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Abstract

In functional magnetic resonance imaging (fMRI), a process of determining statistically significant brain
activation is commonly performed in terms of voxel time course measurements after image reconstruction.
The image reconstruction and statistical activation processes are treated separately. In this manuscript,
the relationship between complex-valued (Fourier) encoded k-space measurements and complex-valued image
measurements from (Fourier) reconstructed images is described. The voxel time-series measurements are
written in terms of spatio-temporal k-space measurements utilizing this spatial frequency k-space and image
relationship. Voxel fMRI activation can be determined in image space for example using the Rowe-Logan
complex-valued activation model [Rowe, D.B., and Logan, B.R. (2004). A complex way to compute fMRI
activation. Neurolmage, 23 (3):1078-1092] in terms of the original k-space measurements. Additionally, the
spatio-temporal covariance between reconstructed complex-valued voxel time series can be written in terms of
the spatio-temporal covariance between complex-valued k-space measurements. Knowledge of the relationship
between the spatio-temporal k-space measurements can be modeled in the more naturally acquired state rather
than in a transformed state. This allows for the partitioning of the covariance matrix between the k-space
measurements and hence voxel measurements into sources of covariation. Statistical associations between

individual voxels or regions of interest can be quantified utilizing unmodeled sources of covariation.

1 Introduction

In functional magnetic resonance imaging (fMRI), the processes of image reconstruction (Kumar, et al., 1975;
Haacke et al., 1999) and statistical activation (Bandettini et al., 1993; Friston et al., 1994) have been treated
separately. The determination of statistically significant brain activation is in terms of voxel measurements after
reconstruction. The relationship between the original k-space measurements and voxel measurements for each
image is described. A permutation matrix is utilized to reorder the voxel measurements and statistical functional

brain activation can be determined with complex-valued activation models (Nan and Nowak, 1999; Rowe and
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Logan, 2004,2005; Rowe, 2005a,b). A map of these activation statistics can then thresholded to determine

statistically significant activation while adjusting for multiple compariations (Logan and Rowe, 2004).

2 Methods

In fMRI, data generally consist of two-dimensional slices acquired from an echo-planar imaging (EPI) pulse
sequence. The p, x p, dimensional complex-valued spatial frequency measurement Sc of a slice consists of a
Dy X Dy dimensional matrix of true underlying noiseless complex-valued spatial frequencies Syc and a p, X p,

dimensional matrix of complex-valued measurement error F¢ that can be represented as

Sc = (Sor+iSor) + (Er+iEy) (2.1)

where 4 is the imaginary unit while Sogr, Sor, Fr and E are real and imaginary matrix valued parts of the true
spatial frequencies and measurement noise. Let Q¢ and Q¢y be p, X p; and p, x p, complex-valued Fourier

matrices such that
Qcy = Qry + @ Qpy and Qo = Qre + 1 Qp (2.2)

where (), and {1g, are real while {17, and €}, are imaginary matrix valued parts. Then, the p, X p, complex-

valued inverse Fourier transformation reconstructed image R¢ of S¢ can be written as

RC = Qcy * SC * ng
= Qcy(Sor +iSor)Q, + Qcy(Er +iEQL,
= Roc + N¢

where R has a true mean Roc and measurement error N¢o while “T” denotes transposition. If Q¢, is a Fourier
matrix, it is [Qcal;;, = (%) where £ =1 and w = exp[—i2n(j — 1)(k — 1)/p,] for the forward transformation
while k = 1/p,; and w = exp[+i27(j — 1)(k — 1)/p,] for the inverse transformation, where j, k = 1,...,p;. The
complex-valued matrices for reconstruction €2, and €1, need not be exactly Fourier matrices but may be Fourier
matrices that include adjustments for magnetic field inhomogeneities derieved from phase maps or reconstruction
matrices for other encoding procedures.

