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Abstract. Dirichlet process mixture (DPM) models provide flexible modeling of
the distributions of data as an infinite mixture of distributions from a specified
collection. However, specifying priors for these models in individual data contexts
can be challenging. In this paper, we introduce a scheme which requires the inves-
tigator to specify only simple scaling information. This is used to transform the
data to a fixed scale on which a low information prior is constructed. After draw-
ing samples from the posterior with the rescaled data, we transform the inference
back to the original scale. The low information prior is selected to provide a wide
variety of components for the DPM in order to generate flexible distributions for
the data on the fixed scale. This scale-data-and-rescale-inference method can be
applied to all DPM models with kernel functions closed under a suitable scal-
ing transformation. Construction of the low information prior, however, is kernel
dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples,
we show that the method provides accurate estimates of a diverse collection of
distributions that includes skewed, multimodal, and highly dispersed members.
With the recommended priors, repeated data simulations show favorable perfor-
mance with standard empirical estimates. Finally, we show weak convergence of
posteriors with the proposed priors for both kernels considered.

Keywords: Bayesian nonparametric methods, density estimation, survival
analysis, low-information prior, Dirichlet process mixture model.

1 Introduction

The Dirichlet process mixture (DPM) model was first proposed by Lo (1984). The
marginal distribution of a DPM is a convolution of a kernel density function and a
Dirichlet process, g(y) = /f(y|G)DP(dG). This model uses the Dirichlet process (DP)

of Ferguson (1973) effectively to estimate density functions eventhough the DP almost
surely generates discrete distributions. The DPM model can be written also as:

il ~ f(-0:)
0;|G ~ G
G’|G’07 v~ DP(G(J, Z/).
Here each observation y; arises from a density function f(-|f;) with corresponding pa-
rameter #;, which in turn arises from a discrete distribution G. The distribution G is
randomly generated from a DP with baseline distribution Gy and concentration param-

eter v. The choice of kernel density f(-) determines the mixture components to use in a
DPM; for example, if f(+) is a normal kernel, then this DPM is a mixture of Gaussians.
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2 LIO Priors for Dirichlet Process Mixture Models

The Gaussian kernel was employed and computationally implemented by Escobar and
West (1995). Kottas (2006) considered a mixture of Weibulls model for positive valued
survival data. In contrast with much development of the DPM model itself in various
directions, the prior specification for it is often undertaken in an ad-hoc fashion with
little formal guidance available in the literature. The method proposed here attempts
to address this gap in cases where prior information is scant or intentionally avoided in
the analysis.

The paper is organized as follows. Section 2 introduces general guiding objectives in
constructing low information priors. Sections 3 and 4 apply these notions to the con-
struction of particular prior specifications for Gaussian and Weibull DPMs, illustrating
the priors’ use through implementation on real and simulated data sets. Section 5 con-
ducts sensitivity analysis and compares results from the Gaussian and Weibull DPMs
using the proposed priors with those from empirical methods. Section 6 establishes pos-
terior weak convergence properties with the priors, while Section 7 concludes the paper
with a brief discussion.

2 Rationale and Construction Qutline for

Low-information Omnibus (LIO) Priors

When applying a DPM model to data, the base distribution Gy should be specified with
care, as Gy represents prior knowledge about the distribution of the data. One’s first
instinct might be to use a G with "high variance’ to express ignorance about the prior.
However, the authors of Chapter 23 of (Gelman et al., 2014) point out that using such
a choice of Gy places “a heavy penalty on the introduction of new clusters”. In effect,
a highly dispersed choice of Gg is highly informative, as it implies that all data points
belong to a common cluster in the posterior predictive distribution. They recommended
standardizing the data and using a weakly informative prior that places high probability
on introducing clusters near the support of the data. Similar uses of data scaling and
low information prior can be seen in parametric Bayesian data analysis. Gelman et al.
(2008) suggested specific scaling and a low information prior that is “vague enough to be
used as a default in routine applied work” instead of aiming for a no-information prior.
The latter pursuit can be challenging both theoretically and computationally.

With this rationale, we propose a specific data-scaling that depends on the DPM
kernel and a particular hierarchical specification of the prior on G for the scaled ob-
servations, which jointly serve as a “black box” for various data contexts. The prior
elicitation requires minimal scale-related information (such as a high percentile of the
population distribution for the mixture of Weibulls model and median and 95th per-
centile for the mixture of Gaussians model) from the investigator knowledgeable in the
subject matter. In using the prior, there are three simple steps:

1. With the scaling information provided by the investigator, transform the data to
a suitable fixed scale.

2. Apply the recommended LIO prior to the fixed-scale data and obtain posterior
samples using established computational methods. The prior specification is aimed
at providing a variety of mixture components rich enough to allow flexible mod-
eling of observations on the fixed scale. We thus find a set of hyperparameters
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capable of generating such components. The process of finding these hyperparam-
eters is discussed for two specific DPMs in the sequel.

