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Abstract

The quantile residual lifetime analysis is often performed to evaluate the distri-

butions of remaining lifetimes for survival and competing risks data. The current

literature is limited to independent data. We propose a pseudo-value approach to

compare quantile residual lifetimes of multiple groups for dependent survival and com-

peting risks data. The pseudo-value approach is extended to dependent event times

and dependent censoring times. The empirical Type I errors and statistical power of

the proposed study are examined in a simulation study, which shows that the proposed

method controls Type I errors very well and has higher power than some existing

method. The proposed method is illustrated by a bone marrow transplant data set.
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1. INTRODUCTION

Residual life is the residual lifetime of a patient given that the patient survived at least to

time t. Statistical inference on residual life may provide patients and clinicians valuable

information on evaluating treatments. The quantile residual lifetime is often preferred when

the distribution of the residual lifetime is skewed (Ma and Wei 2012). The statistical liter-

ature on quantile residual lifetime includes Jung, Jeong and Bandos (2009) and Kim, Zhou

and Jeong (2012). Jung et al. (2009) proposed a time-specific log-linear regression model

and Kim et al. (2012) studied empirical likelihood inference to test parameters of interest.

However, they are restricted to independent survival data.

The cause-specific residual life distribution was proposed by Jeong and Fine (2009) for

the competing risks setting. The cause-specific residual life distribution is defined as the

residual cumulative incidence function conditional on event-free survival to a given time t

(Jeong and Fine 2009). A nonparametric test was developed for testing one sample and

two samples (Jeong and Fine 2013). As in residual lifetime analysis for survival data, this

is limited to independent data. Statistical inference for comparing multiple groups is also

desirable in practice.

The pseudo-value technique has been used for survival and competing risks data (Andersen,

Klein and Rosthøj 2003; Logan, Zhang and Klein 2011). Graw, Gerds and Schumacher

(2009) further studied the asymptotics of pseudo-value regression for independent data.

Ahn and Mendolia (2014) examined comparisons of the median survival distributions using

the pseudo-value approach. Relying on generalized estimating equations makes statistical

inference on dependent data feasible. Although Logan et al. (2011) studied the pseudo-value

technique for dependent event times, it was restricted to independent censoring times. A

further study allowing for dependent censoring times needs to be addressed.

We propose a pseudo-value-based method to test the equality of quantile residual lifetimes
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of multiple groups for dependent survival and competing risks data. We extend the result

of Logan et al. (2011) to dependent censoring in Section 2. In Section 3, we describe the

proposed test statistic based on pseudo-values and its asymptotic distribution. A simulation

study is performed in Section 4. A bone marrow transplant example is illustrated in Section

5. Finally, we have a brief conclusion in Section 6.

2. PSEUDO-VALUE APPROACH

In this section, we review the pseudo-value approach for competing risks and survival settings

and extend it to dependent events and dependent censoring times. First of all, we consider

the competing risks setting and define some notations. We assume that there are m clusters

and each cluster has ` individuals. Let n = m × ` be the total sample size. Although the

cluster size is fixed at `, as in Spiekerman and Lin (1998) the clusters may have different sizes

by defining censoring times as zero when observed times are missing. For simplicity, assume

that there are two causes of failure ε ∈ {1, 2}. Let Tij, Cij, εij, and Zij be the event time,

censoring time, cause of failure, and covariate vector of individual j in cluster i, respectively,

for i = 1, . . . ,m and j = 1, . . . , `. Let Ti = {Tij, j = 1, . . . , `},Ci = {Cij, j = 1, . . . , `}, εi =

{εij, j = 1, . . . , `}, and Zi = {Zij, j = 1, . . . , `}. Suppose that (Ti, εi,Ci,Zi) are independent

and identically distributed (iid). We assume that the Cij’s do not depend on the Zij’s and

the Tij’s are independent of the Cij’s for i = 1, . . . ,m and j = 1, . . . , `. Thus, while event

times and censoring times for the same individual are independent, the event times may be

correlated within the same cluster. Similarly, the censoring times may be correlated within

the same cluster. We further assume that the Cij’s have a common distribution G although

censoring times may be correlated within a cluster. Let Xij = min(Tij, Cij) be the observed

time.

We consider the marginal cumulative incidence function for cause 1. Let F1(t) = P (T ≤

t, ε = 1) and Nkij(t) = I(Tij ≤ t)I(εij = k)I(Tij ≤ Cij), where k = 1, 2. Define Nij(t) =

N1ij(t) + N2ij(t). We further define a risk set indicator Yij(t) = I{t ≤ Xij} and Y (t) =∑m
i=1

∑`
j=1 Yij. Following Chen, Kramer, Greene and Rosenberg (2007), we define the em-
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pirical cause-specific cumulative hazard functions as Ĥ1(t) =
∫ t
0
dĤ1(u), where

dĤ1(t) =
m∑
i=1

∑̀
j=1

dN1ij(t)

Y (t)
.