This inverse Fourier transformation image reconstruction process can be equivalently described as the pre-
multiplication of the complex-valued spatial frequencies in the form of a real-valued vector s by a real-valued

matrix representation () of the complex-valued Fourier matrices

r = Q * S
TR Qr —Qp SR (23)
= *
rI Qr Qg Sy

where the real-valued representation r that is of dimension 2p;p, x 1 of the complex-valued image has a true

mean and measurement error. The real-valued vector of spatial frequencies is formed by

5 = vec(Sh, ST)



where Sk and Sy denote the real and imaginary parts of S¢ and vec(-) denotes the vectorization operator that

stacks the columns of its matrix argument. In addition, the matrix elements of €2 are

Qr = [(Qr®Q%R) — (Qyr @ Q1) (2.4)

Qr = [(Qr@Q%1)+ (Qyr @ Qr)] (2.5)

where ® denotes the Kronecker product that multiplies every element of its first matrix argument by its entire
second matrix argument. If the mean and covariance of the spatial frequency measurement vector s that is of
dimension 2p;p, x 1 are sg and I', then the mean and covariance of the reconstructed voxel measurements r are
Qso and QTOT.

In fMRI, a series of the previously described slices are acquired. Denote the p, x p, random complex-valued
spatial frequency matrix at time ¢ as Scy = Socr + Ecy and define s, = vec(S%,, S7,), where Sg, and Sy, are the
real and imaginary parts of S¢y for time points t = 1, ..., n. Define the total number of voxels in the image, which
is the same as the number of complex-valued k-space measurements to be p = p,p,. This sequence of measured

tt" column contains the

spatial frequency vectors can be collected into a 2p x n matrix S = (s1, ..., $,) where the
p real k-space measurements stacked upon the p imaginary k-space measurements for time ¢. Having done this,
n reconstructed images can be formed by the 2p x n matrix R = QS where the t** column of R contains the p
real voxel measurements stacked upon the p imaginary voxel measurements for time ¢, t =1,....n.

The k-space measurements and the image voxel measurements can be stacked as s = vec(S) and r = vec(R).
Note that s and r and have been redefined from their previous definition. If the mean and covariance of the
2np x 1 vector of spatial frequency measurements s are sg and A, then the mean and covariance of the 2np x 1
vector of reconstructed voxel measurements r are (I, ®2)sg and (I, @ Q)A(I, @ Q7). For example, if the k-space
measurements were taken to be temporally independent, then T' = I,, ® T' and cov(r) = I, ® (Q['QT). Thus,
we have described the fMRI voxel measurements as a linear function of the fMRI k-space measurements. We
can alternatively organize the voxel measurements by stacking the first set of p columns of R upon the second
set of p columns of R” to form a matrix Y. Having done this, the j** column of the resulting data matrix Y’
of dimension 2n X p contains the n real voxel measurements stacked upon the n imaginary voxel measurements
for voxel j, 7 =1, ...,p. The voxel measurements Y can be described with the complex fMRI model (Rowe and
Logan, 2005) as

O\ X X
Yy - e U Bt I I O O AL (2.6)

SIXBI SpXﬂp ni Nip

where C; and S; are diagonal matrices with cosine and sine tems respectively. Different activation modeles
are found by different choices of the C' and S matrices. The complex constant phase model (Rowe and Logan,
2004) can be found with C; = I,, cos; and S; = I,, sin6; where j indexes the j'* voxel. The unrestricted phase
or magnitude only model can be found by by selecting the t'* element of C; and S; to be Cj; = cosfj; and

Sji = sinfj;, where 6}, is unique for each j and t. The complex model for both magnitude and phase (Rowe,



2005) can be found by choosing the phase 6;; = ul v where u; is the ¢'* row of a phase design matrix U and v
are phase regression coefficients.

