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Abstract

In functional magnetic resonance imaging (fMRI), a process of determining statistically significant brain

activation is commonly performed in terms of voxel time course measurements after image reconstruction.

The image reconstruction and statistical activation processes are treated separately. In this manuscript,

the relationship between complex-valued (Fourier) encoded k-space measurements and complex-valued image

measurements from (Fourier) reconstructed images is described. The voxel time-series measurements are

written in terms of spatio-temporal k-space measurements utilizing this spatial frequency k-space and image

relationship. Voxel fMRI activation can be determined in image space for example using the Rowe-Logan

complex-valued activation model [Rowe, D.B., and Logan, B.R. (2004). A complex way to compute fMRI

activation. NeuroImage, 23 (3):1078-1092] in terms of the original k-space measurements. Additionally, the

spatio-temporal covariance between reconstructed complex-valued voxel time series can be written in terms of

the spatio-temporal covariance between complex-valued k-space measurements. Knowledge of the relationship

between the spatio-temporal k-space measurements can be modeled in the more naturally acquired state rather

than in a transformed state. This allows for the partitioning of the covariance matrix between the k-space

measurements and hence voxel measurements into sources of covariation. Statistical associations between

individual voxels or regions of interest can be quantified utilizing unmodeled sources of covariation.

1 Introduction

In functional magnetic resonance imaging (fMRI), the processes of image reconstruction (Kumar, et al., 1975;

Haacke et al., 1999) and statistical activation (Bandettini et al., 1993; Friston et al., 1994) have been treated

separately. The determination of statistically significant brain activation is in terms of voxel measurements after

reconstruction. The relationship between the original k-space measurements and voxel measurements for each

image is described. A permutation matrix is utilized to reorder the voxel measurements and statistical functional

brain activation can be determined with complex-valued activation models (Nan and Nowak, 1999; Rowe and
∗Corresponding Author: Daniel B. Rowe, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road,

Milwaukee, WI 53226, dbrowe@mcw.edu.
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Logan, 2004,2005; Rowe, 2005a,b). A map of these activation statistics can then thresholded to determine

statistically significant activation while adjusting for multiple compariations (Logan and Rowe, 2004).

2 Methods

In fMRI, data generally consist of two-dimensional slices acquired from an echo-planar imaging (EPI) pulse

sequence. The py × px dimensional complex-valued spatial frequency measurement SC of a slice consists of a

py × px dimensional matrix of true underlying noiseless complex-valued spatial frequencies S0C and a py × px

dimensional matrix of complex-valued measurement error EC that can be represented as

SC = (S0R + iS0I) + (ER + iEI) (2.1)

where i is the imaginary unit while S0R, S0I , ER and EI are real and imaginary matrix valued parts of the true

spatial frequencies and measurement noise. Let ΩCx and ΩCy be px × px and py × py complex-valued Fourier

matrices such that

ΩCy = ΩRy + i ΩIy and ΩCx = ΩRx + i ΩIx (2.2)

where ΩRy and ΩRx are real while ΩIy and ΩIx are imaginary matrix valued parts. Then, the py × px complex-

valued inverse Fourier transformation reconstructed image RC of SC can be written as

RC = ΩCy ∗ SC ∗ ΩT
Cx

= ΩCy(S0R + iS0I)ΩT
Cx + ΩCy(ER + iEI)ΩT

Cx

= R0C + NC

where RC has a true mean R0C and measurement error NC while “T” denotes transposition. If ΩCx is a Fourier

matrix, it is [ΩCx]jk = κ
(
ωjk

)
where κ = 1 and ω = exp[−i2π(j − 1)(k − 1)/px] for the forward transformation

while κ = 1/px and ω = exp[+i2π(j − 1)(k − 1)/px] for the inverse transformation, where j, k = 1, ..., px. The

complex-valued matrices for reconstruction Ωx and Ωy need not be exactly Fourier matrices but may be Fourier

matrices that include adjustments for magnetic field inhomogeneities derieved from phase maps or reconstruction

matrices for other encoding procedures.

