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Abstract

In MRI and fMRI, images or voxel measurements are complex valued or bivariate

at each time point. Recently Rowe and Logan (2004) introduced an fMRI magnitude

activation model that utilized both the real and imaginary data in each voxel. This

model, following traditional beliefs, specified that the phase time courses were fixed

unknown quantities which may be estimated voxel-by-voxel. Subsequently, Rowe and

Logan (2005) generalized the model to have no restrictions on the phase time courses.

They showed that this unrestricted phase model was mathematically equivalent to the

usual magnitude-only data model including regression coefficients and voxel activation

statistic but philosophically different due to its derivation from complex data. Recent

findings by Hoogenrad (1998) and Menon (2002) indicate that the voxel phase time

course may exhibit task related changes. In this paper, a general complex fMRI acti-

vation model is introduced that describes both the magnitude and phase in complex

data which can be used to specifically characterize task related changes in both. Hy-

potheses regarding task related magnitude and/or phase changes are evaluated using

derived activation statistics. It was found that the the Rowe-Logan complex constant
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phase model strongly biases against voxels with task related phase changes and that

the the current very general complex linear phase model can be cast to address several

different hypotheses sensitive to different magnitude/phase changes.

1 Introduction

It is well known that in magnetic resonance imaging (MRI) and functional magnetic res-

onance imaging (fMRI), images or voxel measurements are complex valued or bivariate due

to phase imperfections and thus in fMRI, voxel time course measurements appear in both

the real and imaginary channels [2, 6, 10]. An example of a voxels’ complex valued time

course with assumed magnitude task related changes and a constant phase is presented in

Fig. 1 where the length of the vector from the origin to the point in real-imaginary space is

the magnitude and the angle the vector makes with the real axis is the phase. In fMRI, the

real and imaginary components are the quantities that are measured with observation error.

In for example a block design finger tapping experiment, the vector described by the arrow

in Fig. 1 appears to “jitter” around in a lower vector length state during the control task

then the length of this vector increases and the vector appears to “jitter” around in a higher

vector length state. Any apparent “jitter” in the phase would be purely from measurement

error in the real and imaginary components of the vector. In fMRI, complex valued voxel

time courses are generally converted to magnitude and phase time courses then task related

magnitude-only data activation determined with the phase voxel time course discarded [1, 3].

The original complex data are unrecoverable after discarding the phase and the magnitude-

only operation is nonunique. Other attempts have been made to avoid complex voxel time

courses such as phasing them into the real channel [2].

Rowe and Logan (2004) introduced a general complex fMRI magnitude activation model

in which multiple regressors were allowed using the standard general linear statistical model,

hypothesis tests were formulated in terms of contrasts, and the phase was directly modeled as

a fixed unknown quantity which may be estimated voxel by voxel [16]. Further, a large sample

chi-square distributed statistic was presented. In Rowe and Logan (2005) the complex model

was generalized to have an unrestricted phase time course [17]. They showed that this model
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Figure 1: Complex valued voxel time course.
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was mathematically equivalent to the usual magnitude-only data model in terms of regression

coefficients and voxel activation statistic but philosophically different due to its derivation

from complex data. The magnitude-only or equivalently complex unrestricted phase data

models only utilize information in the magnitude through the exact Ricean distribution or

through the large SNR normal distribution approximation [5, 13].

However, recently Hoogenrad (1998) and Menon (2002) presented evidence to suggest

that the voxel phase angle time courses may not be exactly constant over time but may

also exhibit task related phase changes in voxels with “large” vessels [7, 11]. In this paper,

a general complex fMRI activation model is introduced that describes both the magnitude

and phase which can be used to specifically model and test for task related changes in

the magnitude, the phase, or both the magnitude and phase. Thus in principle activation

can be determined from voxels with “small” vessels such as those in the capillary bed of

parenchymal tissue having solely magnitude changes and not voxels with “large” vessels

having task related changes in both the magnitude and phase. This implies that the phase

may contain information about the brain that is not present in the magnitude of the response.
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The situation of the vector valued voxel observation residing in the two magnitude length

states is depicted in Fig. 2a while the situation of the two vector states that involve a

lengthening and rotation is depicted in Fig. 2b.

The activation model from magnitude-only data is sensitive to voxels that have task

related changes in the magnitude regardless of whether there are changes of any kind in

the phase, while magnitude activation from complex data specifically describes and dictates

whether or not we wish to include voxels that have task related phase changes. Recent

work by Hoogenrad (1998) and Menon (2002) indicates that there can be task related phase

changes, especially for voxels with “larger” venous fractions. Menon sought to account for

changes in the observed magnitude that could be accounted for by changes in the phase by

including voxel phase values as a random independent regressor variable in a least squares

model [7, 11].

Figure 2: Task related magnitude/phase changes.