3. Transform back the sampled parameters representing posterior inference to obtain
originally targeted inference.

Currently, our “black box” has two major applications: one is for the mixture-of-
Gaussians model that is well-suited to modeling real-valued and vector-valued data. The
other is for the mixture-of-Weibulls model, which is more appropriate for time-to-event
data as the Weibull distribution has a positive domain and convenient mathematical
forms for interpretable functions such as the survival and hazard functions.

When considering the kernel density components needed for fixed-scale data, we keep
a modest goal in sight: give a reasonable and rich variety of components a fair chance
to be selected by the data. The DPM model itself is robust in that the information
in the data will be dominant when the prior is sufficiently flexible. Specifics of prior
construction are given in the next two sections. In implementing inference with the
proposed priors, for all computational results reported here, we used the 8th algorithm
of Neal (2000).

3 LIO Prior for DPM of Gaussian Distributions

A Dirichlet process mixture of Gaussian distributions is versatile for estimating distribu-
tions as it is straightforward to apply it to univariate as well as multivariate data. Below,
after establishing notation, we develop LIO prior specifications; first for univariate and
then for multivariate data.

3.1 Model Specification

We use a Gaussian DPM model similar to that employed by the DPdensity function
in the R package DPpackage (Jara et al., 2011). Assume yq,--- ,yn are conditionally
iid vector observations, each of length p. Our approach is to make a location-scale
transformation of the data, apply the DPM model to estimate the transformed data’s
distribution, and then estimate the original data’s distribution by transforming back to
the original scale. More specifically, we choose some quantites a € RP and a positive
definite p x p matrix B to rescale the data as z; = B~1(y; — a). Then, the following
model is fitted to the transformed data:

zil s, Ti ™ No(ps, Ts),
iid
G|Goy ~ DP(Gy,v),
G0|/\, v = ]VOVV?;(IIIM7 )\, kT, \I’),
A~ GCL(CL,\7 b,\),
v ~ Ga(a,b),
W~ Wiky, Wy).
Here No(m, U) denotes a normal distribution with mean m and precision matrix U,
Ga(a,b) denotes a Gamma distribution with shape parameter a and rate parameter b.
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With Wi(k, W) denoting a Wishart distribution with degrees of freedom k and rate
matrix W (expectation kW 1), G has a hierarchical specification, the first level be-
ing a normal-Wishart distribution with parameters m,, A, kr, and ¥ and the sec-
ond level having independent Gamma and Wishart distributions for A and ¥, respec-
tively. To be specific, (¢, T) ~ NoWi(m, A, k, ¥) means p|T, A ~ No(m,\T) and
T|¥, k ~ Wi(k,¥). Because the support of the Wishart distribution is the set of p x p
positive definite matrices, all T; obtained from this model are positive definite. The
concentration is set to have a Ga(a,b) prior with @ = 1 and b = 1 (Escobar and West,
1995).

This model assumes that z; arise from an infinite mixture of normal distributions.
Then they have the cumulative distribution function (CDF)

Fz(z) = sz‘inmi,r,; (Z) = Zp'L(Pp [Ai(z - Ni)]7 VAS Rpu
=1 i=1

where @, is the CDF of a p-variate normal distribution No(0,I), A; comes from the
unique Cholesky decomposition T; = A; A}, and 221 p; = 1. By the correspondence

between the y; and z;, this implies that the original data’s distribution is an infinite
mixture of normal distributions with CDF

Fy(y)=F.B ' (y—a)] = Zpi@p{AiBfl[y — (Bui+a)]}, yeRP

Thus, fitting this model to the transformed data induces a DPM model on the original
data and provides an estimate of its CDF. Through this, one can estimate any function-
als of the distribution of the original data through posterior sampling of 8; = (u;, T;).
We want to transform the data in a way so that, regardless of the original data set,
the transformed data tend to have a similar location and dispersion; this will justify
applying a common model to all transformed data sets. In our location-scale transfor-
mation, a and B are measures of the location and scale of the original data that need
specification. We derive these in turn from contextual choices of some quantiles of the
data’s underlying distribution. The investigator supplies values c; and dj that are rea-
sonable pre-data estimates of the median and the 95" percentile of each component
y1x of the data vector. These percentiles are natural quantities to consider and should
facilitate elicitation based on existing results or expert opinion. The standard deviation
of the k*" component can be estimated roughly by (dj — cx)/2, so we set a = ¢ and
B = Diag{(d — ¢)/2}. The transformation z; = B~!(y; — a), then, is a standardization
of the data based on the investigator’s input.

3.2 Hyperparameter Selection for Scalar Data

We first consider the scalar data case, where p = 1. The DPM model requires choosing
6 scalar hyperparameters of the distribution of Gg : my, k-, ax, by, ky, and Wy, We
consider the standardization of the data in choosing values for the prior moments of G.
Having specified these moments, which are functions of the hyperparameters, we can
solve for the hyperparameters themselves. The following theorem, which is a corollary
of Theorem 3 in Ferguson (1973), is used repeatedly in the derivations that follow:
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Theorem 1. Let p > 1, (u;, T;) ~ G, G ~ DP(«,Gy). Take (po, To) ~ Go. Then
E(u®*) = E(u$*) for k = 1,2 and E(TF) = BE(TE) for k = 1, where v®' = v and
v®2 = vv’ for v € RP.