This inverse Fourier transformation image reconstruction process can be equivalently described as the pre-

multiplication of the complex-valued spatial frequencies in the form of a real-valued vector s by a real-valued

matrix representation Ω of the complex-valued Fourier matrices

r = Ω ∗ s
 rR

rI


 =


 ΩR −ΩI

ΩI ΩR


 ∗


 sR

sI


 (2.3)

where the real-valued representation r that is of dimension 2pxpy × 1 of the complex-valued image has a true

mean and measurement error. The real-valued vector of spatial frequencies is formed by

s = vec(ST
R , ST

I )
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where SR and SI denote the real and imaginary parts of SC and vec(·) denotes the vectorization operator that

stacks the columns of its matrix argument. In addition, the matrix elements of Ω are

ΩR = [(ΩyR ⊗ ΩxR) − (ΩyI ⊗ ΩxI)] (2.4)

ΩI = [(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)] (2.5)

where ⊗ denotes the Kronecker product that multiplies every element of its first matrix argument by its entire

second matrix argument. If the mean and covariance of the spatial frequency measurement vector s that is of

dimension 2pxpy × 1 are s0 and Γ, then the mean and covariance of the reconstructed voxel measurements r are

Ωs0 and ΩΓΩT .

In fMRI, a series of the previously described slices are acquired. Denote the py × px random complex-valued

spatial frequency matrix at time t as SCt = S0Ct + ECt and define st = vec(ST
Rt, S

T
It), where SRt and SIt are the

real and imaginary parts of SCt for time points t = 1, ..., n. Define the total number of voxels in the image, which

is the same as the number of complex-valued k-space measurements to be p = pxpy. This sequence of measured

spatial frequency vectors can be collected into a 2p×n matrix S = (s1, ..., sn) where the tth column contains the

p real k-space measurements stacked upon the p imaginary k-space measurements for time t. Having done this,

n reconstructed images can be formed by the 2p × n matrix R = ΩS where the tth column of R contains the p

real voxel measurements stacked upon the p imaginary voxel measurements for time t, t = 1, ..., n.

The k-space measurements and the image voxel measurements can be stacked as s = vec(S) and r = vec(R).

Note that s and r and have been redefined from their previous definition. If the mean and covariance of the

2np × 1 vector of spatial frequency measurements s are s0 and ∆, then the mean and covariance of the 2np × 1

vector of reconstructed voxel measurements r are (In⊗Ω)s0 and (In⊗Ω)∆(In⊗ΩT ). For example, if the k-space

measurements were taken to be temporally independent, then Γ = In ⊗ Γ and cov(r) = In ⊗ (ΩΓΩT ). Thus,

we have described the fMRI voxel measurements as a linear function of the fMRI k-space measurements. We

can alternatively organize the voxel measurements by stacking the first set of p columns of RT upon the second

set of p columns of RT to form a matrix Y . Having done this, the jth column of the resulting data matrix Y

of dimension 2n × p contains the n real voxel measurements stacked upon the n imaginary voxel measurements

for voxel j, j = 1, ..., p. The voxel measurements Y can be described with the complex fMRI model (Rowe and

Logan, 2005) as

Y =





 C1Xβ1

S1Xβ1


 , ...,


 CpXβp

SpXβp





 +





 ηR1

ηI1


 , ...,


 ηRp

ηIp





 (2.6)

where C1 and S1 are diagonal matrices with cosine and sine tems respectively. Different activation modeles

are found by different choices of the C and S matrices. The complex constant phase model (Rowe and Logan,

2004) can be found with Cj = In cos θj and Sj = In sin θj where j indexes the jth voxel. The unrestricted phase

or magnitude only model can be found by by selecting the tth element of Cj and Sj to be Cjt = cos θjt and

Sjt = sin θjt, where θjt is unique for each j and t. The complex model for both magnitude and phase (Rowe,
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2005) can be found by choosing the phase θjt = uT
t γ where ut is the tth row of a phase design matrix U and γ

are phase regression coefficients.

This can be rearranged and written with y = vec(Y ) as





 yR1

yI1




...
 yRp

yIp







=





 C1X 0

0 S1X


 0

.. .