(a) Magnitude-alone change (b) Magnitude and phase change

In fMRI we seek voxels with small vessels in parenchymal tissue having random orienta-

tions whose phase contributions are small in aggregate. Thus, in principle, the phase angle

contains information about the vasculature in the vicinity of the voxel. It is this information

that is sought to model and utilize. A generalization of the Rowe-Logan (2004,2005) com-

plex activation models is developed where the phase angle can be described with a linear
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model where task related changes in the phase can be quantified. With this model, sev-

eral pairs of hypotheses can be tested including determining voxels that exhibit task related

magnitude-alone changes, phase-alone changes, along with task related magnitude and/or

phase changes. Task related magnitude and/or phase activation maps can be generated from

complex valued voxel time courses and an appropriate threshold determined [9].

Results of the proposed complex linear phase model with five different hypothesis pairs

are compared to a complex unrestricted phase or strict magnitude-only data model, a phase-

only data model, and the Rowe-Logan complex constant phase data model in terms of

thresholded activation maps for a real dataset then activation power for simulated data.

The simulations are performed with several magnitude contrast-to-noise ratios (CNRs) and

task related phase changes (TRPC) for two different signal-to-noise ratios (SNRs).

2 Model

As previously noted, in MRI/fMRI due to random noise, phase imperfections, and possi-

ble biophysical processes that produce phase signal variation, we obtain a complex valued

measured object that consists of a true complex valued object plus complex valued noise.

Neglecting the voxel location and focusing on an individual voxel, the complex valued

image yt measured over time t can be described with a nonlinear multiple regression model

that includes both a temporally varying magnitude ρt and phase θt given by

yt = [ρt cos θt + ηRt] + i[ρt sin θt + ηIt]

ρt = x′tβ = β0 + β1x1t + · · · + βq1xq1t

θt = u′tγ = γ0 + γ1u1t + · · · + γq2uq2t, t = 1, . . . , n (2.1)

where (ηRt, ηIt)
′ ∼ N (0,Σ), x′t is the tth row of a design matrix X for the magnitude, u′t is

the tth row of a design matrix U for the phase, and Σ = σ2I2 while β and γ are magnitude

and phase regression coefficient vectors respectively. Note that a separate design matrix for

the phase has been incorporated but they can be the same. If γj = 0 for j = 1, . . . , q2 then

this becomes the Rowe-Logan constant phase model. The complex valued observation yt can
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be represented at time point t as a 2 × 1 vector instead of as a complex number

 yRt

yIt


 =


 ρt cos θt

ρt sin θt


 +


 ηRt

ηIt


 , t = 1, . . . , n .

The distributional specification is on the real and imaginary parts of the voxel signal and not

on the magnitude or length of a vector. The phase signal in Eq. 2.1 is a temporally varying

quantity, which is described with a general linear model and estimated voxel by voxel.

The Rowe-Logan complex fMRI activation models can be written more generally as

y =


 A1 0

0 A2





 X 0

0 X





 β

β


 + η

2n × 1 2n× 2n 2n × 2(q1 + 1) 2(q1 + 1) × 1 2n× 1

(2.2)

where the observed vector of data y = (y′R, y
′
I)

′ is the vector of observed real values stacked on

the vector of observed imaginary values and the vector of errors η = (η′R, η
′
I)

′ ∼ N (0,Σ⊗Φ)

is similarly defined. Here we specify that Σ = σ2I2 and Φ = In. Further, A1 and A2 are

square diagonal matrices with tth diagonal element cos θt and sin θt, respectively.

3 Activation

With this model, there are four hypotheses that can readily be seen as presented in Table 1.

The parameters are estimated under each of the hypotheses so that pairs of hypotheses can

be used in a generalized likelihood ratio test. The existing hypotheses of magnitude-only data

activation and magnitude activation from complex data with constant phase are supported

within this framework. This framework allows for additional hypotheses regarding task

related activation in the magnitude and/or phase in complex data. As previously noted,

voxels with task related magnitude and phase changes or activation are potentially ones that

contain large vessels and not those that we seek in parenchymal tissue with small vessels.

Denote the maximum likelihood estimators under the alternative hypothesis using hats

and those under the null hypothesis using tildes. Then the generalized likelihood ratio

statistic for this task related magnitude and/or phase complex fMRI activation model is

−2 log λ = 2n log

(
σ̃2

σ̂2

)
. (3.1)
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Ha : Cβ 6= 0, Dγ 6= 0

Hb : Cβ = 0, Dγ 6= 0

Hc : Cβ 6= 0, Dγ = 0

Hd : Cβ = 0, Dγ = 0

Table 1: Some possible hypotheses for testing.

This statistic has an asymptotic χ2
r distribution where r is the difference in the number

of constraints between the alternative and null hypotheses. Denoting r1 and r2 as the full

row ranks of C and D respectively, the degrees of freedom is either r1, r2, or r1 + r2. For

example, consider a model with a magnitude design matrix with three columns, the first

being ones, the second being counting numbers, and the last being a stimulus or task related

reference function along with a phase design matrix that is identical to the magnitude one.