Then, the cumulative incidence estimate can be estimated by F̂1(t) =
∫ t
0
Ŝ(u−)dĤ1(u),

where Ŝ(u−) is the Kaplan-Meier estimate of event-free survival, in which the patient has

not experienced either cause 1 or cause 2 (Logan et al. 2011). This estimate is still a consistent

estimate of F1(t) even for dependent competing risks events and dependent censoring times

(Zhou and Fine 2012).

A pseudo-value at time t of the jth individual in the ith cluster for F1(t) is defined by

P f
ij(t) = nF̂1(t) − (n − 1)F̂−ij1 (t) for i = 1, . . . ,m and j = 1, . . . , `, where F̂−ij1 (t) is the

cumulative incidence estimate obtained by omitting the jth individual in the ith cluster.

Logan et al. (2011) studied marginal cumulative incidence and survival models for clustered

data using the pseudo-value approach. Assuming mutually independent censoring times,

they showed that i) P f
ij(t) is approximately independent of P f

kg(t) for i 6= k as n → ∞; and

ii) limn→∞E(P f
ij(t)|Zij) = F1(t|Zij). The pseudo-values can be used as a response variable

in a generalized estimating equation (GEE) setting as described in Andersen et al. (2003),

Logan et al. (2011), and Klein and Andersen (2005). Because only a single fixed time point

is considered in this paper, we illustrate the use of the GEE at a fixed time point t. To

model the marginal cumulative incidence function at time t, we consider g(F1(t|Z)) = β
′
Z.

Let µ = F1(t|Z) = g−1(β
′
Z), Pf

i = (P f
i1(t), . . . , P

f
i`(t)), and µi = (µi1(t), . . . , µi`(t)) for

i = 1, . . . ,m. Then, the GEE is defined as follows:

∑
i

(∂µi

∂β

)′
V−1i (Pf

i − µi) ≡
∑
i

Ui(β) = 0,

where Vi is a `× ` working correlation matrix for cluster i. Then,
√
m(β̂ − β) converges in

distribution to N(0,Σ), see Logan et al. (2011) and Liang and Zeger (1986). To estimate Σ,

the sandwich estimator is used:

Σ̂β = I(β̂)−1V̂ ar{U(β̂)}I(β̂)−1,
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where

I(β) =
∑
i

(∂µi

∂β

)′
V−1i

(∂µi

∂β

)
, V̂ ar{U(β̂)} =

∑
i

Ui(β̂)Ui(β̂)
′
.

Therefore, dependent competing risks data are readily handled by considering within-cluster

correlation between individuals.

Next, we discuss extending this to the setting where the censoring times may also be

correlated within a cluster. The cumulative incidence estimate F̂1(t) can be rewritten as

F̂1(t) =
1

n

m∑
i=1

∑̀
j=1

N1ij(t)

Ĝ(Xij)
,

where Ĝ(t) is the Kaplan-Meier estimate of the censoring survival distribution G(t) obtained

by treating censored observations as events (Scheike, Zhang and Gerds 2008). Let N c
ij(t) =

I(Cij ≤ t) and Hc(t) be the cumulative hazard function by treating censored observations

as events. Define

π(t) = lim
m→∞

1

m

m∑
i=1

∑̀
j=1

I(Xij ≥ t).

For dependent event times and dependent censoring times, Zhou and Fine (2012) showed

Ĝ(t) converges in probability to G(t) uniformly on t ∈ [0, T ] and
√
m{Ĝ(t)−G(t)} converges

weakly to a tight Gaussian process with covariance function Σc(s, t) = E{Ici (s)Ici (t)}, where

Ici (t) =
∑̀
j=1

∫ t

0

1

π(u)
dM c

ij(u),

and M c
ij(t) = N c

ij(t)−
∫ t
0
I(Xij ≥ u)dHc(u). As in Appendix, similarly to Logan et al. (2011),

we can show

P f
ij(t) =

N1ij(t)

G(Xij)
+

∫ Xij

0

P (Tf ≤ t, ε = 1|Tf ≥ u)

G(u)
dM c

ij(u) +Op(m
−1/2), (1)

where Tf is event time of cause 1. Note that the first two terms are the same as those in

Equation (2) of Logan et al. (2011). Because censoring times are independent of {Zij, i =

1, . . . ,m, j = 1, . . . , `}, limm→∞E{P f
ij(t)|Zij} = F1(t|Zij). In addition, Pf

i (t) = (P f
i1(t), . . . , P

f
i`(t))

T ’s

are asymptotically iid for i = 1, . . . ,m. The asymptotics of the GEE can be justified simi-

larly to Theorem 2 of Graw et al. (2009). This extends the result of Logan et al. (2011) to

dependent censoring times.
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For the survival setting, let the survival function S(t) be event-free survival, in which

the patient has not experienced any causes. The pseudo-value for survival is defined as