0


 CpX 0

0 SpX











 β1

β1




...
 βp

βp







+





 ηR1

ηI1




...
 ηRp

ηIp







(2.7)

where y = (yT
R1, y

T
I1, ..., y

T
Rp, y

T
Ip)

T is a vector containing the real and imaginary reconstructed voxel measurements

and η = (ηT
R1, η

T
I1, ..., η

T
Rp, η

T
Ip)

T is a vector containing the real and imaginary errors of the reconstructed voxel

measurements. The model can simply be written as y = µ + ε. For example, with constant phase model, the

mean is µ = (I2p ⊗ X)[(cos θ1, sin θ1) ⊗ βT
1 , ..., (cosθp, sin θp) ⊗ βT

p ]T .

The rearrangement of the voxel measurements from r to y is a linear transformation and can be achieved

through a permutation matrix P (described in Appendix A) to form y = Pr. In terms of the original k-space

measurements the voxel time courses are y = P (In ⊗ Ω)vec(vec(ST
R1, S

T
I1), ..., vec(ST

Rn, ST
In)). A permutation

matrix is a square matrix that can be obtained by permuting (rearranging) either the columns or rows of

an identity matrix (Harville, 1999). A permutation matrix is of full rank and therefore nonsingular and also

invertible. Having done this linear transformation, the mean and covariance of y are µ = P (In ⊗ Ω)s0 and

Λ = P (In ⊗ Ω)∆(In ⊗ ΩT )P T . Since the matrices Ω and P that convert k-space measurements s to voxel

measurements y are known a priori, the expression y = P (In ⊗Ω)s can be inverted to write s = (In ⊗Ω−1)P−1y

in terms of the parameters as




s1

...

sn


 = P−1

[
In ⊗ Ω−1(I2 ⊗ X)

]
︸ ︷︷ ︸

Known




β1 cos θ1

β1 sin θ1

...

βp cos θp

βp sin θp




+




ε1
...

εn


 (2.8)

then the optimization for the regression coefficients (β) and phases (θ) can be performed in k-spacesto yield the

same parameter estimates. Activations can then be computed from Rowe’s complex activation models.

Using ordinary least squares or a normal distributional specification on the errors, the voxel-wise regression

coefficients and phases can be determined to yield the same point estimators as in Logan and Rowe (2004).

The Rowe-Logan unconstrained alternative hypothesis estimators (with hats) for H1: Cβ 6= 0 along with the

constrained null hypothesis estimators (with tildes) for H0: Cβ = 0 in voxel j are

θ̂j = 1
2 tan−1

[
β̂T

Rj (X′X)β̂Ij

(β̂T
Rj(X

′X)β̂Rj−β̂T
Ij(X

′X)β̂Ij)/2

]
θ̃j = 1

2 tan−1

[
β̂T

RjΨ(X′X)β̂Ij

(β̂T
RjΨ(X′X)β̂Rj−β̂T

IjΨ(X′X)β̂Ij )/2

]

β̂j = β̂Rj cos θ̂j + β̂Ij sin θ̂j β̃j = Ψ
[
β̂Rj cos θ̃j + β̂Ij sin θ̃j

] (2.9)
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where C is an r×(q+1) matrix of full row rank, Ψ = Iq+1−(X ′X)−1C′[C(X ′X)−1C′]−1C, β̂Rj = (X ′X)−1X ′yRj ,

and β̂Ij = (X ′X)−1X ′yIj , while yRj and yIj are the n × 1 vectors of real and imaginary voxel observations.