The magnitude and phase regression coefficients β0 and γ0 represent intercepts; β1 and γ1

representing a linear drift over time; while β2 and γ2 represent task related effects. Then for

example, in hypothesis Hd, the linear coefficient constraints of Hd : β2 = 0, γ2 = 0 can be

described by C = (0, 0, 1) and D = (0, 0, 1) so that the null hypothesis is Hd : β2 = 0, γ2 = 0.

It should be noted that the Rowe-Logan (2004) complex constant phase model is equivalent

to the hypothesis test of Hd vs Hc with D = (0, Iq2) or Hb vs Ha with U = (1, ..., 1)′ and

D = 1 while the complex unrestricted phase model is equivalent to a hypothesis test of Hb

vs Ha with U = In and D = In.

4 Real fMRI Data

A bilateral sequential finger tapping experiment was performed in a block design with 16s

off followed by eight epochs of 16s on and 16s off. Scanning was performed using a 1.5T

GE Signa in which 5 axial slices of size 96× 96 were acquired with a full k-space single shot

gradient echo pulse sequence having a FA = 90◦ and a TE = 47ms. In image reconstruction,

the acquired data was zero filled to 128×128. After Fourier image reconstruction, each voxel

has dimensions in mm of 1.5625 × 1.5625 × 5. Observations were taken every TR= 1000ms
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Figure 3: Thresholded 5% FDR χ2-statistic activation and overlap maps.
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(a) Unrestricted Phase
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(b) Phase-only
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(c) Constant Phase
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(d) Overlap map UP & CP
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(e) Overlap map UP & PO
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(f) Overlap map CP & PO

so that there are 272 in each voxel. Data from a single axial slice through the sensorimotor

cortex was selected for analysis. Pre-processing included the removal of the first three points

to omit magnetic field equalization effects followed by the use of an ideal 0/1 frequency filter

[4, 12] to remove respiration and low frequency physiological noise. Where necessary, the

phase time courses were unwrapped for jumps greater than π between successive observations.

In Fig. 3a-c are 5% FDR thresholded χ2-statistic maps with real fMRI data for (a) the

complex unrestricted phase (UP) or usual magnitude-only data model; (b) and a phase-only

(PO) data model (activation from phase-only data assuming normality); (c) the Rowe-Logan

complex constant phase (CP) activation model; along with overlap maps in (d)-(f) zoomed
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Figure 4: Thresholded 5% FWE χ2-statistic activation and overlap maps.
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(a) Unrestricted Phase
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(b) Phase-only
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(c) Constant Phase
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(d) Overlap map UP & CP
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(e) Overlap map UP & PO
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(f) Overlap map CP & PO

in to a central 64 × 64 section for (d) the models in (a) and (b); (e) the models in (a) and

(c); and (f) the models in (b) and (c). Additionally, the same χ2-statistic and overlap maps

are presented in Fig. 4a-g except a 5% Bonferroni FWE thresholded is applied. In Fig. 3d-f

and Fig. 4d-f, voxels that were above threshold for the UP model are colored red, for the

CP model colored orange, for the UP & CP models colored yellow, for the PO model are

colored light blue, for the UP & PO models colored pink, for the CP & PO models colored

dark blue.

It can be seen from the FDR and FWE activation maps in Figs. 3 and 4 that the

complex unrestricted phase model declares many voxels as active that have statistically
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significant TRPC and that the Rowe-Logan complex activation model with a constant phase

biases against voxels with TRPC as seen by fewer voxels colored dark blue than pink. This

phenomenon is more prominent for a Bonferroni threshold.

For the same data, the χ2 activation maps from the five hypothesis pairs from the current

complex linear phase (LP) model are applied and presented in Fig. 5a-e with a colorbar to

the right of Fig. 5c. Different hypothesis pairs of the current complex linear TRPC model

are sensitive to different things. The properties of this model are pictorially presented in

Figs. 5 and 6. It can be seen that the hypothesis test pair Hd vs Hc in Fig. 5c and the pairHb

vs Ha in Fig. 5e are very similar to the CP activation map. This similarity is because in the

null hypotheses is no task related magnitude changes and in the alternative hypotheses are

unrestricted task related magnitude changes. Further, the test pairs Hd vs Hb and Hc vs Ha

are very similar to the UP activation map. This similarity is because in the null hypotheses is

no task related phase changes and in the alternative hypotheses are unrestricted task related

phase changes. In addition, the pair Hd vs Ha appears to be a combined UP & PO activation

map because the null hypotheses is no task related magnitude and/or phase changes and in

the alternative hypotheses are unrestricted task related magnitude and/or phase changes. In

Fig. 5f is a two sided Bonferroni FWE corrected activation map for the PO model in which it

can be noted that the activations in the sensorimotor area are positive (yellow) while others

are negative (light blue) with a colorbar to the right. Perhaps one sided tests involving the

phase are more appropriate.