P s
ij(t) = nŜ(t) − (n − 1)Ŝ−ij(t) for i = 1, . . . ,m and j = 1, . . . , `, where Ŝ−ij(t) is the

Kaplan-Meier estimate obtained by omitting the jth individual in the ith cluster. The

consistency of the Kaplan-Meier estimate for dependent events and dependent censoring was

shown by Zhou and Fine (2012). Like the competing risks setting, we can show

P s
ij(t) =

Nij(t)

G(Xij)
+

∫ Xij

0

P (Ts ≤ t|Ts ≥ u)

G(u)
dM c

ij(u) +Op(m
−1/2), (2)

where Ts is event time of any cause. As in the competing risks setting, limm→∞E{P s
ij(t)|Zij} =

S(t|Zij) and Ps
i (t) = (P s

i1(t), . . . , P
s
i`(t))

T ’s are asymptotically iid, which extends the result

of Logan et al. (2011) for dependent censoring times. The GEE setting can be justified as

shown in Graw et al. (2009).

3. METHOD

In this section, we propose pseudo-value-based methods for testing residual lifetime for com-

peting risks and survival settings and study properties of the proposed methods. Consider

the competing risks setting first. Let qτ be the τth quantile of the cause 1 residual life distri-

bution given event-free survival to t. Jeong and Fine (2009) defined the residual cumulative

incidence function given event-free survival to time t for cause 1 as follows:

P (T − qτ ≤ t, ε = 1|T > t) =
F1(qτ + t)− F1(t)

S(t)
.

The τth quantile of the cause 1 residual lifetime qτ given event-free survival to time t satisfies

F1(qτ + t)− F1(t)

S(t)
= τ.

Let A(qτ ) = F1(qτ + t) − F1(t) − τS(t) and Â(qτ ) = F̂1(qτ + t) − F̂1(t) − τ Ŝ(t). Jeong and

Fine (2009) showed that A(qτ ) = 0 has a unique root. In practice, q̂τ is uniquely determined

by defining it as the smallest q at which {F̂1(q + t) − F̂1(t)}/Ŝ(t) crosses τ (Jeong and

Fine 2009), where F̂1(t) and Ŝ(t) are the cumulative incidence estimate of cause 1 and the

6



Kaplan-Meier estimate at time t, respectively. We assume that F1(t) is absolutely continuous

and f1(t) = dF1(t)/dt is positive on some neighborhood of qτ + t. Jeong and Fine (2009)

showed the consistency of q̂τ for independent data. Similar arguments can be used to show

the consistency of q̂τ for dependent data as follows: Â(qτ ) converges to A(qτ ) due to the

consistency of Ŝ(t) and F̂1(t). Because of absolute continuity of F1(t) and positivity of f1(t)

on some neighborhood of qτ + t, A(qτ ) has a unique solution. Thus, q̂τ is consistent given τ .

Assume that there are ν groups to compare. Under the null hypothesis, we have q1τ =

· · · = qντ ≡ q0τ , where qiτ is the τth quantile of the cause 1 residual life distribution given

event-free survival to t for group i, i = 1, . . . , ν. Due to the uniqueness of the solution for

A(qτ ) = 0, this is equivalent to testing A(q1τ ) = · · · = A(qντ ) ≡ A(q0τ ) = 0.

To compare A(·) values at q0τ of ν groups, we use the pseudo-value approach. Given qτ ,

the pseudo-value for A(·) of individual j in cluster i is defined as Bij(qτ ) = P̂ f
ij(qτ + t) −

P̂ f
ij(t)− τ P̂ s

ij(t) for i = 1, . . . ,m and j = 1, . . . , `. Let q0τ be the solution of A(x) = 0. Using

(1) and (2), we can show i)

E{Bij(q0τ )|Zij} = F1(q0τ + t|Zij)− F1(t|Zij)− τS(t|Zij) +Op(m
−1/2),

and ii) Bi(q0τ ) = (Bi1(q0τ ), . . . , Bi`(q0τ ))
T ’s are asymptotically iid for i = 1, . . . ,m. The

GEE use can be justified as in Theorem 2 of Graw et al. (2009). To apply the GEE, define

an indicator variable Ik for group k such that for k = 1, . . . , ν,

Ik =


1, if an individual belongs to the kth group,

0, otherwise.