This can be rearranged and written with y = vec(Y) as

YR1 ciX 0 0 B1 NR1
Yy 0 SiX B1 nn
= + (2.7)
YRp 0 CpX 0 6;0 TIRp
L Yip ] L 05X 1L Bp ] L Nip ]

where y = (y£1 JYE yﬁp, yITp)T is a vector containing the real and imaginary reconstructed voxel measurements
and n = (nky,nF, . nﬁp, nITp)T is a vector containing the real and imaginary errors of the reconstructed voxel
measurements. The model can simply be written as y = u + €. For example, with constant phase model, the
mean is p = (I2p @ X)[(cos 01,sin61) @ ], ..., (cosby, sinf,) @ BI]T .

The rearrangement of the voxel measurements from r to y is a linear transformation and can be achieved
through a permutation matrix P (described in Appendix A) to form y = Pr. In terms of the original k-space
measurements the voxel time courses are y = P(I, ® Q)vec(vec(Sky, SH), ..., vec(SE ., ST )). A permutation
matrix is a square matrix that can be obtained by permuting (rearranging) either the columns or rows of
an identity matrix (Harville, 1999). A permutation matrix is of full rank and therefore nonsingular and also
invertible. Having done this linear transformation, the mean and covariance of y are p = P(I, ® Q)so and
A = P(I, ® QA(IL, ® QT)PT. Since the matrices 2 and P that convert k-space measurements s to voxel

measurements y are known a priori, the expression y = P(I,, ® Q)s can be inverted to write s = (I, @ Q1) P~y

in terms of the parameters as

(31 cos 01
51 B1 sin 6y €1
= P Lo N (LeX) + (2.8)
Sn Known Bp cos b, €n
Bpsin b,

then the optimization for the regression coefficients () and phases () can be performed in k-spacesto yield the
same parameter estimates. Activations can then be computed from Rowe’s complex activation models.

Using ordinary least squares or a normal distributional specification on the errors, the voxel-wise regression
coefficients and phases can be determined to yield the same point estimators as in Logan and Rowe (2004).
The Rowe-Logan unconstrained alternative hypothesis estimators (with hats) for Hy: C # 0 along with the

constrained null hypothesis estimators (with tildes) for Hy: C8 = 0 in voxel j are

0; = Ltan! Ora (X X0, ] 6; = %tan™! [ By WX X0,

(Bh; (X' X)Br; —BT, (X' X)B1;)/2 (BQ\IJ(X/X)BR]'BITj\P(X/X)ﬁu)ﬂ] (2.9)
B; = prjcosb;+ fBrjsinb; B = [BRJ- cos 0; + [y, sin 0



where C'is an 7 x (¢+1) matrix of full row rank, ¥ = I, 11— (X' X)~1C’'[C(X'X) " C")71C, frj = (X' X) ' X'yg;,
and Blj = (X’X)"'X"yy;, while yr; and y;; are the n x 1 vectors of real and imaginary voxel observations.
The variances and covariances for example with a specification of uncorrelated temporal k-space measure-
ment vectors (s;) yields the covaraince matrix A = I,, ® QI'Q7 for the voxel measurements. Define the voxel
measurement covariance matrix to be ¥ = QI'Q?. Having estimated the voxel-wise regression coefficients and
phases, we can estimate the mean of the vector of voxel measurements y by fi (under the alternative hypothesis)
and the mean of the matrix of voxel measurements R by M = vec(P~'ji). Here vec(-) is the operator that is the

inverse operation of the vec(-) operator. The voxel covariance matrix is

s Y11 Yo (2.10)
51 Yoo
where the partitioned matrix elements are
Y1 o= QpIQ% — Lok — QplpQf + QTe0F (2.11)
Yo = QpI0QF —TLOT + QrT1,0% — QT2.0% (2.12)
Yoo = QT10F + QrTLOT + Q11205 + QrTanf . (2.13)

and T has been partitioned similar to ¥. The voxel covariance matrix ¥ can now be estimated by 3 = (R—
M)(R — M)T /n where

