Posterior Computation for Hierarchical Dirichlet Process Mixture Models:
Application to Genetic Association Studies of Quantitative Traits in the Presence of Population Stratification

Nicholas M. Pajewski1 and Purushottam W. Laud
Division of Biostatistics
Department of Population Health
Medical College of Wisconsin
Milwaukee, WI 53226 USA

Introduction

In \cite{pajewski2008}, we introduced a unified hierarchical Bayesian semiparametric model for genetic association studies of quantitative traits in the presence of population stratification. The model uses a Dirichlet Process Mixture (DPM) construction to account for stratification in making association inference. It also involves a nonparametric sparsity prior to accommodate the expectation that most genetic markers are unrelated to the phenotype in a large association screen. In this technical report, we describe the necessary computational details for implementing the DPM model (C code available from http://www.biostat.mcw.edu/software/SoftMenu.html). We begin with a short description of the DPM model, and then discuss its implementation through Markov chain Monte Carlo (MCMC) sampling.

Consider a continuous phenotype Y_i observed on a sample of N unrelated individuals. Suppose each individual is then genotyped at L Single Nucleotide Polymorphism (SNP) markers. The extension to more polymorphic markers is straightforward, although the available C code does not currently implement such a case. Define $V_{li} = 1$ (0 otherwise) if the ith individual is homozygous for the reference (or minor) allele at the lth SNP, and $W_{li} = 1$ (0 otherwise) if the individual is heterozygous at that SNP. Then let β_{l1} and β_{l2} represent the regression effects for individuals heterozygous and homozygous respectively at the lth SNP. Finally, let $X_{li} = [W_{li} V_{li}]$ and $\beta_l = [\beta_{l1}, \beta_{l2}]$. The hierarchical DPM model can then be

1Correspondence to: Nicholas M. Pajewski, Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, (414) 456-8674, npajewsk@mcw.edu
defined as follows.

\[
L(Y_i|\mu_i, \tau_e) = \frac{\tau_e^{1/2}}{\sqrt{2\pi}} \exp\left[\frac{-\tau_e}{2} (Y_i - \mu_i)^2\right]
\]

\[
\mu_i = \beta_{0i} + \sum_{l=1}^{L} X_{li} \beta_l
\]

\[
L(W_{li}, V_{li}|\theta_l) = \frac{2^{W_{li}}e^{\theta_l(2V_{li}+W_{li})}}{(1+e^{\theta_l})^2}
\]

\[
i = 1, \ldots, N\quad l = 1, \ldots, L
\]

\[
\beta_{0i}, \theta_{l1}, \ldots, \theta_{lL}|G \sim \text{DP} (\alpha_G, G_0)
\]

\[
G|\alpha_G, G_0 \sim \text{DP} (\alpha_G, G_0)
\]

\[
G_0 = N (\beta_{0i}, \mu_0, \tau_0) \prod_{l=1}^{L} N (\theta_{li}; \mu_{\theta}, \tau_{\theta})
\]

\[
\beta_l|H \sim \text{DP} (\alpha_H, H_0)
\]

\[
H|\alpha_H, H_0 \sim \text{DP} (\alpha_H, H_0)
\]

\[
H_0 = \pi \delta_{(0,0)}(\cdot) + (1-\pi)MVN_2 (M_\beta, T_\beta)
\]

\[
\pi \sim \text{Beta} (c_1, d_1)
\]

\[
\tau_\epsilon \sim \text{Gamma} (\eta_1, \lambda_1)
\]

\[
\alpha_G \sim \text{Gamma} (\eta_2, \lambda_2) \quad \text{and} \quad \alpha_H \sim \text{Gamma} (\eta_3, \lambda_3)
\]

Note: Throughout the document, we use the following parametrization of gamma density, \(X \sim \text{Gamma} (\alpha, \lambda)\),

\[
f(x) \propto x^{\alpha-1}e^{-\lambda x}
\]

In the above formulation, \(\theta_l = \text{logit} (\pi_{li})\) where \(\pi_{li}\) presents the reference allele frequency for the \(i^{th}\) individual at the \(l^{th}\) SNP. \(\delta_{(0,0)}(\cdot)\) represents a Dirac delta function indicating a point mass at \((0,0)\). In addition, \(N(x; \mu, \tau)\) denotes a normal density with mean \(\mu\) and precision \(\tau\) and \(MVN_p(x; M, T)\) represents a p-dimensional multivariate normal with mean vector \(M\) and precision matrix \(T\). For each of the Dirichlet Processes, we have assumed gamma priors for the scalar mass parameters \(\alpha_G\) and \(\alpha_H\) following \(\gamma\); alternatively they could be taken as to be fixed constants. Figure 1 displays the model as a directed acyclic graph (DAG).
Posterior Computations

We now describe in full detail the necessary steps to implement posterior inference using MCMC sampling. Given an initial state \(\Theta_0 = \left[\theta_i^{(0)} \text{ for all } i, \beta_l^{(0)} \text{ for all } l, \tau_\epsilon^{(0)}, \alpha_G^{(0)}, \alpha_H^{(0)} \right] \), iterate through the following steps.