The variances and covariances for example with a specification of uncorrelated temporal k-space measure-

ment vectors (st) yields the covaraince matrix Λ = In ⊗ ΩΓΩT for the voxel measurements. Define the voxel

measurement covariance matrix to be Σ = ΩΓΩT . Having estimated the voxel-wise regression coefficients and

phases, we can estimate the mean of the vector of voxel measurements y by µ̂ (under the alternative hypothesis)

and the mean of the matrix of voxel measurements R by M̂ = vec(P−1µ̂). Here vec(·) is the operator that is the

inverse operation of the vec(·) operator. The voxel covariance matrix is

Σ =


 Σ11 Σ12

ΣT
12 Σ22


 (2.10)

where the partitioned matrix elements are

Σ11 = ΩRΓ11ΩT
R − ΩIΓT

12Ω
T
R − ΩRΓ12ΩT

I + ΩIΓ22ΩT
I (2.11)

Σ12 = ΩRΓ11ΩT
I − ΩIΓT

12Ω
T
I + ΩRΓ12ΩT

R − ΩIΓ22ΩT
R (2.12)

Σ22 = ΩIΓ11ΩT
I + ΩRΓT

12Ω
T
I + ΩIΓ12ΩT

R + ΩRΓ22ΩT
R . (2.13)

and Γ has been partitioned similar to Σ. The voxel covariance matrix Σ can now be estimated by Σ̂ = (R −

M̂ )(R − M̂)T /n where

With the physically motivated specification of the same k-space covariance ΓW within the real-imaginary

channels and k-space covariance between the real-imaginary channels ΓB with the previous uncorrelated temporal

k-space measurements, the voxel covaraince matrix becomes

Σ =


 ΣW ΣB

ΣT
B ΣW


 (2.14)

where the equal within real and within imaginary channel covariances result from a skew-symmetric k-space

covariance specification (ΓT
B = −ΓB) corresponding to a complex normal distribution and

ΣW = ΩRΓW ΩT
R − ΩIΓT

BΩT
R − ΩRΓBΩT

I + ΩIΓW ΩT
I (2.15)

ΣB = ΩRΓW ΩT
I − ΩIΓT

BΩT
I − ΩRΓBΩT

R − ΩIΓW ΩT
R . (2.16)

We can estimate the covariance matrices under the alternative hypothesis by

Σ̂W = [(RR − M̂R)(RR − M̂R)T + (RI − M̂I)(RI − M̂I)T ]/(2n) (2.17)

Σ̂B = [(RR − M̂R)(RI − M̂I)T + (RI − M̂I)(RR − M̂R)T ]/(2n) . (2.18)

and under the null hypothesis similarly find

Σ̃W = [(RR − M̃R)(RR − M̃R)T + (RI − M̃I)(RI − M̃I)T ]/(2n) (2.19)

Σ̃B = [(RR − M̃R)(RI − M̃I)T + (RI − M̃I)(RR − M̃R)T ]/(2n) . (2.20)
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It should be noted that the jth diagonal elements of Σ̂W and Σ̃W are equivalent to those given in Rowe and

Logan (2004)

σ̂2
j =

1
2n


 yRj − Xβ̂j cos θ̂j

yIj − Xβ̂j sin θ̂j




T 
 yRj − Xβ̂j cos θ̂j

yIj − Xβ̂j sin θ̂j


 (2.21)

σ̃2
j =

1
2n


 yRj − Xβ̃j cos θ̃j

yIj − Xβ̃j sin θ̃j




T 
 yRj − Xβ̃j cos θ̃j

yIj − Xβ̃j sin θ̃j


 . (2.22)

Additionally, voxel-wise activations will be the same as in Rowe and Logan (2004). Then the generalized

likelihood ratio statistic for the complex fMRI activation model is

−2 logλj = 2n log
(
σ̃2

j /σ̂2
j

)
. (2.23)

This statistic has a large sample χ2
r distribution. Note that when r = 1, two-sided testing can be done using the

signed likelihood ratio test given by

zj = Sign(Cβ̂j)
√

−2 log λj, (2.24)

which has a large sample standard normal distribution under the null hypothesis. Alternatively with r = 1, a

Wald type statistic can be formed

wj = Cβ̂j/
√

σ̂2
j C(XT X)−1C′, (2.25)

which also has a large sample standard normal distribution under the null hypothesis. A map of these activation

statistics is then thresholded while adjusting for multiple compariations (Logan and Rowe, 2004). However,

correlations between voxels are characterized in terms of spatio-temporal correlations between k-space measure-

ments.