With the physically motivated specification of the same k-space covariance I'yyy within the real-imaginary
channels and k-space covariance between the real-imaginary channels I' g with the previous uncorrelated temporal

k-space measurements, the voxel covaraince matrix becomes

Sw
Y = wooss (2.14)
I i

where the equal within real and within imaginary channel covariances result from a skew-symmetric k-space

covariance specification (Fg = —TI'p) corresponding to a complex normal distribution and
Swo o= QrTwQh —TLOT — QpTpQf + QT OF (2.15)
Yp = QrTwQf —QTLOT — QrI'pQ%L — 4 Tw Ok . (2.16)

We can estimate the covariance matrices under the alternative hypothesis by

Sw = [(Rr— Mg)(Rr — Mg)" + (R; — M;)(R; — M;)T]/(2n) (2.17)

Sp = [(Rr— Mg)(Rr — Mp)" + (Rr — M;)(Rg — Mg)"]/(2n) . (2.18)
and under the null hypothesis similarly find

Sw = [(Rr— Mg)(Rr — Mg)" + (R; — M;)(R; — M;)*]/(2n) (2.19)

Y = [(Rr— Mg)(Rr— M)T + (R; — M;)(Rg — Mg)¥]/(2n) . (2.20)



It should be noted that the j** diagonal elements of Sw and Sy are equivalent to those given in Rowe and

Logan (2004)

_ X . A )
o 1 | yry — X[ cost; yrj — X3; cos 0; 2.21)
i = 9, S S .
n i yr; — X B; sin0; 1L yr; — X sinb;
_ ) e i i
~2 i yrj — XBj cos0; Yr; — X3 cos 0; (2.22)
i = - - . )
2n I yrj — XB; sin6; 1L yr; — X B; sinb;

Additionally, voxel-wise activations will be the same as in Rowe and Logan (2004). Then the generalized

likelihood ratio statistic for the complex fMRI activation model is
—2log\; =2nlog (67/67) . (2.23)

This statistic has a large sample x? distribution. Note that when 7 = 1, two-sided testing can be done using the

signed likelihood ratio test given by

z; = Sign(Cf3;)/—2log \;, (2.24)

which has a large sample standard normal distribution under the null hypothesis. Alternatively with r = 1, a

Wald type statistic can be formed

wj = Cﬁj/\/ff?C(XTX)*lC’, (2.25)

which also has a large sample standard normal distribution under the null hypothesis. A map of these activation
statistics is then thresholded while adjusting for multiple compariations (Logan and Rowe, 2004). However,
correlations between voxels are characterized in terms of spatio-temporal correlations between k-space measure-
ments.

The spatio-temporal covariances between the complex-valued voxel measurements A can now be described in
terms of the spatio-temporal covariances between the complex-valued k-space measurements A. The covariance
of the complex-valued k-space measurements may be due to independent sources such as spatio-temporal indepen-
dent noise Ay, correlated nonphysiologic noise Ay such as measurement autocorrelation along the EPI trajectory
or correlation induced by k-space corrections, and true physiologic processes Ap so that A = Ap+Ax+Aj. One
could apply temporal filtering or pre-whitening to the k-space measurements. The voxel covariance and hence
correlation can also be decomposed into the corresponding covariance components, A = Ap+An+A;. Statements
about voxel associations due to physiological processes could be made using only Ap = P(I,,@Q)Ap(L,@0T)PT.