STEP 1: Update for \(\theta_i \)

In order to update \(\theta_i = [\beta_0, \beta_1, \ldots, \beta_L] \) we employed a Metropolis-Hastings based algorithm described in \(? \) (algorithm 5). The algorithm of Neal utilizes the notion of a configuration in updating each \(\theta_i \). At a given MCMC iteration, the \(\theta_i \) will have clustered to a set of \(K_\theta < N \) distinct values denoted as \(\theta^* = [\theta_1^*, \ldots, \theta_{K_\theta}^*] \). Note that each element of \(\theta^* \) represents an \(L + 1 \) dimensional vector containing the regression parameter \(\beta_0 \) and the logit of allele frequencies at each SNP. We then define the configuration indicators \(s_i \) where \(s_i = j \) if and only if \(\theta_i = \theta_j^* \). Finally let \(n_j \) represent the number of \(s_i \) currently equal to \(j \).

Figure 1: DAG for Hierarchical DPM Model of Quantitative Traits
Step 1a: Perform the following proposal step for R iterations. For $i = 1, 2, ..., N$; propose a new distinct atom membership (s_i^*) for the i^{th} observation. The approach of ? uses the conditional prior as a proposal distribution for s_i^*. Let $s_{(-i)}$ denote the set of all configuration indicators minus s_i, and let $n_j^{(-i)}$ denote the number of $s_c = j$ for $c = 1, 2, ..., i-1, i+1, ..., N$.

\[
P (s_i^* = j | s_{(-i)}) = \frac{n_j^{(-i)}}{\alpha_G + N - 1} \text{ for } j = 1, 2, ..., K\theta \text{ and}
\]

\[
P (s_i^* = K\theta + 1 | s_{(-i)}) = \frac{\alpha}{\alpha_G + N - 1}
\]

Note that if $s_i^* = K\theta + 1$ is proposed then a new value $\theta_{K\theta+1}$ needs to be sampled from G_0. Accept the move to s_i^* with the following probability.

\[
P (s_i, s_i^*) = \min [1, R] \text{ where } R = \frac{L(Y_i, W_i, V_i | \theta_{s_i}^*)}{L(Y_i, W_i, V_i | \theta_{s_i}^*)} \text{ and }
\]

\[
L(Y_i, W_i, V_i | \theta_{s_i}^*) = L(Y_i | W_{li}, V_{li}, \beta^0_{ij}, \tau, \beta_l \forall l) \times \prod_{l=1}^{L} L(W_{li}, V_{li} | \theta_{s_i}^*)
\]

When updating the configuration indicators s_i, there are two potential moves which would alter the number of distinct points in θ^*. If $n_{s_i}^{(-i)} = 0$ (i.e. the i^{th} observation is currently a singleton), unless a proposal of $s_i^* = K\theta + 1$ is accepted, there is now one less distinct point in θ^*. Therefore, $K\theta = K\theta - 1$. Similarly, if $n_{s_i}^{(-i)} > 0$ and a proposal of $s_i^* = K\theta + 1$ is accepted, then $K\theta = K\theta + 1$.

Step 1b: After updating each s_i, let $K\theta$ denote the current atoms in θ^* where $n_j > 0$. For $j=1,2,...,K\theta$, update $\theta_{s_i}^*$. This entails a series of independent updates for each element of $\theta_{s_i}^*$. Begin by sampling β_{0j} from a Normal (μ^*, τ^*) distribution, where

\[
\tau^* = n_j \tau_\epsilon + \tau_0
\]

\[
\mu^* = \frac{1}{\tau^*} \left[\tau_\epsilon \sum_{i:s_i = j} Y_i - \sum_{l=1}^{L} X_{li} \beta_l \right] + \tau_0 \mu_0
\]

Then, for $l = 1, 2, ..., L$, the unnormalized log full conditional density for $\theta_{s_i}^*$ takes the following form.

\[
\log [\theta_{s_i}^* | s, W, V] = \theta_{s_i}^* \sum_{i: s_i = j} (2V_{li} + W_{li}) - 2n_j \log (1 + e^{\theta_0}) - \frac{\tau_0}{2} (\theta_{ij} - \mu)^2
\]
Although the above log target density does not take a standard distributional form, the
density is log-concave, and so a new value for θ^*_j can be sampled using Adaptive-Rejection
sampling (?).

STEP 2: Update for β_l

In order to update each β_l, we employed the Blocked Gibbs Sampler of ?. The Blocked Gibbs
Sampler is based on the stick-breaking representation of the Dirichlet Process, discussed in
the work of ?. Although the stick-breaking representation of the DP involves an infinite
sum of discrete points, in actual implementation, the Blocked Gibbs Sampler utilizes a finite
approximation, imposing a limit F_L to the number of distinct atoms amongst the β_l. Denote
this collection of distinct points as $\beta^* = [\beta^*_1, ..., \beta^*_F_L]$. ? show that even for large sample
sizes, a limit of $F_L = 150$ provides a suitable approximation to the Dirichlet Process. Because
of the point mass mixture construction in H_0, without a loss of generality, we can include
the additional distinct point β^*_0 to represent the cluster denoting no effect (i.e. $\beta_1 = 0$
and $\beta_{i2} = 0$) with associated model weight π. Similar to the configuration representation for θ_i,
define the pointers z_l where $z_l = j$ if and only if $\beta_l = \beta^*_j$ for $j = 0, 1, 2, ..., F_L$. Then define
m_j as the number of z_l currently equal to j.

