next model the signal and compare the results

of fitting the complex and magnitude models. The linear magnitude and nonlinear complex

multiple regression models were fit to the data with an intercept, a zero mean time trend,

and a ±1 square wave reference function. Parameter estimates of the task-related activation
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β2 are given in Figure 3 for (a) the magnitude model and (b) the complex model. These

coefficient estimates are very similar between the two models.

Figure 3: Estimates of the reference function coefficients, β2’s.
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(a) Magnitude model
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(b) Complex model

As previously noted, the estimated β2 coefficients for the complex model in Figure 3(b)

under the alternative hypothesis are weighted averages between the estimated value from

the real and imaginary parts. This weighting is displayed in Figure 4 where the α1 weights

are in Figure 4(a), the estimated coefficient values from the real part βR2 are in Figure 4(b),

the α2 weights are in Figure 4(c), and the estimated coefficient values from the real part βI2

are in Figure 4(d).

After fitting the model, residuals were used to re-evaluate the assumptions for the com-

plex model. Histograms of the real (solid) and imaginary (striped) components are con-

structed from the residual time courses for all voxels separately and superimposed on one

another in Figure 5(a). These appear to both be approximately normally distributed with

similar variances. Figure 5(b) contains histograms of the correlations between the real and

imaginary components, computed from the residual time courses for all voxels. These are

distributed closely around 0, indicating that the assumption of independence of the real

and imaginary components is reasonable. An autoregressive order 1 (AR(1)) model was fit

to the residual time series in every voxel and the correlation parameter ρ for the complex

(solid) and magnitude (striped) was estimated from the data and histograms superimposed

on one another. These are presented in Figure 5(c) where again 5% Bonferroni adjusted
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Figure 4: Complex real and imaginary estimated β2’s, and weights, α’s.
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(a) real part weights, α1’s
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(b) real part estimates, βR2’s
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(c) imaginary part weights, α2’s
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(d) imaginary part estimates, βI2’s

magnitude and complex thresholds can be applied as previously described. The temporal

autocorrelation present in the residuals is similar for the magnitude and complex models.

Most of the correlations are between −.20 and 0.20, indicating that most of the voxels have

little temporal autocorrelation.

Next we looked for significant task-related activation using a 5% false discovery rate

threshold. This was done by applying the Benjamini-Hochberg procedure [12, 13, 14] to the

voxel p-values obtained from the χ2
1 approximation from the likelihood ratio statistic. Images

of significant activation are given in Figure 6 for the magnitude and complex models.

While the activation images are similar due to the large SNR, note that the complex

model appears to have sharper or more well-defined activation regions which align better
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Figure 5: Residual histogram assessment of complex model.
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with the gray matter at which the activation is to be.

4 fMRI Simulation

Data is generated to simulate the same bilateral finger tapping fMRI block design exper-

iment with n = 269 points where the true activation structure is known so that the two

activation methods can be evaluated. A 128 × 128 slice is selected for analysis within which

four 7 × 7 ROI’s as lightened in Figure 7 are designated to have activation.

For this slice, simulated fMRI data is constructed according to a multiple regression

model which consists of an intercept, a time trend for all voxels but also a reference function

x2t for voxels in each ROI which is related to a block experimental design. This model

dictates that for voxel i at time t,

yit = [(β0 + β1t+ β2x2t)α1i + ηRit] + i[(β0 + β1t+ β2x2t)α2i + ηIit],

where ηRit, ηIit are i.i.d. N(0,σ2). In this simulation study, α1 and α2 are voxel dependent

and taken from the estimated values for the example dataset shown in Figure 4 (a) and (c),

while β1 = 0.00001 and σ = 0.04909 are assumed constant across voxels with values taken

from a “highly active” voxel in the activation region of the sample dataset. The coefficient

for the reference function β2 is zero outside the ROI. Inside each ROI β2 has constant value

determined by an effect to noise ratio (ENR=β2/σ) of 1, 0.5, 0.25, 0.125, going from left to
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Figure 6: Activation images using the LR test, thresholded at a 5% false discovery rate.
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(a) Magnitude model
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(b) Complex model

Figure 7: Anatomical with ROI’s.
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right and top to bottom. To investigate the effect of the signal to noise ratio (SNR) typically

defined to be the mean divided by the standard deviation of a voxel time course. Note that

the magnitude of β0 observed in the real dataset is generally much larger than β1 or β2,

indicating that it is the dominant feature in the SNR in addition to being the time course
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mean. Therefore since the variance is held fixed, we parameterize the SNR by varying β0

so that the ratio SNR= β0/σ takes on values between 1 and 30, where 30 is approximately

the value of SNR found in “highly active” voxels for the example dataset, and other values

represent decreasing SNR.