Given its parameters 6;, the distribution of a data point z; is normal with mean u;,
precision T3, and variance Ti_l. Because the data are standardized, we expect that, on
average, these means are near 0 and variances are near 1. Thus, we set the expectations
of p; and T; ! equal to these values:

0= E(u;) = E(po) = my (1)

and
ky

1=E(T; ) =By = Gor —2)W,

(2)
provided kr > 2, where (ug,To) ~ Gp.

Next, we desire for the p; drawn from the prior distribution to lie near any of the
standardized data points. That is, we choose the prior variance of u; to be large enough
so that the spread of the p;’s matches, a priori, the spread of the standardized data.
Let v = SD(p;); since E(u;) = E(uo) = 0, Theorem 1 implies

v? = Var(u;) = Var(po) = Var[E(uo|To, )] + E[Var(uo|To, )]
bx

=Var(m,) + EQA Ty ) =0+ ENHE(T, ') = ar — 1 (3)

provided ay > 1, using (1), (2), and prior independence of A and Tj.

To choose v, we appeal to Chebyshev’s inequality. Since we are concerned with the
spread of the standardized data, we apply this inequality to its empirical distribution,
which has mean 0 and variance (n — 1)/n. This gives

1 —1
fZI(\zﬂgc)zl—nig for any ¢ > 0.
n ne

Suppose we require that the left hand side is at least m. Chebyshev’s inequality implies
that choosing ¢ = \/(n — 1)/[n(1 — )] satisfies this condition that the proportion 7 of
the z; will fall in [—c¢, ¢]. Now, po|Tp, A has a normal distribution, so we expect that 7
of its density lies within d = 2;_(1_r)/2 standard deviations of its mean, m, = 0. From
(3), we have

E[Var(po|X,To)] = v,

so we expect 7 of the density of pg|Tp, A to lie in [—dv, dv]. Matching this range of values

of o to the range of data points, [—¢, ], gives v = \/(n - 1)/[nzf_(1_w)/2(1 —m)]. To
capture most of the data in this range and to ensure that newly sampled p;’s lie near
these data points, we would choose 7 to be large, say 95% or 99%. Experimentation
suggests that m = 99% works well for a wide range of data distributions, so we recom-
mend this value. Also, the factor (n — 1)/n can be replaced by 1 as this inflates v by a
small amount for most practical sample sizes.
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Having specified v, we have three equations and two constraints for the hyperparam-
eters, requiring kr > 2 and ay > 1. It is unclear how to choose k7, ky, and ay exactly;
however, smaller values give less informative priors for the corresponding Gamma and
Wishart distributed parameters. A choice of a) = 3/2 implies A has a scaled x? distribu-
tion with 3 degrees of freedom, the minimal integer degrees that give a) > 1. Similarly,
in the case p = 1, Wi(k, W) is a scaled x? distribution with k degrees of freedom. Then
3 is the minimal integer degrees of freedom that will satisfy the constraint kr > 2, so
we set kr = 3 and ky = 1. With v, ay, kr, and &y chosen above, equations (1)-(3) give
values for my,, by, and Wy, completing the prior specification.

3.3 Hyperparamter Selection for Vector Data

Here again, we need to specify 6 hyperparameters; the only changes are that m,, is
a vector and Wy, is a matrix. Similar to the univariate case, on the average we ex-
pect z;|p;, T; has mean close to 0 and covariance matrix close to I, since the data is
standardized. This implies

0 = E(pi) = E(po) = my, (4)
and
L= BT = BTy = W 5)

provided k7 > p + 1. Standardization also implies that setting Var(u;) = v?I for some
v > 0 is sensible. Since E(p;) = E(po) = 0, then

by
a,\—l

0?1 = Var(u;) = Var(puo) = Var[E(po|To, \)] + E[Var(uo|To, \)] = I (6)
provided ay > 1 and using (4), (5), and prior independence of A and Ty.

The empirical distribution of the standardized data has mean 0 and covariance matrix
I(n —1)/n. Using a multivariate version of Chebyshev’s Inequality (Chen, 2007) to the
empirical distribution, we get

n

-1
Zl(z?zi <) > 1—% for any ¢ > 0.

1

i
To ensure that the Euclidean length of the z; is within ¢ units of the origin for a
proportion 7 of the data, we set ¢ = \/p(n — 1)/[n(1 — 7)]. Also, po|To, A is normally
distributed with mean m, = 0 and E[Var(uo|To,\)] = v2I, so we expect 7 of the
density of pg to lie within Euclidean distance dv of the origin for some d > 0. Then, on

the average, Var(uo|To, \) is close to v?1, so

7= P(ul o < d2v?[To, ) = Pl (v 1) o < &2 T, \)
~ P(x; < d°).

p(n—1)

Therefore, we set d =, /x2 .. Setting dv = ¢ as before, we get v = e A=)
; z



Y. Shi, M. Martens, A. Banerjee and P. Laud 7

Similar to the univariate case, we set ay = 3/2 and kr = p + 2 and ky = p, the
minimal integer degrees of freedom that satisfy kr > p + 1 as required. Then we can
obtain my, by, and Wy, from equations (3)-(5). Using the fact that x7 , = zf_(l_ﬂ)/Q
for any m, it is easy to see that the choice of hyperparameters for the vector data case
reduces to the scalar case when p = 1.