The spatio-temporal covariances between the complex-valued voxel measurements Λ can now be described in

terms of the spatio-temporal covariances between the complex-valued k-space measurements ∆. The covariance

of the complex-valued k-space measurements may be due to independent sources such as spatio-temporal indepen-

dent noise ∆I , correlated nonphysiologic noise ∆N such as measurement autocorrelation along the EPI trajectory

or correlation induced by k-space corrections, and true physiologic processes ∆P so that ∆ = ∆P +∆N +∆I. One

could apply temporal filtering or pre-whitening to the k-space measurements. The voxel covariance and hence

correlation can also be decomposed into the corresponding covariance components, Λ = ΛP +ΛN +ΛI . Statements

about voxel associations due to physiological processes could be made using only ΛP = P (In⊗Ω)∆P (In⊗ΩT )P T .

After fitting the fMRI model to the voxel image time courses, we can transform the residual images into spatial

frequencies (k-space) and estimate the correlation due to non-physiologic sources ∆N . The spatial frequances

can then be temporally pre-whitened, transformed back into residual images then the noise variation ΣW re-

estimated.
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Figure 1: Complex-valued 2D forward Fourier transform

3 Example

In order to demonstrate the previously described methodology a simulated example is presented. An 8 × 8

image RC as displayed in Figure 1 with real part RR given in Figure 1c and imaginary part RI in Figure 1d is

utilized to mimic a magnetic resonance echo planar imaging experiment. The spatial frequency (k-space) values

SC associated with this complex-valued image can be found by pre-multiplying the complex-valued image RC

with real image part RR in Figure 1c and imaginary image part RI in Figure 1d by the complex-valued forward

Fourier matrix Ω̄Cy presented as an image with real part Ω̄Ry in Figure 1a and imaginary part Ω̄Iy in Figure 1b

then post-multiplying the result by the transpose of the symmetric forward Fourier matrix Ω̄Cx presented as an

image with real part Ω̄Rx in Figure 1e and imaginary part Ω̄Ix in Figure 1f. The spatial frequency (k-space)

values SC for the complex-valued image with real image part RR in Figure 1c and imaginary image part RI in

Figure 1d are presented as an image with real part SR given in Figure 1g and imaginary part SI in Figure 1h.

Note that the image does not have to be square.

The complex-valued image RC with real image part RR in Figure 1c and imaginary image part RI in Figure 1d

can be recovered as seen in Figure 2. The process of recovering the original complex-valued image RC is to pre-

multiply the complex-valued spatial frequency (k-space) values SC with real image part SR in Figure 2c and
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Figure 2: Complex-valued 2D inverse Fourier transform

imaginary image part SI in Figure 2d by the complex-valued inverse Fourier matrix ΩCy presented as an image

with real part ΩRy in Figure 2a and imaginary part ΩIy in Figure 2b then post-multiply the result by the

transpose of the symmetric inverse Fourier matrix ΩCx presented as an image with real part ΩRx in Figure 2e

and imaginary part ΩIx in Figure 2f. The recovered complex-valued image RC is presented with real part RR

in Figure 2g and imaginary part RI in Figure 2h.
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(b) Partitioned spatial frequencies ST

Figure 3: Matrix to vector spatial frequency (k-space) values.

The inverse Fourier transform fMRI reconstruction process can be equivalently described as follows with a
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real-valued representation often called an isomorphism in mathematics. To use this representation, join the

transpose of the real and imaginary parts of the spatial frequency (k-space) values given in Figure 2c and

Figure 2d respectively that are of dimension py × px into a single real-valued matrix ST = (ST
R , ST

I ) that is of

dimension px × 2py as in Figure 3a. Then stack the columns of ST as shown partitioned in Figure 3b into a

single vector s = vec(ST
R , ST

I ) as presented in Figure 4b. This gives us a real-valued vector representation of the

matrix of spatial frequency (k-space) values.