In Fig. 6a-f are maps of overlapping voxels zoomed in for a central 64×64 portion that are

above a 5% Bonferroni FWE threshold for the UP model, the PO model, and individually

each of the maps given in Fig. 5a-e and Fig. 4a-c.

In Fig. 6 red indicates voxels that are above threshold only for the UP model; light blue

indicates voxels that were above threshold only for the PO model; orange indicates voxels

that are above threshold only for the appropriate complex model; light green indicates voxels

that are above threshold voxels for all three models, the UP, PO, and the appropriate complex

model; yellow indicates voxels that are above the threshold for both the UP and appropriate

complex model; dark blue indicates voxels that are above threshold for both the PO and

appropriate complex models; pink indicates voxels that are above the threshold for both the
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Figure 5: Thresholded 5% FWE χ2-statistic activation maps.
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(a) Hd:=,= vs Ha: 6=,6=
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(b) Hd:=,= vs Hb:=, 6=
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(c) Hd:=,= vs Hc: 6=,=
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(d) Hc: 6=,= vs Ha: 6=,6=
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(e) Hb:=, 6= vs Ha: 6=,6=
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(f) PO

UP and PO models; and voxels that were not above threshold for any of the three models

retained their anatomical grey scale value.

It can be seen that the overlapping voxel maps from the UP model, the PO model, and

LP hypothesis test pairs Hd vs Hc in Fig. 6c and Hb vs Ha in Fig. 6e are very similar to the

UP, PO, and CP overlap map in Fig. 6; the overlapping voxel maps from the UP model, the

PO model, and the LP hypothesis test pairs Hd vs Hb and Hc vs Ha are very similar to the

PO activation map; while the UP model, the PO model, and pair Hd vs Ha appears to be a

combined UP & PO overlap map.
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Figure 6: Thresholded 5% FWE overlap maps.
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(b) UP, PO, & Hd vs Hb
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(c) UP, PO, & Hd vs Hc
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(f) UP, PO, & CP

5 Simulated fMRI Data

Data are generated to simulate voxel activation from a block design fMRI experiment

similar to that of Rowe and Logan (2004) except here, there are six areas of activation that

are 5 × 5. The block design consisted of 16s off followed by eight epochs of 16s on and

16s off with an observation interval of one second or a TR= 1000ms. To mimic real data

that requires magnetic field stabilization, the first three observations were omitted. The

simulation consisted of n = 269 points where the true activation structure is known to be

within the regions of interest (ROIs) so that the models can be evaluated.
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Simulated fMRI data is constructed according to the previously described complex time

course multiple regression model with a magnitude design matrix X and a phase design

matrix U . The magnitude design matrix is specified to have three columns, the first a

column of ones for intercept, the second a column of counting numbers (centered about the

mean time) for a linear time trend, and the third a square wave reference function related

to a block experimental design. For simplicity, the phase design matrix is taken to be the

same as the magnitude design matrix. This model dictates that at time t,

yt = [(β0 + β1t+ β2x2t) cos(γ0 + γ1t+ γ2x2t) + ηRt]

+ i[(β0 + β1t+ β2x2t) sin(γ0 + γ1t+ γ2x2t) + ηIt], (5.1)

where ηRt and ηIt are i.i.d. N(0,σ2).

In this simulation study, the intercept and observation error standard deviation for all

voxels was selected to be β1 = 0.00001, and σ = 0.04909 which are values taken from a

“highly active” voxel [16]. Therefore since the variance is held fixed, the SNR within a square

64 × 64 region similar to the the brain region in the real data is parameterized by varying

β0 so that the ratio SNR= β0/σ takes on values 5.0 and 30, where 30 is approximately the

value of SNR found in “highly active” voxels, and smaller values represent decreased SNR.

The coefficient for the reference function β2 within the ROIs has a value determined by a

contrast-to-noise ratio (CNR=β2/σ).

For the simulation, the phase was assigned to follow a linear model θt = γ0 + γ1t+ γ2x2t

or have a task related phase change (TRPC) γ2. In all voxels γ0 = π/6, γ1 = 0.00001

and for all voxels outside the four ROIs γ2 = 0. In the five ROIs lightened in Fig. 7,

the (CNR,TRPC) values in order for numerically increasing ROIs (1/4, 0), (1/2, π/180),

(1/4, π/180), (1/2, π/36), (1/4, π/36), and (0, π/180). The TRPC of π/36 is consistent with

previous “large” vessel results [11]. Simulated data as just described are generated 1000

times.
In Fig. 8a-c are the 5% Bonferroni FWE detection power maps or percent of the time

that the given voxel was above the threshold with simulated data at an SNR = 30 for the