3.4 A Different View: Prior Specification on Mixture Components

In the preceding, we derived a prior for G by placing constraints on moments of its
distribution. This, in turn, places a prior on the 6;, since 8;|G ~ G. From another view-
point, we have specified a prior for the normal mixture components f(-|8;). We wish
to have mixture components that are suitable for density estimation of the standard-
ized data. Because the majority of data points will lie near 0, we set E(p;) = 0 and
Var(p;) = v in order to ensure that, a priori, most mixture components are centered
near 0. Setting F (Ti_l) = I places a constraint on how dispersed the components are,
providing mixture components that are, on the average, neither extremely dispersed nor
extremely concentrated.

Figure 1 shows two sets of randomly generated mixture components from our prior
in the scalar data case; each plot contains 50 components. To obtain the components,
we generated a sample of 8; from G using the stick breaking procedure in Sethuraman
(1994). The black line shows the height of a standard normal density at 0 and is included
as a benchmark. We see many mixture components centered near the origin, in the range
[—5,5]; this includes both sharply peaked and more diffuse curves. By Chebyshev’s
inequality, 96% of standardized data points will lie in [—5, 5], so this set of components
will be useful for estimating density at points near the origin. A few curves, including
sharply peaked ones, are centered outside of the range [—5,5] and help to estimate
the density at outliers. Our specification intends for 99% of mixture components to be
centered in [—10, 10]; in these plots, 98% of the components are centered there.

As a result of specifying a prior on the mixture components, we have also specified the
prior predictive distribution, that is, a prior for the infinite mixture of these components.
In Figure 2, we show 20 prior predictive densities, 10 in each plot. Though the majority
of these curves are centered near 0, we do see densities centered outside of [—1,1].
Moreover, the sample includes skewed, multimodal, heavy-tailed, and sharply peaked
densities. This permits the model to accomodate many data distributions and shows
that, though we expect the transformed data to be centered at 0 with unit scale, the
LIO prior does not strictly enforce these conditions.

3.5 Examples

In the first example, we test this prior with 200 points generated from a univariate stan-
dard Cauchy distribution. In Figure 3, we see the estimates and 95% pointwise credible
intervals (CI) for the density of this distribution along with the true density curve. A rug
plot is included; 9 points fell outside the range [-10,10] and are not shown. The credible
intervals contain all of the true density, showing that this model performs well even with
such “badly behaved” data. The plot also shows the density of a ¢ distribution with 2
degrees of freedom. The credible intervals exclude the t5 density for large portions of the
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Figure 1: A Hundred Gaussian DPM Mixture Components from LIO Prior
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Figure 2: Twenty Prior Predictive Densities from Gaussian DPM with LIO Prior

graph, specifically the ranges [-7, —4], [-0.5,0.5], and [5,10]. This demonstrates that
the Gaussian DPM with our LIO prior can adequately estimate a Cauchy distribution
and, furthermore, is sensitive enough to discriminate between Cauchy/t; and to distri-
butions. In this simulated example, we used the known median and 95th percentile of
the distribution. Sensitivity to such choices is considered in Section 5.



Y. Shi, M. Martens, A. Banerjee and P. Laud 9

<
S —— Cauchy pdf
— t2 pdf
—— Cauchy estimate
- 95% ClI
3¢}
® -
2
‘@ ~N
g S |
kel
—
ag
S
I\ \ H\HHIHHHHH\H\HHH\MIJMIMIJIMHJJWWHHH\ H\HIH [ :
-10 -5 0 5 10

y

Figure 3: Density estimation of Cauchy distribution

The next example uses data from air quality measurements in New York, from May to
September 1973, contained in the R dataset “airquality”. We estimate the bivariate dis-
tribution of ozone and solar radiation levels from 111 pairs of measurements in this set.
Figure 4 has a scatter plot of the data and the density estimate. The estimate appears
to fit the data quite well. Because the ozone and radiation levels only take on positive
values, however, some density is placed outside the possible range of values. Using a
log transformation of the levels before fitting might give even better estimation while
ensuring that all density is placed within the possible range of values. In the absence of
external information, for illustrative purposes, we used needed scaling percentiles from
the data.

Example 3 illustrates density estimation using 400 data vectors from a bivariate mix-
ture distribution, F© = 0.5F; + 0.5F5. Here F} is the bivariate t distribution with 5
degrees of freedom and an identity covariance matrix, while F5 is a bivariate normal

. 2 . . (1/3 1/3
with mean <O) and covariance matrix <1 /3 4/3

plot of the data, contour plots of the true and estimated density of the mixture distri-
bution, and a coverage plot. The density was estimated on a 127x127 grid of points.