After fitting the fMRI model to the voxel image time courses, we can transform the residual images into spatial
frequencies (k-space) and estimate the correlation due to non-physiologic sources Ay. The spatial frequances
can then be temporally pre-whitened, transformed back into residual images then the noise variation Xy re-

estimated.
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Figure 1: Complex-valued 2D forward Fourier transform

3 Example

In order to demonstrate the previously described methodology a simulated example is presented. An 8 X 8
image R¢ as displayed in Figure 1 with real part Rp given in Figure 1c and imaginary part R; in Figure 1d is
utilized to mimic a magnetic resonance echo planar imaging experiment. The spatial frequency (k-space) values
Sc associated with this complex-valued image can be found by pre-multiplying the complex-valued image R¢
with real image part Rp in Figure 1c and imaginary image part R; in Figure 1d by the complex-valued forward
Fourier matrix Qcy presented as an image with real part Q Ry in Figure 1a and imaginary part Q 1y in Figure 1b
then post-multiplying the result by the transpose of the symmetric forward Fourier matrix Q¢ presented as an
image with real part Qp, in Figure le and imaginary part Qr, in Figure 1f. The spatial frequency (k-space)
values S¢ for the complex-valued image with real image part Rr in Figure 1c and imaginary image part R; in
Figure 1d are presented as an image with real part Sg given in Figure 1g and imaginary part Sy in Figure 1h.
Note that the image does not have to be square.

The complex-valued image Rc with real image part Rp in Figure 1c and imaginary image part R in Figure 1d
can be recovered as seen in Figure 2. The process of recovering the original complex-valued image R¢ is to pre-

multiply the complex-valued spatial frequency (k-space) values S¢ with real image part Sk in Figure 2¢ and



a) Inverse matrix Q, g c) Spatial frequenciesSg e) Inverse matrix Q;p g) Image real Rp
Yy

b) Inverse matrix €, d) Spatial frequencies Sy f) Inverse matrix Q7 h) Image imaginary R;
y

Figure 2: Complex-valued 2D inverse Fourier transform

imaginary image part St in Figure 2d by the complex-valued inverse Fourier matrix (¢, presented as an image
with real part Qg, in Figure 2a and imaginary part €7, in Figure 2b then post-multiply the result by the
transpose of the symmetric inverse Fourier matrix (¢, presented as an image with real part Qg, in Figure 2e
and imaginary part {27, in Figure 2f. The recovered complex-valued image R¢ is presented with real part Rp

in Figure 2g and imaginary part R; in Figure 2h.

=R

(a) Spatial frequencies ST = (S%, ST) (b) Partitioned spatial frequencies ST

Figure 3: Matrix to vector spatial frequency (k-space) values.

The inverse Fourier transform fMRI reconstruction process can be equivalently described as follows with a



real-valued representation often called an isomorphism in mathematics. To use this representation, join the
transpose of the real and imaginary parts of the spatial frequency (k-space) values given in Figure 2¢ and
Figure 2d respectively that are of dimension p, X p, into a single real-valued matrix ST = (SIT%, ST that is of
dimension p, X 2p, as in Figure 3a. Then stack the columns of ST as shown partitioned in Figure 3b into a
single vector s = vec(S%, ST) as presented in Figure 4b. This gives us a real-valued vector representation of the

matrix of spatial frequency (k-space) values.

160 : 16 16
321 1 32 32
481 ] as as
64 sa sa
8o ] 80 80

9% 1
=YS =YS

112 E
112 112

128% I I I | I I I 4
16 32 48 64 80 9 12 128 128 128

(a) reconstruction matrix (b) frequency vector s (c) image vector r

Figure 4: Isomorphism for complex-valued 2D inverse Fourier Transform

The real-valued vector representation of the spatial frequency (k-space) values in Figure 4b is then pre-
multiplied by the (inverse Fourier) reconstruction matrix € given in Figure 4a as described in Equation 2.3 to
produce a vector representation of the image voxel measurements given in Figure 4c as described in Equation 2.3.
The vector of voxel measurements is partitioned then arranged as in Figure ba and formed into a single matrix
image as in Figure 5b where the first (last) eight columns are the transpose of the real (imaginary) part of the
image.