In each voxel for a given model and SNR, 1000 simulated images were generated and

thresholded using an unadjusted threshold with a 5% type I or per comparison error (PCE)

rate, the Benjamini-Hochberg procedure with a 5% false discovery rate (FDR), and the

Bonferroni procedure with a 5% familywise error (FWE) rate. For each thresholding method,

the power, or relative frequency over the 1000 simulated images with which each voxel was

detected as active, was recorded. Absolute differences in power between the complex and

magnitude models were calculated for each voxel, mapped to a color scale, and shown in

Figures 8 through 10 for the three thresholding procedures. Voxels with zero difference in

power were assigned the voxel anatomical grey scale.
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Figure 8: Differences in power between the models varying SNR, 5% PCE threshold.
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(a) SNR = 1
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(b) SNR = 2.5
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(c) SNR = 5
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(d) SNR = 7.5
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(e) SNR = 10
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(f) SNR = 30
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Figure 9: Differences in power between the models varying SNR, 5% FDR threshold.
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(a) SNR = 1
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(b) SNR = 2.5
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(c) SNR = 5
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(d) SNR = 7.5
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(e) SNR = 10
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(f) SNR = 30
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Figure 10: Differences in power between the models varying SNR, 5% FWE threshold.
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(a) SNR = 1
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(b) SNR = 2.5
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(c) SNR = 5
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(d) SNR = 7.5
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(e) SNR = 10
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(f) SNR = 30
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Note that there are little differences between the complex and magnitude models for the

ENR= 0.5 to 1 range; however, this is because the power is approximately 1. For less strong

effects, the differences are sensitive to the SNR and the complex model is generally useful

for low SNR.

To further illustrate the power improvement of the complex model over the magnitude

model for low SNR’s, we plotted the power curves as a function of the effect to noise ratios.

This was done for the three thresholding procedures (5% PCE, 5% FDR, 5% FWE) and

the complex (blue) and magnitude (red) models. These power curves are given in Figure 11

where for all ENR’s, the curves are from top to bottom for the 5% PCE (dotted), 5% FDR

(solid), and 5% FWE (dashed) thresholds. These power curves illustrate similar results as

before, that the complex model power curve is higher than the magnitude model power curve

for low SNR, but the lines are quite close for higher SNR.
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Figure 11: Power versus ENR for complex (blue) and magnitude (red) models.
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(b) SNR = 2.5
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(c) SNR = 5
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(d) SNR = 7.5
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(e) SNR = 10
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(f) SNR = 30
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Figure 12: ENR power versus SNR for complex (blue) and magnitude (red) models.
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(b) ENR = .5
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(c) ENR = .25
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(d) ENR = .125

To reiterate the advantage of the complex model over the magnitude model for low SNR’s,

in Figure 12 we plotted power versus SNR (.5, 1, 2.5, 5, 7.5, 10) for the four ENR’s. The

dotted curves represent the 5% PCE threshold, the solid curves the 5% FDR threshold, and

the dashed curves the 5% FWE threshold. For example in Figure 12(c) the solid blue line

with an asterisk is the complex model FDR power curve for an ENR of .25 while the solid red

line with an asterisk is the corresponding magnitude model FDR power curve for an ENR of

.25. It is evident for a given ENR that the complex model power curve is constant irrespective

of SNR while the magnitude model power curve falls rapidly as the SNR decreases.
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5 Conclusions

A complex data fMRI activation model was presented as an alternative to the typical

magnitude data model. Activation statistics were derived from generalized likelihood ratio

tests for both models. Activation from both models were presented for real fMRI data, then

simulations were performed to compare the power to detect activation regions between the

two models for several signal to noise ratios with varying effects.