Thus, β = (β1, . . . , βν)
T is to be estimated. To avoid an identifiability issue, without loss

of generality, we fix βν at 0 and estimate β−ν = (β1, . . . , βν−1)
T . Let q̂0τ be the solution of

Â(q0τ ) = 0 based on the pooled data. Then, we define pseudo-values as Bij(q̂0τ ). Assuming

N1ij(x) is continuous at x = q0τ + t with probability one, under the null hypothesis we can

show that Bij(q̂0τ ) converges to Bij(q0τ ) in probability as in Appendix. An identity link

function can be used for the GEE. Testing the null hypothesis A(q1τ ) = · · · = A(qντ ) ≡
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A(q0τ ) = 0 is equivalent to testing β−ν = 0 given q0τ . Due to the consistency of q̂0τ , the test

statistic is given by

X2 = mβ̂
′

−νΣ̂
−1
β−ν

β̂−ν ,

where β̂−ν is found by numerically solving the GEE with Bij(q̂0τ )’s and Σ̂β−ν is the corre-

sponding sandwich estimate of the covariance matrix of β̂−ν . Under the null hypothesis, X2

follows a chi-squared distribution with degrees of freedom ν − 1.

For the survival setting, let ζτ be the τ -quantile residual life function of group i at time

t. Then, it satisfies

P (T ≥ t+ ζτ ) = (1− τ)P (T ≥ t) or S(t+ ζτ ) = (1− τ)S(t).

Define C(ζ) = S(t + ζτ ) − (1 − τ)S(t). Let ζ0τ be the unique solution of C(ζ) = 0. Then,

ζ̂0τ can be defined as the smallest ζτ at which Ŝ(t + ζτ ) − (1 − τ)Ŝ(t) crosses zero, where

Ŝ(t) is the Kaplan-Meier estimate at time t based on the pooled data. The consistency

of ζ̂0τ can be shown similarly to q̂0τ . Assume that there are ν groups to compare. Under

the null hypothesis, we have ζ1τ = · · · = ζντ ≡ ζ0τ , where ζiτ is the τ -quantile residual life

function of group i at time t. Like the competing risks setting, this is equivalent to testing

C(ζ1τ ) = · · · = C(ζντ ) ≡ C(ζ0τ ) = 0. The pseudo-value approach can be applied to compare

C(·) values at ζ0τ of ν groups. Let Dij(ζτ ) = P̂ s
ij(t + ζτ )− (1− τ)P̂ s

ij(t) for i = 1, . . . , ` and

j = 1, . . . ,m. Using (2), we can show i)

E{Dij(ζ0τ )|Zij} = S(t+ ζ0τ |Zij)− (1− τ)S(t|Zij) +Op(m
−1/2),

and ii) Di(ζ0τ ) = (Di1(ζ0τ ), . . . , Di`(ζ0τ ))
T ’s are asymptotically iid for i = 1, . . . ,m. Similarly

to the proof of convergency of Bij(q̂0τ ), it can be shown that Dij(ζ̂0τ ) converges to Dij(ζ0τ )

under the null hypothesis. Using the Dij(ζ̂0τ )’s, we can use the GEE similarly to the com-

peting risks setting to test C(ζ1τ ) = · · · = C(ζντ ) ≡ C(ζ0τ ) = 0 due to the consistency of

ζ̂0τ .
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Table 1: Empirical Type I error rates from comparing four groups for competing risks data

γ m Empirical Type I errors

0 100 0.058

200 0.052

400 0.051

0.5 100 0.072

200 0.059

400 0.056

4. SIMULATION

We perform a simulation study in this section. The simulation size is 5,000 replicates through-

out this section. Consider the competing risks setting first. We consider comparing four

groups at a significance level α = 0.05. A positive stable frailty is used to generate corre-

lated event times and censoring times (Logan et al. 2011). Each cluster has eight individuals,

with two individuals in each of the four groups being compared. We consider m = 100, 200,

and 400. For each cluster, a random effect w is generated from a positive stable frailty

distribution with parameter γ, where the Laplace transformation of the standard positive

stable distribution is L(s) = exp(−sγ). Logan et al. (2011) showed that a marginal model

which has proportional subdistribution hazards is obtained by using a positive stable frailty.

Two γ values are used: 1 for independent data and 0.5 for dependent data. As discussed in

Logan et al. (2011), dependent competing risks data for each cluster can be obtained from

F1(t|w) = 1− {1− p(1− e−t)}w,

F2(t|w) = (1− p)w(1− e−t).
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Table 2: Comparison to Jeong and Fine (2013) for competing risks data with two groups

Empirical Type I error Empirical power

γ m JF PM JF PM

0 50 0.020 0.052 0.095 0.174

100 0.014 0.050 0.155 0.308

200 0.018 0.050 0.362 0.524

0.5 50 0.034 0.057 0.056 0.215

100 0.008 0.050 0.110 0.363

200 0.004 0.050 0.317 0.634

Independent of event times, the corresponding censoring times for each cluster are generated

from

G(t|wc) = e−λwct,

where a random effect wc is generated from a positive stable frailty distribution with two

γ values: 1 for independent data and 0.5 for dependent data. We set p to 0.5 and 0.27 for