The previously described data for a single image is expanded upon to mimic an fMRI experiment. The
complex-valued image in Figure 1c and Figure 1d is taken as the mean “active” or “on” image and a duplicate
of it with the two white voxels replaced by grey voxels are used as the mean “inactive” or “off” images. For
illustrative purposes, a single replicate of eight on images followed by eight off images that form a single block
from an experiment with eight blocks is initially presented. Subsequently all eight blocks are examined. Eight
column vectors of the spatial frequencies for the true mean “on” image are joined into a matrix with eight column

vectors of the spatial frequencies for the true mean “off” image as in Figure 6b. Each column in Figure 6b is the
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(a) partitioned images RT (b) combined image RT =
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Figure 5: Vector to matrix image values.

vector form of the spatial frequencies for an image similar to that in Figure 4b.

The mean on images contained voxels with values fyp = 0 and 3; = 0 outside a four by four by four internal
region, inactive gray voxels within the four by four region with values 8y = SNR % ¢ and 3; = 0, along with
two active voxels with value 3y = SNR *x 0 and 1 = CNR * 0. Activation parameter values were SNR= 30,
CNR=1 and ¢ = .05. In this parameterization, SNR denotes the temporal signa-to-noise ratio, CNR denotes

the functional contrast-to-noise ratio, and o denotes the voxel standard deviation.

16 [ — 16 |- - 16 |- -
32 — 32 — 32 —
as |- - as |- - as |- -
ea |- — ea |- - sa |- _
s0 |- - s0 |- - so0 | |
o6 |- = o6 |- - o6 |- _
a1z — a1z - — a1z —

1= a4 8 1216 =8 a4 8 1216 1= a4 8 1216
(a) noisy S (b) true Sp (c) error E

Figure 6: Noisy spatial frequency (k-space) values.

Independent noise column vectors €; as seen in Figure 6¢ are generated from a normal distribution with zero
mean vector and covaiance matrix I' = 72 'y ® [2®I'3. This covariance structure mimics temporal autocorrelation
along the echo planar imaging (EPI) trajectory along with correlation between real and imaginary parts. The
covariance matrix was formed with I'y, 'z, and I's taken to be unit variance correlation matrices while v was
taken to be v* = p,p, o*. The p, x p, correlation matrix I'y is taken to be an AR(1) correlation matrix with

(i, )" element Q'lifj | where 01 = 0.25, the 2 x 2 correlation matrix I'; is taken to have an off diagonal correlation
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Figure 7: Reconstructed noisy images.

of g2 = .5 while the p, x p, correlation matrix I's is taken to be an AR(1) correlation matrix with (i, j)!* element

ggfﬂ where o3 = 0.5.

1 s 16| 1 s
== 32 ==
= a8 =
sa sa
B0 8 20
o6 | o6
aa= 2 aa=
a=s o I I 0 a=s
1 s 16| 1 s
== 32 ==
= 48 =
sa sa
20 8 B0
o6 | =1
aa= 2 aa=
a=s 0 o I a=s
(a) noisy r (b) reconstruction matrix (I, ® Q) (c) noisy s

Figure 8: Reconstructed vectorized noisy images.

Each matrix image in Figure 6a, b, and ¢ was pre-multiplied by the (inverse Fourier transform) image

reconstruction matrix 2 given in Equation 2.3 and presented in Figure 4a. The results of this pre-multiplication

11



(a) voxel (b) permutation matrix P (c) image

orderd y orderd r

Figure 9: Reordered reconstructed voxels.

can be seen in Figure 7a, b, and c¢. The columns of R = (1S in Figure 7a are real and imaginary parts for each
noisy image. The noisy image in Figure 7a the sum of the noiseless image in Figure 7b and the measurement
noise presented as an image in Figure 7. However, we would like real and imaginary parts for each noisy voxel.
As described in Section 2, we can vectorize R and S to yield r = vec(R) and s = vec(S) as seen in Figure 8. The
vector s of noisy spatial frequency (k-space) values as presented in Figure 8c is pre-multiplied by a block diagonal
matrix with  along the diagonal as displayed in Figure 8b to produce a vector of noisy image measurements r
as shown in Figure 8a.