> . Figure 5 shows four plots: a scatter
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Figure 4: Plots from air quality data

The coverage plot shows whether the true density falls within the 95% pointwise cred-
ible interval at each point in the grid, with white squares indicating coverage and red
indicating noncoverage The density estimate is quite similar to the true density. This is
impressive, considering that the data’s distribution is a mixture of a bivariate normal
distribution with positive correlation of 0.5 and a more dispersed, uncorrelated t dis-
tribution. Furthermore, the 95% CIs contain the true density at approximately 98% of
the grid points.

4 DPM of Weibull Distributions

The proposed prior here is designed for the model of Kottas (2006). When both param-
eters of the Weibull distribution are given a flexible DP prior, this model approximates
arbitrarily closely any distribution on the positive real line. The model is especially con-
venient for time-to-event data as the Weibull distribution offers simple mathematical
expressions for the survival, hazard, cumulative hazard and density functions. After es-
tablishing notation for the model, we construct a LIO prior for it. Although the details
apply only to the DPM of Weibulls, we note that the method of construction can be
adapted to any DPM model with kernel family closed under scale change; for example,
the Gamma family.

4.1 Model Specification

We begin with y1, .. ., y, conditionally iid observations modeled with a DPM of Weibulls.
As in the Gaussian case, the first step is to rescale the data to a convenient fixed scale.
Using a contextually specified value ¢ for the 95th percentile of the data’s underlying
distribution, we make the transformation z; = 10y;/c. Then, generally following Kottas
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Figure 5: Plots from ¢5 / normal mixture

(2006), we fit this model:

Zi|()li,)\i fzn\d/ Weib(yi|04i,)\i), 1= 1, e n

(i, \W)|G2L G, i=1,..n
G ~ DP(Gy,v)
Go = Ga(Mao, Mo)Ga(a|aa, Aa)I(f(r),00) (@)
Ao ~ Ga(ago, Aoo)
v ~ Ga(a,b).
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I'(«)
means its density is Aaz® 'e~**"; with, in both cases, z > 0, a > 0, X\ > 0. As before,
the concentration is set to have a Ga(a,b) prior with a = 1 and b = 1 (Escobar and
West, 1995).

The model here differs slightly from that in Kottas (2006) in one aspect: the form
of G. The orginal model of Kottas (2006) uses a product of a gamma and a uniform-
Pareto, the latter defined by « ~ U — Par(a,b) = z|¢p ~ U(0, ), ¢ ~ Pareto(a,b) with
density of ¢ given by ba’¢~"FtV I, )(¢), a > 0,b > 0. We use instead two gammas
with a restriction that keeps Go’s support away from the origin through a choice of f(A)
made in Section 4.2 below.

As in Section 3, inference for quantities related to the original data ¥, ..., y, can be

27 1e™ and x ~ Weib(a, \)

Here again, © ~ Ga(a,\) means z has density

recovered from fitting the above model to z1,. .., z, since [ay] = > qgWeib(ay, A\x) =
k=1

[yl = > aeWeib(og, Apa™*), with a = 10/c.
k=1

4.2 Hyperparameter selection

The approach here is distinct from that for a mixture of Gaussians where we used
Chebyshev’s inequality and some expectation arguments. Here we work more directly
with Weibull distributed mixture components that are deemed desirable with our low-
information goals on the pre-fixed data scale. We generate («, \) pairs corresponding to
such components, inspect these visually, and use heuristics to find parameter specifica-
tions that generate similar collections. Details of the process follow.

As two distinct percentiles determine (a, A) for a Weibull distribution, we began by
working with the 5th and 95th percentiles, denoted ¢; and t5, respectively. We let ¢;
range from 0.1 to 24.5 and t5 from t; 4+ 0.5 to 25, both by increments of 0.1. We also
added a restriction, ¢1/ty < 0.95, to avoid very spikey distributions. This generated the
29487 pairs (o, A) plotted in the left panel of Figure 7.

Working first with the marginal of A (Figure 6, left panel), our goal was to determine
g, aigp and Agg related to A in the model for z, ..., z,. Treating the 29487 \’s as data,
with the following model and priors:

A ~ Ga(ag, \o), Ao ~ Ga(ago, Aoo)
ag ~ U — Par(1,1), ago ~U — Par(1,1), Ago ~ Ga(0.001,0.001)

we used medians of posterior MCMC samples to arrive at ag = 0.035, agg = 1.354 and
Ago = 7.181. Using these values in the above hierarchical model for A, we generated
samples which formed the histogram in the right panel of Figure 6.

With the marginal of A\ in hand, the next task was to specify a, and A, in the prior
for o. In the model specification, the lower limit f(\) is intended to avoid near-zero
values for both o and A as such values correspond to distributions that have an infinite
spike at 0 yet assign substantial probabilities to large values. Since z1,...,z, are on a
pre-fixed scale not greatly exceeding 10, restricting the 95" percentile to 25 or less is a
reasonable specification. This leads to f(A) = maz(0,log{log(20)/A}/log(25)). Using a
trial and error process with visual inspections of scatter-plots of data generated under
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various combinations of (a, A, ) resulted in the right panel of Figure 7 with o, = 0.2
and A, = 0.1. This completes the hyperparameter selection we recommend for the LIO

prior.