(a) complex UP (usual magnitude-only data) model, (b) PO model, (c) the Rowe-Logan

complex CP activation model, (d)-(h) the current complex linear regression modeled TRPC

activation under five different hypothesis pairs with simulated data at a SNR = 30. The

same power maps are presented in Fig. 9 except with a SNR = 5.
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Figure 7: Anatomical with ROIs.
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From Figs. 8 and 9 it can be seen that unrestricted phase (magnitude-only data) model

detects task related changes in the magnitude regardless of whether or not there is TRPC but

is decreased for decreased CNR and the phase-only data model detects task related changes

in the phase regardless of whether or not there is task related magnitude changes but is

decreased for the lower TRPC value for the lower SNR. The Rowe-Logan complex activation

model with a constant phase exhibits the same power to detect task related magnitude

changes when no TRPC is present. The complex constant phase model exhibits lower power

when TRPC is present or biases against voxels with TRPC when the SNR is high. This

appears to be the reason why in the real data there were voxels that were above the Bonferroni

FWE threshold for the unrestricted phase model but not for the Rowe-Logan constant phase

model because of its bias against voxels that demonstrate TRPC which are potentially ones

with large vessels. It appears to focus on voxels with only task related changes in the

magnitude and not those that also demonstrate TRPC unless the CNR is very high such

as those in parenchymal tissue. The current complex linear TRPC model was implemented

with five hypothesis pairs. The hypothesis pair Hd vs Ha detects task related activation

either in the magnitude, the phase or both but has low power regardless of SNR for the low
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Figure 8: χ2-statistic 5% FWE detection power maps SNR=30.
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Figure 9: χ2-statistic 5% FWE detection power maps SNR=5.
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(CNR,TRPC) combination and low phase activation combination; Hd vs Hb detects task

related activation in the phase regardless of whether or not there is task related changes

in the magnitude but loses its ability to detect phase activation at the lower SNR; Hd vs

Hc detects task related activation in the magnitude strongly biasing against voxels with

TRPC when the SNR is high much like the constant phase model; Hc vs Ha detects task

related activation in the phase regardless of whether or not there is task related changes in

the magnitude but loses its ability to detect phase activation at the lower SNR; Hb vs Ha

detects task related activation in the magnitude regardless of whether the phase has TRPC

and regardless of SNR.

6 Conclusions

A generalization of the Rowe-Logan complex activation model was developed that specifi-

cally allows for modeling task related changes in both the magnitude and phase. Hypotheses

regarding task related magnitude and phase changes are evaluated using derived activation

statistics. Activation maps were generated on real data and activation power maps on sim-

ulated data for the unrestricted phase or magnitude-only data model, a phase-only data

model, the Rowe-Logan constant phase model, and five hypothesis pairs of a newly intro-

duced linear phase model. It was found that the magnitude-only data model declares voxels

as active regardless of any phase changes, phase-only data model declares voxels as active

regardless of any magnitude changes, and the five complex linear phase models were sensitive

to different (CNR,TRPC) combinations. The current complex linear phase model is very

general and includes all previously introduced activation models as special cases. Perhaps

this model will reach its full potential with other experimental data acquisition methods

such as flow tagging or steady state free precession.
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A Generalized Likelihood Ratio Test

Upon converting from rectangular coordinates (yRt, yIt) in Eq. 2.1 to magnitude and phase

polar coordinates (rt, φt) the observed data at time point t can be represented as a 2 × 1

vector instead of as a complex number


 rt cos φt

rt sinφt


 =


 ρt cos θt

ρt sin θt


 +


 ηRt

ηIt


 , t = 1, . . . , n

where rt and φt are the observed magnitude and phase at time t.

With the aforementioned distributional specifications, the joint distribution of the com-

plex or bivariate observation (yRt, yIt) at time t is

p(yRt, yIt|ρt, θt, σ
2) = (2πσ2)−

2
2 exp

{
−(yRt − ρt cos θt)

2 + (yIt − ρt sin θt)
2

2σ2

}
,

which upon making the transformation (yRt, yIt) = (rt cos φt, rt sin φt) from rectangular co-

ordinates to polar coordinates with Jacobian of the transformation J(yRt, yIt → rt, φt) = rt

and some algebra is

p(rt, φt|ρt, θt, σ
2) =

rt

2πσ2
exp

{
−r

2
t + ρ2

t − 2rtρt cos(φt − θt)

2σ2

}
.

Under appropriate restricted hypotheses, the Lagrange constraints ψ′(Cβ−0) and δ′(Dγ−0)

need to be added to the logarithm of the likelihood.

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood LL with respect to the parameters. With n temporal observations

the logarithm of the likelihood is

LL = −n log(2π) −
n∑

t=1

log rt − n log σ2 − 1

2σ2

n∑

t=1

[
r2
t + (x′tβ)2 − 2(x′tβ)rt cos(φt − u′tγ)

]

= −n log(2π) −
n∑

t=1

log rt − n log σ2 − 1

2σ2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] (A.1)

where the linear representations of ρt and θt have been used while r has tth element rt and

r∗ has tth element rt cos(φt − u′tγ) .