Now we can convert the vector r, displayed in Figure 8a that has values arranged that are reals and imaginaries
stacked for images, to the vector y, that has values arranged that are reals and imaginaries stacked for voxels.
We can convert from the vector r which is presented in Figure 9c to the vector y which is shown in Figure 9a via
a permutation matrix P, a portion of which is displayed in Figure 9b. Now with the y vector being arranged as
real and imaginary observations in each voxel as described in Equation 2.7, we can apply the complex activation
models (Rowe and Logan, 2004). The regression coefficients 3, the phase angle @, and the variance o? are
estimated under both the null and alternative hypotheses as described in Eqution 2.9 then activation computed.
In Figures 10a and c are the unthresholded activation maps for the magnitude-only and complex-valued activation
methods respectively. In Figures 10b and d are the Bonferroni 5% thresholded activation maps for the magnitude-
only and complex-valued activation techniques respectively.

As desceribed in Equation 2.10 of Section 3, we can also estimate covariance between voxels, . Again, note
that the j** diagonal element of Sw from Equation 2.17 is exactly 6J2- from Rowe-Logan (2004) complex model.
The sample voxel correlation from f]w described in Equation 2.17 is displayed in Figure 11a with theoretical value

presented in Figure 11b. The sample correlation from I = Qflf](QT)*l is given in Figure 11c with theoretical

12
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Figure 10: Activation maps. Bonferroni 5% threshold.

value in Figure 11d. Note the similarity between the sample values and the theoretical values in Figures 11a and

¢ to the theoretical values in Figures 11b and d even for the small sample size.

4 Discussion

Complex-valued voxel measurements have been written in terms of the original complex-valued k-space mea-
surements. This allows the computation of statistically significant fMRI brain activation directly from the
original k-space measurements but in image space. The correlation between voxel measurements can also be
written in terms of correlation between k-space measurements. Since the covariance matrix between the k-space
measurements and hence voxel measurements can be partitioned into individual sources of covariation, statistical
associations between individual voxels or regions of interest could be quantified utilizing unmodeled sources of
covariation.
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A  Permutation Matrix

The elements of the permutation matrix P are all zero except for a single 1 in each row. The t** row,
t = 1,...,n within the first set of n rows of the permutation matrix P that form the n real measurements
within the first voxel have a 1 in column t = Op +1,2p + 1,4p+1,...,2(n — 1)p + 1. The t*" row within the
second set of n rows of the permutation matrix P that form the n imaginary measurements within the first
voxel have a 1 in column ¢t = p+ 1,3p+ 1,5p + 1,...,2(n — 1)p + p + 1. The t'" row within the third set
of n rows of the permutation matrix P that form the n real measurements within the second voxel have a 1

in column ¢ = Op + 2,2p + 2,4p + 2,...,2(n — 1)p + 2. The t'* row within the fourth set of n rows of the
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Figure 11: Correlation matrices

permutation matrix P that form the n imaginary measurements within the first second have a 1 in column
t=p+2,3p+2,5p+2,....,2(n — 1)p + p + 2. This general pattern continues so that the ¢! row within the
(2p — 1)*" set of n rows of the permutation matrix P that form the n real measurements within the p** voxel
have a 1 in column ¢ = Op + p,2p + p,4p + p, ..., 2(n — 1)p + p. The t** row within the second set of n rows of
the permutation matrix P that form the n imaginary measurements within the first second have a 1 in column
t=p+p,3p+p 5p+p,..,2(n—1)p+p+p. In general, the j'* set of 2n rows for the j** voxel, j = 1, ..., p have
a 1 in columns Op + 7,2p+ j,4p + j,...,2(n — 1)p + j of its first n rows for the real voxel measurements and in

columns p+ 7,3p+ 4,5p + 4, ..., 2(n — 1)p + p + j for the imaginary voxel measurements.
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