A Generated by Varying Percentiles A Generated by Recommended Hyperparameters
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Figure 6: Histogram of the log(\)
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Figure 7: log(A) and «

Figure 8 offers an insight into the LIO prior by plotting 100 realizations of survival
functions generated from the full prior using the stick-breaking method (Sethuraman,
1994). Colored lines show individual random survival functions. The black solid line
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Figure 8: Survival Functions Generated from LIO prior

is the median of 10000 such realizations and the dashed black lines represent the 95%
pointwise credible intervals. The prior appears to satisfy the low-information goal on
the pre-fixed scale.

4.3 Examples

In this section we present inference demonstrations using the LIO prior for survival,
density and hazard functions with single datasets of 200 observations each, with 10%
right censoring and 10% interval censoring, generated from four underlying distribu-
tions. Figures 9-12 show the results. Blue lines are the estimates (solid lines) and 95%
pointwise credible intervals (dashed lines) provided by the DPM of Weibulls model with
the LIO prior. Red lines show survival, density and hazard functions from which ob-
servations were generated. Black lines in the survival plots are the NPMLE (Turnbull,
1974) estimates and 95% pointwise confidence intervals for them.

The data generating distribution for Figure 9 is Gamma(0.5,2). For Figure 10, obser-
vations were generated from a density, flat from 0 to 10/11 and exponentially decreasing
after 10/11:

f($){ 1/11 x < 10/11
exp(—(z — 10/11))/11  z > 10/11

To consider a heavier tailed distribution, data in Figure 11 were generated from a
Uniform-Pareto distribution, U — Par(2,2). Data for Figure 12 were generated from a
mixture of lognormal distributions, 0.8LN(0,0.25) + 0.2LN(1.2,0.02), which was used
in Kottas (2006). Finally, Figure 13 data generation was designed to mimic heavy right
censoring, a situation not uncommon in practice. The data here consisted of 2000 obser-
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Figure 9: Survival Function, Density Function and Hazard Function Estimates of
Gamma(0.5,2)
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Figure 10: Survival Function, Density Function and Hazard Function Estimates of Unif-
Exponential Distribution
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Figure 11: Survival Function, Density Function and Hazard Function Estimates of Unif
Pareto(2,2)

vations, 95% right censored at 0.5, generated from the same mixture of log-normals as in
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the previous figure. It is interesting to see the credible intervals beyond 0.5 appropriately
reflecting lack of information there.
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Figure 12: Survival Function, Density Function and Hazard Function Estimates of a
mixture of Lognormal distributions
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Figure 13: Survival Function Estimates of Heavily Right Censored Data

5 Sensitivity Analysis and Comparison with Empirical
Methods

The only information that the LIO prior requires from the investigator is a guess of the
scale of the data’s underlying distribution, obtained from the median and 95th percentile
for the mixture of Gaussians model and the 95th percentile for the mixture of Weibulls
model. A question of interest is how much any misspecification of the scale would affect
the results. We address this question through simulations. In addition, we compare the
performance of the two DPM models under their respective LIO priors with empirical
methods.
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5.1 Sensitivity Analysis

To evaluate sensitivity of the Gaussian DPM model to scale estimation, we use the
75%, 90%, 95%, 99%, and 99.9% percentiles of the data’s underlying distribution as
specifications of the upper percentile from the researcher; the median of the distribution
is used as the specified median estimate. We consider three underlying distributions:

1. to : the standard ¢ distribution with 2 degrees of freedom, representing a distribu-
tion with tails heavier than those of the Gaussian;

2. Inorm : the lognormal distribution, exp[Normal(2,1)], representing a skewed dis-
tribution;

3. mixnorm : a mixture of two Gaussians, 0.5 Normal(0,1?) + 0.5 Normal(4, 1.5?),
representing a multimodal distribution.

We randomly generated 200 data sets of 100 observations each from each distribution.
Figure 14 shows the performance, measured by bias and root MSE (rmse), of the Gaus-
sian DPM model in estimating the cumulative distribution function under a range of
scale specifications at the 9 deciles (from 10% to 90%) of the underlying distribution
indicated on the horizontal axes. Symbol shapes denote data distributions; colors rep-
resent scaling choices. Black color is used for estimates from the empirical cumulative
distribution function (ECDF). To make the plot easier to read, we added some horizontal
jittering. Bias is slightly worse when using the 75th, 99th, and 99.9th percentiles while
rmse is stable across all scaling choices and agrees closely with that of the empirical
estimates.
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Figure 14: Sensitivity Analysis of Gaussian DPM