γ = 1 and 0.5, respectively. We select λ to generate 25% of events with cause 1, 25% of

events with cause 2, and 50% of censoring. Given a patient survived event free to at least

time t = 0.3, the 0.25th quantile of the cause 1 residual lifetimes are compared between the

four groups. The true 0.25th quantile of the cause 1 residual lifetimes are log(2) for γ = 1

and 1.327 for γ = 0.5 in all four groups. The identity link function with an independence

working correlation matrix is used for the pseudo-value approach. We also examined the

exchangeable working correlation matrix and the unstructured working correlation matrix,

but there was negligible difference from the result with the independence working correlation

matrix. Table 1 shows the summary of 5,000 iterations. It shows that the proposed method

controls Type I error rates very well. As m increases, the empirical Type I error rates become

closer to 0.05.
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Next, we compare the performance of the proposed method and Jeong and Fine (2013).

To compare Type I error rates, we use the same setting as above except that we consider

comparing two groups instead of four groups because Jeong and Fine (2013) is restricted

to testing two groups. As a result, each cluster has four individuals, with two individuals

in each of the two groups being compared. Table 2 summarizes the results. “JF” and

“PM” indicate Jeong and Fine (2013) and the proposed method, respectively. The proposed

method controls Type I error rates very well for independent and dependent data. Jeong

and Fine (2013) is somewhat conservative, which was also observed in the simulation studies

of Jeong and Fine (2013). It appears that Jeong and Fine (2013) becomes more conservative

for dependent data under our simulation setting. To examine statistical power, we generate

event times with i) when γ = 1, p = 0.4 for group 1 and p = 0.6 for group 2; and ii) when

γ = 0.5, p = 0.3 for group 1 and p = 0.8 for group 2. We choose λ to generate 50% of

censoring. The true 0.25th quantiles of the cause 1 residual lifetimes for groups 1 and 2 are

log(8/3) and log(12/7) for γ = 1, and 1.152 and 0.429 for γ = 0.5. As we can see from Table

2, the pseudo-value approach has higher power than Jeong and Fine (2013). Compared to

the independent data, the difference of empirical statistical powers between the proposed

test and Jeong and Fine (2013) is larger in the dependent data. This is likely because the

pseudo-value-based test effectively utilizes the within cluster correlation in this stratified

simulation design.

For the survival setting, we consider four distributions for survival and censoring distribu-

tions: exponential distribution, Weibull distribution, Gompertz distribution, and log-logistic

distribution. For x ≥ 0, their probability density functions are

• Exponential distribution: λ1 exp(−λ1x);

• Weibull distribution: 2λ2x exp(−λ2x2);

• Gompertz distribution: λ3 exp(x/3) exp[3λ3{1− exp(x/3)}];

• Log-logistic distribution: λ4/(1 + λ4x)2.
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The corresponding survival functions are exp(−λ1x), exp(−λ2x2), exp[3λ3{1 − exp(x/3)}],

and 1/(1 + λ4x), respectively. We compare four groups to examine empirical Type I error

rates at the significance level α = 0.05. Each cluster is assumed to have eight individuals

with two individuals in each of the four groups being compared. We consider m = 100, 200,

and 400. The identity link function with an independence working correlation matrix is used

for the pseudo-value approach as in the competing risks setting. The exchangeable working

correlation matrix and the unstructured working correlation matrix were also examined, but

there was negligible difference from the result with the independence working correlation

matrix as in the competing risks setting.

Normal copulas are employed to generate correlated survival times and censoring times

within each cluster. The 8× 8 exchangeable correlation matrix C with correlation ρ = 0 and

0.5 is used for the normal copulas, i.e.,

C =



1 ρ . . . ρ

ρ 1 . . . ρ

...
...

. . .
...

ρ ρ . . . 1


.

Thus, ρ = 0 means that the survival and censoring times of the four groups are mutually

independent. On the other hand, the survival and censoring times within the same cluster

are correlated with ρ = 0.5. Using eight-dimensional random vectors on the unit cube

[0, 1]8 from normal copulas given ρ, the survival times are generated corresponding to their

marginal survival distributions. Independent of the survival times, the censoring times are

generated using normal copulas with the same ρ that is used for survival times. For the

detailed use of copulas, see Yan (2007).
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Table 3: Empirical Type I error rates when the survival distributions of the four groups are

equal.

ρ m EEEE GGGG LLLL WWWW

0 100 0.056 0.060 0.053 0.056

200 0.052 0.054 0.054 0.051

400 0.050 0.051 0.055 0.049

0.5 100 0.061 0.066 0.063 0.059

200 0.062 0.062 0.058 0.053

400 0.051 0.053 0.052 0.051

Table 4: Empirical Type I error rates when the survival distributions of the two groups are

different from the other two groups’ survival distributions.