16 32 48 64 80 96 112 128
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(a) reconstruction matrix Ω

16

32
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128

(b) frequency vector s
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48
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80

96

112

128

(c) image vector r

Figure 4: Isomorphism for complex-valued 2D inverse Fourier Transform

The real-valued vector representation of the spatial frequency (k-space) values in Figure 4b is then pre-

multiplied by the (inverse Fourier) reconstruction matrix Ω given in Figure 4a as described in Equation 2.3 to

produce a vector representation of the image voxel measurements given in Figure 4c as described in Equation 2.3.

The vector of voxel measurements is partitioned then arranged as in Figure 5a and formed into a single matrix

image as in Figure 5b where the first (last) eight columns are the transpose of the real (imaginary) part of the

image.

The previously described data for a single image is expanded upon to mimic an fMRI experiment. The

complex-valued image in Figure 1c and Figure 1d is taken as the mean “active” or “on” image and a duplicate

of it with the two white voxels replaced by grey voxels are used as the mean “inactive” or “off” images. For

illustrative purposes, a single replicate of eight on images followed by eight off images that form a single block

from an experiment with eight blocks is initially presented. Subsequently all eight blocks are examined. Eight

column vectors of the spatial frequencies for the true mean “on” image are joined into a matrix with eight column

vectors of the spatial frequencies for the true mean “off” image as in Figure 6b. Each column in Figure 6b is the
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Figure 5: Vector to matrix image values.

vector form of the spatial frequencies for an image similar to that in Figure 4b.

The mean on images contained voxels with values β0 = 0 and β1 = 0 outside a four by four by four internal

region, inactive gray voxels within the four by four region with values β0 = SNR ∗ σ and β1 = 0, along with

two active voxels with value β0 = SNR ∗ σ and β1 = CNR ∗ σ. Activation parameter values were SNR= 30,

CNR= 1 and σ = .05. In this parameterization, SNR denotes the temporal signa-to-noise ratio, CNR denotes

the functional contrast-to-noise ratio, and σ denotes the voxel standard deviation.
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(c) error E

Figure 6: Noisy spatial frequency (k-space) values.

Independent noise column vectors εt as seen in Figure 6c are generated from a normal distribution with zero

mean vector and covaiance matrix Γ = γ2 Γ1⊗Γ2⊗Γ3. This covariance structure mimics temporal autocorrelation

along the echo planar imaging (EPI) trajectory along with correlation between real and imaginary parts. The

covariance matrix was formed with Γ1, Γ2, and Γ3 taken to be unit variance correlation matrices while γ was

taken to be γ2 = pxpy σ2. The py × py correlation matrix Γ1 is taken to be an AR(1) correlation matrix with

(i, j)th element %
|i−j|
1 where %1 = 0.25, the 2×2 correlation matrix Γ2 is taken to have an off diagonal correlation
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Figure 7: Reconstructed noisy images.

of %2 = .5 while the px×px correlation matrix Γ3 is taken to be an AR(1) correlation matrix with (i, j)th element

%
|i−j|
3 where %3 = 0.5.

16

32

48

64

80

96

112

128

...

16

32

48

64

80

96

112

128

(a) noisy r

16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128 0
.. .

0 16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128

(b) reconstruction matrix (In ⊗ Ω)

16

32

48

64

80

96

112

128

...

16

32

48

64

80

96

112

128

(c) noisy s

Figure 8: Reconstructed vectorized noisy images.

Each matrix image in Figure 6a, b, and c was pre-multiplied by the (inverse Fourier transform) image

reconstruction matrix Ω given in Equation 2.3 and presented in Figure 4a. The results of this pre-multiplication
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Figure 9: Reordered reconstructed voxels.

can be seen in Figure 7a, b, and c. The columns of R = ΩS in Figure 7a are real and imaginary parts for each

noisy image. The noisy image in Figure 7a the sum of the noiseless image in Figure 7b and the measurement

noise presented as an image in Figure 7. However, we would like real and imaginary parts for each noisy voxel.

As described in Section 2, we can vectorize R and S to yield r = vec(R) and s = vec(S) as seen in Figure 8. The

vector s of noisy spatial frequency (k-space) values as presented in Figure 8c is pre-multiplied by a block diagonal

matrix with Ω along the diagonal as displayed in Figure 8b to produce a vector of noisy image measurements r

as shown in Figure 8a.