To conduct the analysis for DPM of Weibulls, we used 50%, 75%, 90%, 95%, 99%
and 99.9% percentiles of the data generating distribution as the possible scale speci-
fications from the user. The data were generated from the four distributions used in
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the examples of the previous section. For each distribution, we generated 200 datasets
of 100 observations. Right censoring rate was set at 10% while interval censoring of
10% of the observations was accomplished for each dataset by ascribing obervations
to fixed intervals. As in the previous plot, Figure 15 uses colors to represent scaling
specifications, with black representing frequentist NPMLE results from the R package
“survival”. Again, each symbol represents a particular data generating distribution,
with bias and rmse at the 9 deciles marked on the horizontal axes. The figure clearly
indicates that 50" and 75" percentiles give poor results across all deciles. It appears
safer to overestimate the 95" percentile than underestimate it for the LIO prior in the
Weibull DPM.
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Figure 15: Sensitivity Analysis of Weibull DPM

5.2 Comparison with Empirical Methods

Using the median and the 95th percentile of the data generating distribution as input to
the LIO prior, we compared the performance of the Gaussian DPM and the ECDF for
the three specified distributions. Here, we used 200 simulated datasets of 100 or 1000
observations each. Figure 16 shows the results at the deciles of the data’s underlying
distribution. We use “100D” and “100E” to denote respective results from the Gaussian
DPM and ECDF on datasets of size 100; similarly, “1000D” and “1000E” show these
for sets of size 1000. Unlike the previous figure, colors here represent data generating
distributions. The DPM with the LIO prior and the ECDF perform very similarly with
respect to bias and rmse.

For the mixture-of-Weibulls model, we used the 95th percentile of the data generating
distribution and compared results with an empirical method, again using the same 4
data generating distributions as in the examples of the previous section. To see the
impact of censoring rate and sample size, we added scenarios with 50% censoring (25%
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Figure 16: Gaussian DPM Comparison with Empirical CDF

right censoring, 25% interval censoring) and 1000 observations. In Figure 17, the “S” on
the x-axis represents the NPMLE estimates from the R package “survival”, while the
“D” represents DPM of Weibulls model with LIO prior. The numerals preceeding these
letters indicate the censoring rate 20 or 50 percent. In each plot, the first 4 estimates
are based on datasets with 100 observations while the rest are based on datasets with
1000 observations. Again, we see that the performance of the DPM is quite similar to
the frequentist estimates in terms of bias and rmse.
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6 Convergence Considerations
6.1 Summary

To summarize the results, here is what has been done in the rest of this write-up. There
is Ghoshal style weak-consistency (call it GW, refer to Ghosal et al. (1999) and Wu
and Ghosal (2008)) and there is Tokdar style weak consistency (call it TW, refer to
Tokdar (2006)). Then there is Ghoshal style strong consistency (call it GS, Wu and
Ghosal (2010)). At first we establish equivalence to show that it is sufficient to show
strong/weak consistency on the transformed scale for the priors. Then TW is shown for
our univariate priors: for the univariate normal, this follows directly from some Tokdar
results, for the univariate Weibull, this requires a small amount of work. For multivariate
normal, we appeal to GW and we do not show it for the larger TW class. Finally we
appeal to GS to show strong consistency for all of our priors - we do not really prove
anything for strong consistency but just remark in the end that this holds due to GS
results.

6.2 Equivalence Results

Consistency of a Bayesian procedure is in a sense a frequentist validation of the proce-
dure: For a nonparametric or semi-parametric Bayesian procedure, consistency implies
convergence to a true unknown density as the number of data observations goes to oco.
Measuring convergence for a density estimation procedure is done in terms of concen-
tration of the posterior probability around a neighborhood of the true unknown density.
Let Xq,...,X,, be observed data € RP for some integer p > 1. Let F denote the space
of all densities on R?. Let fy be some density on RP. Also for any € > 0 let us denote by
N¥(fo) and N2(fo) the neighborhoods of fy under weak and strong topology respec-
tively. Let Py denote the probability measure corresponding to a density f. Also let Pp°
denote the probability measure on the infinite dimensional random vector {X;}5°,, when
each X; are iid and ~ f. We begin with the formal definitions of posterior consistency.

Definition 1. A prior Il is said to be weakly consistent at a density fo if for any e > 0,
the random variable,

X, (e) = Jrenm () [y F(X3)dII(f)
' ffEF [T, f(X)dII(f)

as n — 0o almost surely with respect to the measure Pgy.

—1

Replacing the neighborhood under weak topology with the neighborhood under strong
topology (also referred to as the L; topology), the definition of strong consistency is
given as,

Definition 2. A prior II is said to be strongly consistent at a density fo if for any
€ > 0, the random variable,

X, (€) = ffeN:<fo) [Ti—, f(X:)dII(f)
mT ffe}‘ [T, f(X3)dII(f)

as n — 0o almost surely with respect to the measure Pg.

—1
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To delve into posterior consistency properties of the LIO prior, we first show that it
suffices to study consistency on the rescaled data.

Lemma 1. Let Z; = AX; + b, for each i € 1,...,n be a linear rescaling of the data
{X;}™, for some positive matrix A in RP*P and any vector b in RP. Then, a prior 11
achieves weak (strong) consistency at a density fo on {X;}_, if the induced prior II
achieved weak(strong) posterior consistency at the induced density ﬁ) on {Z;} .