ρ m EEGG EELL EEWW GGLL GGWW WWLL

0 100 0.058 0.053 0.052 0.053 0.062 0.046

200 0.053 0.052 0.054 0.048 0.056 0.046

400 0.053 0.053 0.051 0.047 0.052 0.046

0.5 100 0.067 0.054 0.057 0.059 0.062 0.051

200 0.060 0.057 0.053 0.057 0.055 0.052

400 0.052 0.049 0.048 0.052 0.053 0.048
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Table 5: Comparison to Jeong and Fine (2013) for survival data with two groups

Empirical Type I error Empirical power

EE GG EG EE GG EG

ρ m JF PM JF PM JF PM JF PM JF PM JF PM

0 50 0.019 0.058 0.021 0.057 0.021 0.055 0.094 0.164 0.179 0.273 0.123 0.211

100 0.017 0.046 0.019 0.046 0.017 0.048 0.171 0.268 0.352 0.458 0.224 0.350

200 0.021 0.050 0.021 0.050 0.021 0.051 0.343 0.454 0.662 0.746 0.466 0.590

0.5 50 0.010 0.061 0.014 0.047 0.012 0.062 0.074 0.182 0.156 0.303 0.102 0.234

100 0.010 0.050 0.010 0.055 0.011 0.052 0.154 0.299 0.339 0.514 0.211 0.399

200 0.011 0.052 0.014 0.047 0.012 0.048 0.337 0.520 0.678 0.807 0.461 0.659

To examine empirical Type I errors at the significance level α = 0.05, survival times are

generated from exponential distribution, Weibull distribution, Gompertz distribution, and

log-logistic distribution with λ1 = 2/3× log 2, λ2 = 4/15× log 2, λ3 = (log 2)/3/{exp(2/3)−

exp(1/6)}, and λ4 = 1, respectively. The corresponding censoring times are generated from

the same distribution that is used for survival times, which leads to 50% of censoring rate.

Given that a patient survived event free at least to time t = 0.5, the true residual survival

median ζ0τ is 1.5 for each survival distribution, where τ = 0.5. Survival probabilities at

t = 0.5 are exp{−(log 2)/3}, exp{−(log 2)/15},

exp[(log 2){1 − exp(6)}/{exp(2/3) − exp(1/6)}], and 2/3 for the exponential distribution,

Weibull distribution, Gompertz distribution, and log-logistic distribution, respectively. The

residual survival median of the four groups are compared given a patient survived event free

at least to time t = 0.5. Tables 3 and 4 show empirical Type I error rates i) assuming four

groups have the same distributions; and ii) assuming two groups have a different survival

distribution from the other two groups. E, W, G, and L indicate the exponential distribution,

Weibull distribution, Gompertz distribution, and log-logistic distribution, respectively. For

example, EEGG indicates that two groups have the exponential survival distributions and
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the other two groups have the Gompertz distributions. The proposed method controls Type I

error rates very well for independent and dependent survival data. As the number of clusters

increases, the empirical Type I error rates become closer to 0.05 in general.

To compare the proposed method to Jeong and Fine (2013), we consider two-group

comparison. The two-sample test statistic of Jeong and Fine (2013) for competing risks

data is modified by assuming that there are no competing risks. We examine three cases:

i) two groups have exponential survival distributions (EE); ii) two groups have Gompertz

survival distributions (GG); and iii) one group has an exponential survival distribution and

the other group has a Gompertz survival distribution (EG). Censoring times are generated

from the same distribution that is used for survival times to generate 50% of censoring rate.

To evaluate Type I error rates, we use the same parameters for each survival distribution as

those in the Type I error testing of the four-group comparison. Table 5 shows the summary

of 5,000 replicates. While the method of Jeong and Fine (2013) tends to be conservative,

the proposed method controls Type I errors very well. As the number of clusters increases,

the empirical Type I error rates of the proposed method get closer to 0.05 in general. It

appears that the empirical Type I error rates of Jeong and Fine (2013) for ρ = 0.5 become

smaller than those for ρ = 0 because of dependent event and censoring times. To compare

statistical power between Jeong and Fine (2013) and the proposed method, we consider that

the median residual lifetimes of the two groups given that a patient survived event free at

least to time t = 0.5 are 1.5 and 2, respectively. The parameters for each survival distribution

are chosen accordingly. Censoring times are generated from the same distribution that is

used for survival times, which results in 50% of censoring rate. As can be seen in Table 5,

the proposed method has higher statistical power than Jeong and Fine (2013).