Step 2a: For $j = 1, 2, ..., F_L$; update β^*_j. Note, because β^*_0 represents the null effect clus-
ter, its value need not be updated. If $m_j = 0$, then $\beta^*_j \sim H_0$. Else draw $\beta^*_j \sim MVN_2(M^*, T^*)$
where

$$
T^* = \tau_t G'_j G_j + T_{\beta},
$$

$$
M^* = (T^*)^{-1} \left[\tau_t G'_j (Y - B_0 - X\beta^{(-j)}) + T_{\beta} M_{\beta} \right]
$$

Y denotes a $n \times 1$ column vector of the quantitative traits Y_i. Similarly, B_0 represents a
$n \times 1$ column vector where the i^{th} element is β_{0s}. G_j is a $n \times 2$ matrix whose i^{th} row equals

$$
\left[\sum_{l:z_l=j} W_{li} \sum_{l:z_l=j} V_{li} \right].
$$

Finally, $X\beta^{(-j)}$ is a $n \times 1$ column vector whose i^{th} element is $X_{ci}\beta^*_c$.

Step 2b: For $l = 1, 2, ..., L$; independently sample z_l where,

$$P(z_l = 0) \propto \pi L(Y | s, \beta_0^*, \tau_e)$$

$$P(z_l = j) \propto (1 - \pi) p_j L(Y | s, \beta_j^*, \tau_e) \text{ for } j = 1, 2, ..., F_L$$

where

$$L(Y | s, \beta_j^*, \tau_e) \propto \exp \left[\frac{-\tau_e}{2} \sum_{i=1}^{N} \left(Y_i - \beta_{0s_i} - X_{hi} \beta_j^* - \sum_{c \neq l} L \left(X_{ci} \beta_{zc_i} \right) \right) ^2 \right]$$

Step 2c: Update π and the stick-breaking weights (p_j). Sample $\pi \sim \text{Beta}(c_1 + m_0, d_1 + (L - m_0))$. Then for $j = 1, 2, ..., F_L$; set

$$p_1 = V_1$$

$$p_k = (1 - V_1)(1 - V_2) \cdots (1 - V_{k-1})V_k \text{ for } k = 2, 3, ..., F_L - 1$$

where

$$V_k \sim \text{Beta} \left(\frac{\alpha_H}{F_L} + m_k, \frac{\alpha_H(F_L - k)}{F_L} + \sum_{c=k+1}^{F_L} m_c \right) \text{ for } k = 1, 2, ..., F_L - 1$$

Then because the p_j must sum to 1, $p_{F_L} = 1 - \sum_{j=1}^{F_L-1} p_j$.

STEP 3: Updating the scalar mass parameters of the Dirichlet Process (α_G, α_H)

If α_G and α_H are given Gamma priors, then they can be updated using the following procedure described in ?. Assume there are K_G and K_H distinct atoms in the configuration representations for both G and H at the current MCMC iteration.

STEP 3a: Update for α_G

1. Sample $x_G | \alpha_G \sim \text{Beta}(\alpha_G, N)$

2. Let π_G equal

$$\pi_G = \frac{\eta_2 + K_G - 1}{\eta_2 + K_G - 1 + N(\lambda_2 - \log(X_G))}$$

3. Sample $\alpha_G | x_G, K_G \sim$

$$\pi_G \text{ Gamma} (\eta_2 + K_G, \lambda_2 - \log(x_G)) + (1 - \pi_G) \text{ Gamma} (\eta_2 + K_G - 1, \lambda_2 - \log(x_G))$$
STEP 3b: Update for α_H

1. Sample $x_H|\alpha_H \sim \text{Beta}(\alpha_H, L)$

2. Let π_H equal

$$\pi_G = \frac{\eta_3 + K_H - 1}{\eta_3 + K_H - 1 + L(\lambda_3 - \log(X_H))}$$

3. Sample $\alpha_G|x_G, K_G \sim$

$$\pi_H \text{ Gamma (} \eta_3 + K_H, \lambda_3 - \log(x_H)) \ + \ (1 - \pi_G) \text{ Gamma (} \eta_3 + K_H - 1, \lambda_3 - \log(x_H))$$

STEP 4: Update error precision τ_ϵ

Sample $\tau_\epsilon \sim \text{Gamma}(\alpha^*, \lambda^*)$ where

$$\alpha^* = \frac{N}{2} + \eta_1$$

$$\lambda^* = \lambda_1 + \frac{1}{2} \sum_{i=1}^{N} \left(Y_i - \beta_{0s_i} - \sum_{l=1}^{L} X_{li}\beta_{z_l}^* \right)^2$$