The likelihood ratio statistic is computed by maximizing the logarithm of the likelihood

LL with respect to the parameters in β, γ, and σ2 under the appropriate null and alternative
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hypotheses. Denote the maximized values under the null hypothesis by (β̃, γ̃, σ̃2) and those

under the alternative hypothesis as (β̂, γ̂, σ̂2). These maximized values are then substituted

into the likelihoods and the ratio taken.

Then the generalized likelihood ratio is

λ =
p(r, φ|β̃, γ̃, σ̃2,X,U)

p(r, φ|β̂, γ̂, σ̂2,X,U)
=

(σ̃2)
−2n/2

exp
{
−

[
(r −Xβ̃)′(r −Xβ̃) + 2(r − r̃∗)

′Xβ̃
]
/(2σ̃2)

}

(σ̂2)−2n/2 exp
{
−

[
(r −Xβ̂)′(r −Xβ̂) + 2(r − r̂∗)′Xβ̂

]
/(2σ̂2)

} ,(A.2)

and Eq. 3.1 for the GLRT follows.

B Hypotheses

With this model, there are four linear hypotheses that can readily be seen and combined

pairwise in several different ways to test distinct hypotheses. The parameters are estimated

under each of the hypotheses so that pairs of hypotheses can be used in a generalized like-

lihood ratio test. Let C and D be r1 × (q1 + 1) and r2 × (q2 + 1) matrices of full row rank

containing the linear hypothesis constraints in the following.

B.1 Ha : Cβ 6= 0, Dγ 6= 0

For hypothesis a of unrestricted magnitude and phase, the logarithm of the likelihood is

differentiated without any restrictions. Differentiation of the logarithm of the likelihood with

respect to the magnitude regression coefficients β proceeds as follows

∂LL

∂β
= − 1

2σ2

∂

∂β
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ]

= − 1

2σ2

∂

∂β
[−2X ′r − 2X ′Xβ + 2X ′(r − r∗)] .

By setting this derivative equal to zero, annoting the parameters with hats, and solving, we

get the MLE estimator under the unrestricted model given in Eq. B.3

Differentiation of the logarithm of the likelihood with respect to the phase regression
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coefficients γ proceeds as follows

∂LL

∂γ
= − 1

2σ2

∂

∂γ

n∑

t=1

[
r2
t + (x′tβ)2 − 2(x′tβ)rt cos(φt − u′tγ)

]

≈ 1

σ2

∂

∂γ

n∑

t=1

rt(x
′
tβ) [1 − (φt − u′tγ)/2]

=
1

σ2

∂

∂γ

n∑

t=1

[rt(x
′
tβ) − (φt∗ − z′tγ)/2]

=
1

σ2

∂

∂γ

[
r′Xβ − 1

2
(φ∗ − Zγ)′(φ∗ − Zγ)

]

=
1

σ2
[−2Z ′φ∗ + 2Z ′Zγ]

where φ̂∗ is an n × 1 vector with tth element φt∗ = φt

√
rtx′tβ, and Z is an n × (q2 + 1)

matrix with tth row z′t = u′t
√
rt(x

′
tβ). By setting this derivative equal to zero, annoting

the parameters with hats, and solving, we get the MLE estimator in Eq. B.3. Note that a

Taylor series approximation to the cosine was used. This approximation is robust to a mild

difference in its argument α = φt −u′tγ. For example, if α = π/12 radians or 15 degrees, the

exact cosine is 0.9659 while the approximation yields 0.9657. Results from previous literature

[11] find that the phase may deviate from its mean by as much as 5 degrees in voxels with

large vessels. Note that the same result is found by differentiating the cosine exactly and

approximating the resulting sinusoid,

∂

∂γ
cos(φt − u′tγ) = −ut sin(φt − u′tγ)

≈ −ut(φt − u′tγ) .

Differentiation of the logarithm of the likelihood with respect to the variance σ2 proceeds

as follows

∂LL

∂σ2
= −n

(
σ2

)−1 − 1

2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] (σ2)−2 .

By setting this derivative equal to zero, annoting the parameters with hats, and solving, we

get the MLE under the unrestricted model given in Eq. B.3.
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The maximum likelihood estimators under this hypothesis are given by

β̂ = (X ′X)−1X ′r̂∗,

γ̂ = (Ẑ ′Ẑ)−1Ẑ ′φ̂∗,

σ̂2 =
1

2n

[
(r −Xβ̂)′(r −Xβ̂) + 2(r − r̂∗)

′Xβ̂
]
, (B.3)

where r̂∗ is an n× 1 vector with tth element rt cos(φt −u′tγ̂), Ẑ is an n× (q2 +1) matrix with

tth row ẑ′t = u′t

√
rtx′tβ̂, φ̂∗ is an n × 1 vector with tth element φt

√
rtx′tβ̂, and r is an n × 1

vector of observed magnitudes. In deriving the MLE γ̂, an approximation was made for a

cosine term.