5. EXAMPLE

The data for illustration were collected by the Center for International Blood and Marrow

Transplant Research (Shaw, Kan, Spellman, Aljurf, Ayas, Burke, Cairo, Chen, S. M. Davies,

Gajewski, Gale, Godder, Hale, Heemskerk, Horan, Kamani, Kasow, Chan, Lee, Leung,
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Lewis, Miklos, Oudshoorn, Petersdorf, Ringden, Sanders, Schultz, Seber, Setterholm, Wall,

Yu and Pulsipher 2010) and consisted of pediatric patients with myelodysplastic syndrome

undergoing a first allogeneic transplantation from 1993 to 2006. The study population in this

example consisted of 1453 patients from 105 transplant centers. Three disease groups were

compared for analysis: acute lymphoblastic leukemia (ALL), acute myelogenous leukemia

(AML), and chronic myelogenous leukemia (CML). There were 553 patients with AML, 756

patients with ALL, and 144 patients with CML. Disease-free survival (DFS) and relapse

were outcomes of interest in this analysis. Treatment-related mortality was treated as the

competing risk for relapse. Significant center effects on DFS and relapse rates were found

using the random effect score test of Commenges and Andersen (1995). Their p-values were

smaller than 0.001. Censoring times for LFS and relapse were also correlated because their

p-values from the score test by treating censoring observations as events were less than 0.001.

The independence working correlation matrix with the identity link function was used for

the GEE with the pseudo-values.

First of all, the 0.25th quantile residual lifetimes of LFS given patients survived disease

free at least one year were compared between the three diseases. The two upper plots of

Figure 1 show the Kaplan-Meier DFS curves and cumulative incidence curves of relapse

of the three disease groups. The lower-left plot shows the estimated residual disease-free

survival (RDFS) of the three groups given disease-free survival to at least one year, where

RDFS(t) = S(12 + t)/S(12). The dotted horizontal line indicates RDFS = (1 − τ) = 0.75,

where τ = 0.25. The estimated 0.25th quantile residual lifetimes of AML, ALL, and CML

were 121, 71, and 18 months, respectively. The 0.25th quantile residual lifetime of CML

appears to be different from AML and ALL. The proposed pseudo-value approach found a

significant difference with p-value 0.038 at the significance level 0.05. Next, we considered

0.25th quantile cause-specific residual lifetimes of relapse given patients survived disease

free to at least six months. The lower-right plot of Figure 1 shows the residual cumulative
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Figure 1: Estimated DFS and relapse rates for disease groups
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incidence (RCI) curves of relapse given disease-free survival to at least six months for the

three disease groups, where RCI(t) = {F1(t + 6) − F1(6)}/S(6). The dotted horizontal

line represents RCI = 0.25. The estimated 0.25th quantile cause-specific residual lifetimes

of AML, ALL, and CML were 49, 22, and 29 months, respectively. The p-value from the

proposed method was 0.314, which was not statistically significant.

6. CONCLUSION

We have proposed the pseudo-value approach to compare residual lifetimes for survival and

competing risks data. The pseudo-value approach was extended to dependent event times

and dependent censoring times assuming that event times are independent of censoring times

and censoring times do not depend on any covariates. The simulation study showed that the

proposed method controlled Type I errors satisfactorily for independent and dependent data

and had higher power than Jeong and Fine (2013). A bone marrow transplant data set was

illustrated as an example. An interesting future research problem includes a pseudo-value

approach for residual life to adjust for multiple variables.
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APPENDIX

A. Proof of (1) and (2)

We prove (1) and (2) by following the arguments of Logan et al. (2011). We consider the

competing risks setting to show (1). The proof of (2) can be similarly done. We have

P f
ij(t) = nF̂1(t)− (n− 1)F̂−ij1 (t)

=
m∑
a=1

∑̀
b=1

N1ab(t)

Ĝ(Xab)
−
∑∑
(a,b)6=(i,j)

N1ab(t)

Ĝ−ij(Xab)

=
N1ij(t)

G(Xij)
+
∑∑
(a,b) 6=(i,j)

N1ab(t)
[{ 1

Ĝ(Xab)
− 1

G(Xab)

}
−
{ 1

Ĝ−ij(Xab)
− 1

G(Xab)

}]
+N1ij(t)

{ 1

Ĝ(Xij)
− 1

G(Xij)

}
.
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The third term N1ij(t){1/Ĝ(Xij)− 1/G(Xij)} is Op(m
−1/2) due to the consistency of Ĝ(t).

Consider the second term. Let

R(t) =
m∑
a=1

∑̀
b=1

I(Xab ≥ t), M c(t) =
m∑
a=1

∑̀
b=1

M c
ab(t), M

c(−ij)(t) =
∑∑
(a,b)6=(i,j)

M c
ab(t).

Using

1

Ĝ(Xab)
− 1

G(Xab)
=

1

Ĝ(Xab)

∫ Xab

0

Ĝ(u−)

G(u)R(u)
dM c(u),

the second term is equal to

∑∑
(a,b)6=(i,j)

N1ab(t)
{ 1

Ĝ(Xab)

∫ Xab

0

Ĝ(u−)

G(u)R(u)
dM c(u)− 1

Ĝ−ij(Xab)

∫ Xab

0

Ĝ−ij(u−)

G(u)R(u)
dM c(−ij)(u)

}
.