It was found that for large signal to noise ratios, both models were comparable. However,

for smaller signal to noise ratios, the complex activation model demonstrated superior power

of detection over the magnitude activation model. This strongly indicates that modeling the

complex data may become more useful as voxel sizes get smaller, since this decreases the

SNR.
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A Magnitude and Phase Distributions

The distribution of the magnitude and phase can be derived as follows. Let yR = ρ cos θ+

ηR and yI = ρ cos θ + ηI where ηR and ηI are normally distributed with mean zero and

variance σ2. Then, make a change of variable from (yR, yI) to polar coordinates r2 = y2
R+y2

I

and φ = tan−1(yI/yR) or yR = r cosφ and yI = r sinφ. The Jacobian of this transformation

is J(yR, yI → r, φ) = r. The joint distribution of r and φ using trigonometric identities

becomes

p(r, φ|ρ, θ, σ2) =
r

2πσ2
e−

1
2σ2 [r2+ρ2−2ρr cos(φ−θ)] .

A.1 Magnitude Distribution

The marginal distribution of the magnitude r is found by integrating out the phase φ

p(r|ρ, θ, σ2) =
r

σ2
e−

1
2σ2 [r2+ρ2]

∫ π

φ=−π

1

2π
e

1
σ2 ρr cos(φ−θ)dφ

where the integral factor often denoted Io(rρ/σ
2) is the zeroth order Bessel function of

the first kind. The normal limiting distribution for large SNR or ρ → ∞, is found by

using the asymptotic form Io(rρ/σ
2) ≈ exp(rρ/σ2)/

√
(2πrρ/σ2) of the Bessel function [15].

Additionally, in this limit, it is assumed that the exponential form of the normal distribution

drops off more rapidly compared to the variation in the ratio
√
r/ρ left as a factor. The

distribution of the magnitude becomes the normal distribution with mean ρ and variance

σ2.

The Rayleigh limiting distribution for zero SNR or ρ = 0, is found by noting that

Io(0) = 1. The distribution of the magnitude becomes

p(r|ρ, σ2) =
r

σ2
e−

r2

2σ2 .

A.2 Phase Distribution

The marginal distribution of the phase φ is found by integrating out the magnitude r

p(φ|ρ, θ, σ2) =
e−

ρ2

2σ2

2π

[
1 +

ρ

σ

√
2π cos(φ− θ)e

ρ2 cos2(φ−θ)

2σ2

∫ ρ cos(φ−θ)
σ

−∞

e−z
2/2

√
2π

dz .

]
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The normal limiting distribution for large SNR or ρ→ ∞, is found by multiplying through,

noting that the first term is approximately zero, that the difference between φ and θ is

small so that the cosine of their difference is approximately one, and the sine of their dif-

ference is approximately their difference. The distribution of the phase becomes the normal

distribution with mean θ and variance (σ/ρ)2.

The uniform limiting distribution for zero SNR or ρ = 0, is found by noting that the

integral factor goes to unity. The distribution of the phase becomes

p(φ) =
1

2π
.

The distribution of the magnitude and phase for intermediate values of SNR can be found

by numerical integration or Monte Carlo simulation. The complex model presented in this

paper does not make these large SNR approximations.

B Generalized Likelihood Ratio Tests

In applications using multiple regression including fMRI, we often wish to test linear

contrast hypothesis (for each voxel) such as

H0 : Cβ = γ vs H1 : Cβ 6= γ

σ2 > 0 σ2 > 0 ,

where C is an r × (q + 1) matrix of full row rank and γ is an r × 1 vector.

Magnitude Model

The likelihood ratio statistic is computed by maximizing the likelihood p(y|β, σ2,X) with

respect to β and σ2 under the null and alternative hypotheses. Denote the maximized values

under the null hypothesis by (β̃, σ̃2) and those under the alternative hypothesis as (β̂, σ̂2).

These maximized values are then substituted into the likelihoods and the ratio taken.