Now we can convert the vector r, displayed in Figure 8a that has values arranged that are reals and imaginaries

stacked for images, to the vector y, that has values arranged that are reals and imaginaries stacked for voxels.

We can convert from the vector r which is presented in Figure 9c to the vector y which is shown in Figure 9a via

a permutation matrix P , a portion of which is displayed in Figure 9b. Now with the y vector being arranged as

real and imaginary observations in each voxel as described in Equation 2.7, we can apply the complex activation

models (Rowe and Logan, 2004). The regression coefficients β, the phase angle θ, and the variance σ2 are

estimated under both the null and alternative hypotheses as described in Eqution 2.9 then activation computed.

In Figures 10a and c are the unthresholded activation maps for the magnitude-only and complex-valued activation

methods respectively. In Figures 10b and d are the Bonferroni 5% thresholded activation maps for the magnitude-

only and complex-valued activation techniques respectively.

As desccribed in Equation 2.10 of Section 3, we can also estimate covariance between voxels, Σ̂. Again, note

that the jth diagonal element of Σ̂W from Equation 2.17 is exactly σ̂2
j from Rowe-Logan (2004) complex model.

The sample voxel correlation from Σ̂W described in Equation 2.17 is displayed in Figure 11a with theoretical value

presented in Figure 11b. The sample correlation from Γ̂ = Ω−1Σ̂(ΩT )−1 is given in Figure 11c with theoretical
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Figure 10: Activation maps. Bonferroni 5% threshold.

value in Figure 11d. Note the similarity between the sample values and the theoretical values in Figures 11a and

c to the theoretical values in Figures 11b and d even for the small sample size.

4 Discussion

Complex-valued voxel measurements have been written in terms of the original complex-valued k-space mea-

surements. This allows the computation of statistically significant fMRI brain activation directly from the

original k-space measurements but in image space. The correlation between voxel measurements can also be

written in terms of correlation between k-space measurements. Since the covariance matrix between the k-space

measurements and hence voxel measurements can be partitioned into individual sources of covariation, statistical

associations between individual voxels or regions of interest could be quantified utilizing unmodeled sources of

covariation.
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A Permutation Matrix

The elements of the permutation matrix P are all zero except for a single 1 in each row. The tth row,

t = 1, ..., n within the first set of n rows of the permutation matrix P that form the n real measurements

within the first voxel have a 1 in column t = 0p + 1, 2p + 1, 4p + 1, ..., 2(n − 1)p + 1. The tth row within the

second set of n rows of the permutation matrix P that form the n imaginary measurements within the first

voxel have a 1 in column t = p + 1, 3p + 1, 5p + 1, ..., 2(n − 1)p + p + 1. The tth row within the third set

of n rows of the permutation matrix P that form the n real measurements within the second voxel have a 1

in column t = 0p + 2, 2p + 2, 4p + 2, ..., 2(n − 1)p + 2. The tth row within the fourth set of n rows of the
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Figure 11: Correlation matrices

permutation matrix P that form the n imaginary measurements within the first second have a 1 in column

t = p + 2, 3p + 2, 5p + 2, ..., 2(n− 1)p + p + 2. This general pattern continues so that the tth row within the

(2p − 1)th set of n rows of the permutation matrix P that form the n real measurements within the pth voxel

have a 1 in column t = 0p + p, 2p + p, 4p + p, ..., 2(n− 1)p + p. The tth row within the second set of n rows of

the permutation matrix P that form the n imaginary measurements within the first second have a 1 in column

t = p + p, 3p + p, 5p+ p, ..., 2(n− 1)p + p + p. In general, the jth set of 2n rows for the jth voxel, j = 1, ..., p have

a 1 in columns 0p + j, 2p + j, 4p + j, ..., 2(n− 1)p + j of its first n rows for the real voxel measurements and in

columns p + j, 3p + j, 5p + j, ..., 2(n− 1)p + p + j for the imaginary voxel measurements.
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