Thus, the second term becomes∑∑
(a,b)6=(i,j)

N1ab(t)

Ĝ(Xab)Ĝ−ij(Xab)

×
∫ Xab

0

{Ĝ−ij(Xab)Ĝ(u−)

G(u)R(u)
− Ĝ(Xab)Ĝ

−ij(u−)

G(u)R−ij(u)

}
dM c(−ij)(u)

+
∑∑
(a,b)6=(i,j)

N1ab(t)

Ĝ(Xab)

∫ Xab

0

Ĝ(u−)

G(u)R(u)
dM c

ij(u).

(3)

Consider the first term of (3). It can be seen that

n(n− 1)√
m

∫ Xab

0

{Ĝ−ij(Xab)Ĝ(u−)

G(u)R(u)
− Ĝ(Xab)Ĝ

−ij(u−)

G(u)R−ij(u)

}
dM c(−ij)(u)

=

∫ Xab

0

{(n− 1)Ĝ−ij(Xab)Ĝ(u−)

G(u)R(u)/n
− nĜ(Xab)Ĝ

−ij(u−)

G(u)R−ij(u)/(n− 1)

}dM c(−ij)(u)√
m

converges in distribution to some random variable Kab. Because n = m × `, the first term

of (3) is asymptotically equivalent to

√
m

n

∑∑
(a,b) 6=(i,j)

N1ab(t)Kab(t)

(n− 1)Ĝ(Xab)Ĝ−ij(Xab)
= Op(m

−1/2).

We can show that the second term of (3) is asymptotically equivalent to

∑∑
(a,b)6=(i,j)

N1ab(t)

G(Xab)

[ ∫ Xab

0

1

R(u)
dM c

ij(u)
]
.
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Using the definition of M c
ij(t), we have∫ Xab

0

1

R(u)
dM c

ij(u) =

∫ Xij

0

I(u ≤ Xab)

R(u)
dM c

ij(u).

Thus, we have∑∑
(a,b)6=(i,j)

N1ab(t)

G(Xab)

[ ∫ Xab

0

1

R(u)
dM c

ij(u)
]

=

∫ Xij

0

1

R(u)/n

1

n

∑∑
(a,b)6=(i,j)

N1ab(t)I(Xab ≥ u)

G(Xab)
dM c

ij(u).

Consider

1

n

∑∑
(a,b)6=(i,j)

N1ab(t)I(Xab ≥ u)

G(Xab)
. (4)

By the law of large numbers, (4) converges in probability to

E
{N1ab(t)I(Xab ≥ u)

G(Xab)

}
.

We have

E
{N1ab(t)I(Xab ≥ u)

G(Xab)

}
= E

[
E
{I(Tab ≤ t)I(εab = 1)I(Tab ≤ Cab)I(Xab ≥ u)

G(Xab)

∣∣∣Tab}]
= E

[
E
{I(Tab ≤ t)I(εab = 1)I(Tab ≤ Cab)I(Tab ≥ u)

G(Tab)

∣∣∣Tab}]
= E

[I(Tab ≤ t)I(εab = 1)I(Tab ≥ u)

G(Tab)
E
{
I(Tab ≤ Cab)

∣∣∣Tab}]
= E{I(Tab ≤ t)I(εab = 1)I(Tab ≥ u)}

= P (u ≤ Tf ≤ t, ε = 1).

Note that R(t)/n converges to P (Tf ≥ u)P (C ≥ u) = P (Tf ≥ u)G(u). Then, the third term

is asymptotically equivalent to∫ Xij

0

P (Tf ≤ t, ε = 1|Tf ≥ u)

G(u)
dM c

ij(u),

which completes the proof of (1).

B. Proof of convergence of Bij(q̂0τ )

Because Bij(q̂0τ ) = P̂ f
ij(q̂τ + t) − P̂ f

ij(t) − τ P̂ s
ij(t), it is sufficient to show that P̂ f

ij(q̂τ + t)

converges to P̂ f
ij(qτ + t). Using (1), P f

ij(q̂τ + t) is asymptotically equivalent to

N1ij(q̂τ + t)

G(Xij)
+

∫ Xij

0

P (Tf ≤ q̂τ + t, ε = 1|Tf ≥ u)

G(u)
dM c

ij(u).

22



Because N1ij(x) is continuous at x = qτ + t with probability one. Therefore, noting that q̂τ

is consistent, the first term converges in probability to

N1ij(qτ + t)

G(Xij)
.

Because of the continuity of F1(t) and consistency of q̂τ , the second term converges to∫ Xij

0

P (Tf ≤ qτ + t, ε = 1|Tf ≥ u)

G(u)
dM c

ij(u),

which completes the proof.
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