With the aforementioned distributional specifications, the likelihood of the model is

p(y|β, σ2,X) = (2π)−
n
2 (σ2)−

n
2 e−

h
2σ2 , (B.1)
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where

h = (y −Xβ)′(y −Xβ)

= y′y − y′Xβ − β ′X ′y + β ′X ′Xβ .

Unrestricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters. In the case of β it is the same

as minimizing the h term in the exponent. These derivatives are

∂

∂β
h

∣∣∣∣
β=β̂,σ2=σ̂2

= 2(X ′X)β̂ − 2X ′y

∂

∂σ2
log[p(y|X,β, θ, σ2)]

∣∣∣∣
β=β̂,σ2=σ̂2

= −n
2

1

σ̂2
+
ĥ

2

1

(σ̂2)2
.

where ĥ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the unrestricted model given in Equation 2.5.

Restricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters. In the case of β it is the same

as minimizing the h term in the exponent with the restriction in the form of a Lagrange

multiplier as

h = (y −Xβ)′(y −Xβ)− 2Ψ′(Cβ − γ)

= y′y − y′Xβ − β ′X ′y + β ′X ′Xβ − 2Ψ′Cβ + 2Ψ′γ .

These derivatives are

∂

∂β
h

∣∣∣∣
β=β̃,ψ=ψ̃,σ2=σ̃2

= 2(X ′X)β̃ − 2X ′y

∂

∂ψ
h

∣∣∣∣
β=β̃,ψ=ψ̃,σ2=σ̃2

= 2(Cβ̃ − γ)

∂

∂σ2
log[p(y|X,β, θ, σ2)]

∣∣∣∣
β=β̃,ψ=ψ̃,σ2=σ̃2

= −n
2

1

σ̃2
+
h̃

2

1

(σ̃2)2
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where h̃ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the restricted model given in Equation 2.6. Note that

σ̂2 = ĥ/n and σ̃2 = h̃/n. Then the generalized likelihood ratio is

λ =
p(y|β̃, σ̃2,X)

p(y|β̂, σ̂2,X)
=

(σ̃2)
−n/2

e−h̃n/(2h̃)

(σ̂2)−n/2 e−ĥn/(2ĥ)
, (B.2)

and Equation 2.8 for the GLRT follows.

B.1 Complex Model with θ

Just as in the magnitude model, the likelihood ratio statistic is computed by maximizing

the likelihood p(y|β, σ2,X) with respect to β and σ2 under the null and alternative hypothe-

ses. Denote the maximized values under the null hypothesis by (β̃, σ̃2) and those under

the alternative hypothesis as (β̂, σ̂2). These maximized values are then substituted into the

likelihoods and the ratio taken. With the aforementioned distributional specifications, the

likelihood of the model is

p(y|X,β, θ, σ2) = (2πσ2)−
2n
2 e−

h
2σ2 (B.3)

where

h =
1

2n


y −


 X 0

0 X





 β cos θ

β sin θ






′ 
y −


 X 0

0 X





 β cos θ

β sin θ







= β ′(X ′X)β − 2β ′(X ′X)[β̂R cos θ + β̂I sin θ] + β̂ ′
R(X ′X)β̂R + β̂ ′

I(X
′X)β̂I

+y′R[In −X(X ′X)−1X ′]yR + y′I [In −X(X ′X)−1X ′]yI

Unrestricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters. In the case of β and θ it is the
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same as minimizing the h term in the exponent.

∂

∂β
h

∣∣∣∣
β=β̂,θ=θ̂,σ2=σ̂2

= 2(X ′X)β̂ − 2(X ′X)
[
β̂R cos θ̂ + β̂I sin θ̂

]

∂

∂θ
h

∣∣∣∣
β=β̂,θ=θ̂,σ2=σ̂2

= −2β̂ ′(X ′X)
[
(− sin θ̂)β̂R + (cos θ̂)β̂I

]

∂

∂σ2
log[p(y|X,β, θ, σ2)]

∣∣∣∣
β=β̂,θ=θ̂,σ2=σ̂2

= −2n

2

1

σ̂2
+
ĥ

2

1

(σ̂2)2

where ĥ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the unrestricted model given in Equation 2.10.

Restricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters. In the case of β and θ, it is the

same as minimizing the h term in the exponent with the restriction in the form of a Lagrange

multiplier as

h = β ′(X ′X)β − 2β ′(X ′X)[β̂R cos θ + β̂I sin θ] + β̂ ′
R(X ′X)β̂R + β̂ ′

I(X
′X)β̂I

+y′R[In −X(X ′X)−1X ′]yR + y′I [In −X(X ′X)−1X ′]yI + 2ψ′(Cβ − γ) .

Note that the maximization is performed by Lagrange multipliers and the appropriate term

has been added to h

∂

∂β
h

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

= 2(X ′X)β̃ − 2(X ′X)
[
β̃R cos θ̃ + β̃I sin θ̃

]

+2C ′ψ̃

∂

∂θ
h

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

= −2β̃ ′(X ′X)
[
(− sin θ̃)β̃R + (cos θ̃)β̃I

]

∂

∂ψ
h

∣∣∣∣
β=β̃,ψ=ψ̃,ψ=ψ̃,σ2=σ̃2

= 2(Cβ̃ − γ)

∂

∂σ2
log[p(y|X,β, θ, σ2)]

∣∣∣∣
β=β̃,θ=θ̃,ψ=ψ̃,σ2=σ̃2

= −2n

2

1

σ̃2
+
h̃

2

1

(σ̃2)2

where h̃ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the restricted model given in Equation 2.11.
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Note that σ̂2 = ĥ/(2n) and σ̃2 = h̃/(2n). Then the generalized likelihood ratio is

λ =
p(y|β̃, σ̃2, θ̃,X)

p(y|β̂, σ̂2, θ̂,X)
=

(σ̃2)
−2n/2

e−2h̃n/(2h̃)

(σ̂2)−2n/2 e−2ĥn/(2ĥ)
, (B.4)

and Equation 2.15 for the GLRT follows.

B.2 Complex Model with α1 and α2

Alternatively, the model can be written with α1 = cos θ and α2 = sin θ

Unrestricted MLE’s

The term in the exponent is

h = β ′(X ′X)β − 2β ′(X ′X)[β̂Rα1 + β̂Iα2] + β̂ ′
R(X ′X)β̂R + β̂ ′

I(X
′X)β̂I

+y′R[In −X(X ′X)−1X ′]yR + y′I [In −X(X ′X)−1X ′]yI − 2δ(α2
1 + α2

2 − 1) .

Note the Lagrange multiplier constraint that α2
1 + α2

2 = 1.

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters. In the case of β, α1, and α2 it is

the same as minimizing the h term in the exponent.

∂

∂β
h

∣∣∣∣
β=β̂,α1=α̂1,α2=α̂2,δ=δ̂,σ2=σ̂2

= 2(X ′X)β̂ − 2(X ′X)
[
β̂Rα̂1 + β̂Iα̂2

]

∂

∂α1
h

∣∣∣∣
β=β̂,α1=α̂1,α2=α̂2,δ=δ̂,σ2=σ̂2

= −2β̂ ′(X ′X)β̂R − 2δ̂(2α̂1)

∂

∂α2
h

∣∣∣∣
β=β̂,α1=α̂1,α2=α̂2,δ=δ̂,σ2=σ̂2

= −2β̂ ′(X ′X)β̂I − 2δ̂(2α̂2)

∂

∂δ
h

∣∣∣∣
β=β̂,α1=α̂1,α2=α̂2,δ=δ̂,σ2=σ̂2

= −2(α̂2
1 + α̂2

2 − 1)

∂

∂σ2
log[p(y|X,β, α1, α2, σ

2)]

∣∣∣∣
β=β̂,α1=α̂1,α2=α̂2,δ=δ̂,σ2=σ̂2

= −2n

2

1

σ̂2
+
ĥ

2

1

(σ̂2)2

where ĥ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the unrestricted model given in Equation 2.13.