B.2 Hb : Cβ = 0, Dγ 6= 0

For hypothesis b of restricted magnitude but not phase, the logarithm of the likelihood is

differentiated with the added Lagrange restriction ψ′(Cβ − 0). Differentiation of the loga-

rithm of the likelihood that includes the Lagrange constraint with respect to the magnitude

regression coefficients β proceeds as follows

∂LL

∂β
=

∂

∂β

{
1

2σ2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] + ψ′(Cβ − 0)

}

= − 1

2σ2
[−2X ′r − 2X ′Xβ + 2X ′(r − r∗)] + C ′ψ

where the variables are as previously defined. By setting this derivative equal to zero,

annoting the parameters with breves, and solving, we get the MLE estimator in Eq. B.4

below.

Differentiation of the logarithm of the likelihood with respect to the phase regression
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coefficients γ proceeds as follows

∂LL

∂γ
= − ∂

∂γ

{
1

2σ2

n∑

t=1

[
r2
t + (x′tβ)2 − 2(x′tβ)rt cos(φt − u′tγ)

]
}

≈ ∂

∂γ

{
1

2σ2

n∑

t=1

rt(x
′
tβ) [1 − (φt − u′tγ)/2]

}

=
∂

∂γ

{
1

2σ2

n∑

t=1

[rt(x
′
tβ)− (φt∗ − z′tγ)/2]

}

=
∂

∂γ

{
1

2σ2

[
r′Xβ − 1

2
(φ∗ − Zγ)′(φ∗ − Zγ)

]}

=
1

2σ2
[−2Z ′φ∗ + 2Z ′Zγ]

where the variables are as previously defined. By setting this derivative equal to zero,

annoting the parameters with breves, and solving, we get the MLE estimator in Eq. B.4

below.

Differentiation of the logarithm of the likelihood with respect to the variance σ2 proceeds

as follows

∂LL

∂σ2
= −n

(
σ2

)−1 − 1

2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] (σ2)−2 .

By setting this derivative equal to zero, annoting the parameters with breves, and solving,

we get the MLE under the unrestricted model given in Eq. B.4 below.

The maximum likelihood estimators under this hypothesis are given by

β̆ = Ψ(X ′X)−1X ′r̆∗,

γ̆ = (Z̆ ′Z̆)−1Z̃ ′φ̆∗,

σ̆2 =
1

2n

[
(r −Xβ̆)′(r −Xβ̆) + 2(r − r̆∗)

′Xβ̆
]
,

Ψ = Iq1+1 − (X ′X)−1C ′[C(X ′X)−1C ′]−1C/,

where r̆∗ is an n× 1 vector with tth element r̆t cos(φt −u′tγ̆), Z̆ is an n× (q2 +1) matrix with

tth row z̆′t = u′t

√
rtx′tβ̆, φ̆∗ is an n×1 vector with tth element φt

√
rtx′tβ̆, and r is as above. In

computing maximum likelihood estimates, an iterative maximization algorithm [8, 14, 15] is

used.
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B.3 Hc : Cβ 6= 0, Dγ = 0

For hypothesis c of restricted phase but not magnitude, the logarithm of the likelihood

is differentiated with the added Lagrange restrictions δ′(Dγ − 0). Differentiation of the

logarithm of the likelihood that includes the Lagrange constraints with respect to the phase

regression coefficients β proceeds as follows

∂LL

∂β
=

∂

∂β

{
1

2σ2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] + δ′(Dγ − 0)

}

= − 1

2σ2
[−2X ′r − 2X ′Xβ + 2X ′(r − r∗)]

where the variables are as previously defined. By setting this derivative equal to zero,

annoting the parameters with bars, and solving, we get the MLE estimator in Eq. B.4

below.

Differentiation of the logarithm of the likelihood that includes the Lagrange constraints

with respect to the phase regression coefficients γ proceeds as follows

∂LL

∂γ
= − ∂

∂γ

{
1

2σ2

n∑

t=1

[
r2
t + (x′tβ)2 − 2(x′tβ)rt cos(φt − u′tγ)

]
+ δ′(Dγ − 0)

}

≈ ∂

∂γ

{
1

2σ2

n∑

t=1

rt(x
′
tβ) [1 − (φt − u′tγ)/2] + δ′Dγ

}

=
∂

∂γ

{
1

2σ2

n∑

t=1

[rt(x
′
tβ)− (φt∗ − z′tγ)/2] + δ′Dγ

}

=
∂

∂γ

{
1

2σ2

[
r′Xβ − 1

2
(φ∗ − Zγ)′(φ∗ − Zγ)

]
+ δ′Dγ

}

=
1

2σ2
[−2Z ′φ∗ + 2Z ′Zγ] +D′δ

where the variables are as previously defined. By setting this derivative equal to zero,

annoting the parameters with bars, and solving, we get the MLE estimator in Eq. B.4

below.