28



Restricted MLE’s

The term in the exponent is

h = β ′(X ′X)β − 2β ′(X ′X)[β̂Rα1 + β̂Iα2] + β̂ ′
R(X ′X)β̂R + β̂ ′

I(X
′X)β̂I

+y′R[In −X(X ′X)−1X ′]yR + y′I [In −X(X ′X)−1X ′]yI

−2δ(α2
1 + α2

2 − 1) + 2ψ′(Cβ − γ) .

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters. In the case of β, α1, and α2

it is the same as minimizing the h term in the exponent. Note that the maximization is

performed by Lagrange multipliers and the appropriate term has been added to h

∂

∂β
h

∣∣∣∣
β=β̃,α1=α̃1 ,α2=α̃2 ,δ=δ̃,ψ=ψ̂,σ2=σ̃2

= 2(X ′X)β̃

−2(X ′X)
[
β̃Rα̃1 + β̃Iα̃2

]

+2C ′ψ̃

∂

∂ψ
h

∣∣∣∣
β=β̃,α1=α̃1 ,α2=α̃2 ,δ=δ̃,ψ=ψ̂,σ2=σ̃2

= 2(Cβ̃ − γ)

∂

∂α1

h

∣∣∣∣
β=β̃,α1=α̃1 ,α2=α̃2 ,δ=δ̃,ψ=ψ̂,σ2=σ̃2

= −2β̃ ′(X ′X)β̃R − 2δ̃(2α̃1)

∂

∂α2
h

∣∣∣∣
β=β̃,α1=α̃1 ,α2=α̃2 ,δ=δ̃,ψ=ψ̂,σ2=σ̃2

= −2β̃ ′(X ′X)β̃I − 2δ̃(2α̃2)

∂

∂δ
h

∣∣∣∣
β=β̃,α1=α̃1 ,α2=α̃2 ,δ=δ̃,ψ=ψ̂,σ2=σ̃2

= −2(α̃2
1 + α̃2

2 − 1)

∂

∂σ2
log[p(y|X,β, α1, α2, σ

2)]

∣∣∣∣
β=β̃,α1=α̃1 ,α2=α̃2 ,δ=δ̃,ψ=ψ̂,σ2=σ̃2

= −2n

2

1

σ̃2
+
h̃

2

1

(σ̃2)2

where h̃ is h with MLE’s substituted in. By setting these derivatives equal to zero and

solving, we get the MLE’s under the restricted model given in Equation 2.14.

C Prewhitening

In many applications of regression, the errors may be temporally autocorrelated resulting

in correct estimation of the regression coefficients but inflated estimation of the residual error

variance.
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C.1 Magnitude Model

In the multiple regression magnitude model, the observation error covariance matrix may

not be the identity matrix. A common practice is to estimate Φ with Φ̂, prewhiten, then

repeat the analysis. For example, an AR(1) temporal autocorrelation (Markov) matrix

with autocorrelation parameter ρ is estimated by ρ̂, and Φ̂ formed. Then by obtaining the

factorization Φ̂ = PP ′, and premultiplying

Py = PX β + Pε

y∗ = X∗ β + ε∗ .
(C.1)

Now, ε∗ ∼ N (0, σ2In) and the data is analyzed according to the magnitude multiple regres-

sion model.

C.2 Complex Model

As in the magnitude regression model, in the multiple regression complex model, the ob-

servation error covariance matrix may not be the identity matrix. Again we can estimate Φ

with Φ̂, prewhiten, then repeat the analysis. For example, an AR(1) temporal autocorre-

lation (Markov) matrix with autocorrelation parameter ρR for the real part and ρI for the

imaginary part are estimated by ρ̂R and ρ̂R, their average taken to obtain ρ̂ and Φ̂ formed.

Then again by obtaining the factorization Φ̂ = PP ′, and premultiplying


 PyR

PyI


 =


 PX 0

0 PX





 β cos θ

β sin θ


 +


 PηR

PηI





 yR∗

yI∗


 =


 X∗ 0

0 X∗





 β cos θ

β sin θ


 +


 ηR∗

ηI∗




(C.2)

Now, η∗ = (ηR∗, ηI∗)
′ ∼ N (0,Σ ⊗ In) and the data is analyzed according to the complex

multiple regression model.
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