Differentiation of the logarithm of the likelihood with respect to the variance σ2 proceeds

as follows

∂LL

∂σ2
= −n

(
σ2

)−1 − 1

2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] (σ2)−2 .
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By setting this derivative equal to zero, annoting the parameters with bars, and solving, we

get the MLE under the unrestricted model given in Eq. B.4 below.

The maximum likelihood estimators under this hypothesis are given by

β̄ = (X ′X)−1X ′r̄∗,

γ̄ = Ω(Z̃ ′Z̃)−1Z̄ ′φ̄∗,

σ̄2 =
1

2n

[
(r −Xβ̄)′(r −Xβ̄) + 2(r − r̄∗)

′Xβ̄
]
,

Ω = Iq2+1 − (Z̄ ′Z̄)−1D′[D(Z̄ ′Z̄)−1D′]−1D (B.4)

where r̄∗ is an n × 1 vector with tth element r̄t cos(φt − u′tγ̄), Z̄ is an n × (q2 + 1) matrix

with tth row z̄′t = u′t

√
rtx′tβ̃, φ̄∗ is an n × 1 vector with tth element φt

√
rtx′tβ̄, and r is as

above. In computing maximum likelihood estimates, an iterative maximization algorithm is

used [8, 14, 15].

B.4 Hd : Cβ = 0, Dγ = 0

For hypothesis d of linearly restricted magnitude and phase, the logarithm of the like-

lihood is differentiated with the added Lagrange restrictions ψ′(Cβ − 0) and δ′(Dγ − 0).

Differentiation of the logarithm of the likelihood that includes the Lagrange constraints with

respect to the magnitude regression coefficients β proceeds as follows

∂LL

∂β
=

∂

∂β

{
1

2σ2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] + ψ′(Cβ − 0) + δ′(Dγ − 0)

}

= − 1

2σ2
[−2X ′r − 2X ′Xβ + 2X ′(r − r∗)] + C ′ψ

where the variables are as previously defined. By setting this derivative equal to zero,

annoting the parameters with tildes, and solving, we get the MLE estimator in Eq. B.5.

Differentiation of the logarithm of the likelihood that includes the Lagrange constraints
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with respect to the phase regression coefficients γ proceeds as follows

∂LL

∂γ
= − ∂

∂γ

{
1

2σ2

n∑

t=1

[
r2
t + (x′tβ)2 − 2(x′tβ)rt cos(φt − u′tγ)

]
+ ψ′(Cβ − 0) + δ′(Dγ − 0)

}

≈ ∂

∂γ

{
1

2σ2

n∑

t=1

rt(x
′
tβ) [1 − (φt − u′tγ)/2] + δ′Dγ

}

=
∂

∂γ

{
1

2σ2

n∑

t=1

[rt(x
′
tβ) − (φt∗ − z′tγ)/2] + δ′Dγ

}

=
∂

∂γ

{
1

2σ2

[
r′Xβ − 1

2
(φ∗ − Zγ)′(φ∗ − Zγ)

]
+ δ′Dγ

}

=
1

2σ2
[−2Z ′φ∗ + 2Z ′Zγ] +D′δ

where the variables are as previously defined. By setting this derivative equal to zero,

annoting the parameters with tildes, and solving, we get the MLE estimator in Eq. B.5.

Differentiation of the logarithm of the likelihood with respect to the variance σ2 proceeds

as follows

∂LL

∂σ2
= −n

(
σ2

)−1 − 1

2
[(r −Xβ)′(r −Xβ) + 2(r − r∗)

′Xβ] (σ2)−2 .

By setting this derivative equal to zero, annoting the parameters with tildes, and solving,

we get the MLE’s under the unrestricted model given in Eq. B.5 below

The maximum likelihood estimators under this hypothesis are given by

β̃ = Ψ(X ′X)−1X ′r̃∗,

γ̃ = Ω(Z̃ ′Z̃)−1Z̃ ′φ̃∗,

σ̃2 =
1

2n

[
(r −Xβ̃)′(r −Xβ̃) + 2(r − r̃∗)

′Xβ̃
]
,

Ψ = Iq1+1 − (X ′X)−1C ′[C(X ′X)−1C ′]−1C

Ω = Iq2+1 − (Z̃ ′Z̃)−1D′[D(Z̃ ′Z̃)−1D′]−1D (B.5)

where r̃∗ is an n× 1 vector with tth element r̃t cos(φt −u′tγ̃), Z̃ is an n× (q2 +1) matrix with

tth row z̃′t = u′t

√
rtx

′
tβ̃, φ̃∗ is an n×1 vector with tth element φt

√
rtx

′
tβ̃, and r is as above. In

computing maximum likelihood estimates under both hypotheses, an iterative maximization

algorithm is used [8, 14, 15].
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