Proof. We begin with the proof for weak posterior consistency. Note that,

~ _ fo(Az +0)
fo(z) = OT,

where |A| > 0 since A is positive definite. For any € > 0, consider the N* (fo) neighbor-
hood. Then using the Portmanteau lemma,

N = {re

/ () f(x)de — o(x) fo(z)dx| < €,V bdd cont ¢}
z€ERP RP

z{fe]-“:

/ o()| A f(x)der — / o()| A fo()de
xERP Rp

< |A|™t¢,V bdd cont (b}

={feF:

/ERP (A7 (z = 0) f(A7 (2 = b))dz — e ATz = b)) fo(A™ (2 = b))dz
< |A|7%¢,V bdd cont ¢}

= {fe I /em G(AM (= = b)) f(2)dz — . G(A™ (2 = b)) fo(2))dz

< |A|™'€,V bdd cont gb}

where = represents an isomorphism between the sets. Note that,

S(ATH(z = b)) = $(L(2)) = ¥(2) (say) ,

where L is the linear operator, L(z) = A~1(2—b),Vz € RP. Since L maps from R? — RP,
if ¢ is bounded and continuous, then so is 1. Therefore,

{p:v=¢(L)} C{o: ¢ is bounded continuous.}

However each ¢ is equal to ¢(L~1(L)) = ¢1(L) (say). Since L=1(2) = A(z + A~1b) is
also a linear operator, mapping from R? — RP ¢, € {¢ : ¢ is bounded continuous }.
Therefore, ¢ = ¢1(L) = some ¢ € {¢ : p = ¢(L)} and,

{Y:¢=¢(L)} ={¢: ¢ is bounded continuous}.
So the neighborhood,

Ne (g = {Fe 7

()] (2)dz — . ¥(2)fo(2))dz

< |A|7 e,V bdd cont 1/)} = N¥(fo),
z€RP

where § = |A|~'e. Then the random variable,

X, (e) = Jrenm (o Hiza F(X3)dI(f)
' ffef [T, f(X3)dII(f)
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_ ffeNgv(f}) [Tz, f(Z)dII(f)

Jrer Tlimy F(Z0)dII(f)
= Z,(6) ( say ).

Since PJ%O({Zi} €5)=1 = Pr({X:} € AS+b) =1 and since Z,(8) = 1 as. by
0

the conditions of the lemma, we have that, X, (¢) — 1 a.s., which completes the proof

for equivalence of weak consistency. The proof of equivalence of strong consistency is

similar with change in the type of neighborhood and is omitted. O

Next we consider the class of densities at which consistency is shown. In the next
lemma, we show that in addition to equivalence for posterior consistency, the regularity
conditions and the density classes are also equivalent between the observed data and
the rescaled data.

Lemma 2. Let {Z;}_ | be a linear rescaling of the observed data {X;}_, as previously
stated, with induced densities and priors between them. The following conditions for the
induced density on rescaled data,

1. fo(2) is nowhere 0 and is bounded above by M, Vz € RP

|ff0 )log fo(2)dz| < oo

3. For some § > 0, |ff0 log fo(z) dz\ < 00, where ¢s(z) = inf ;.| <5 ﬁ)(t)
4. For somen >0, [ 22047 fo(2)dz < oo,
imply equivalent conditions on the density fo(x) on the observed data.

Proof. We only show the proof for item (4). Others are similar and omitted.

J 1200 ooyt = A7 =9I gyl o - 0
/IIIAI Lz = b) |2+ fo(2)d=
éHM*W”“/wwmmﬁmw+um4+wmmﬂ>
< o0.
O

Earlier work in the literature (Walker, 2004; Choi and Schervish, 2007) contain other
slightly different regularity conditions on the true density fo, for all of which, equivalence
can be shown - we avoid a detailed description here for the sake of brevity. In the rest of
this exposition we consider results on the rescaled data only, based on the equivalence
results derived.
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6.3 Consistency results on the rescaled data

The LIO prior in this article is used for the following three scenarios:
1. Mixture of univariate normals for scalar responses
2. Mixture of Weibulls for scalar responses

3. Mixture of multivariate normals for vector responses

Ttems (1)&(2) have been dealt with in Ghosal et al. (1999) and Wu and Ghosal
(2008). However the work in Wu and Ghosal (2008) is restricted to showing consistency
at true densities having a finite second moment, which excludes some commonly used
densities, such as the Cauchy density. Tokdar (2006) significantly weakens the second
moment condition, while adding additional regularity conditions on the base measure.
For our item (1), results of Tokdar (2006), theorem 3.3 directly apply, thus implying
weak consistency for our procedure on a wide class of true densities, including those
such as the Cauchy density.

We show here briefly that a similar weakening on conditions for our item (2) is also
possible as our base measure satisfies similar regularity conditions in the next lemma.

Lemma 3. Let I = DP(Gy,v) denote the prior specification for our mizture of
Weibulls scenario, where the base measure Gqo is supported on RT x RT. The condi-
tions (1)-(4) of Tokdar (2006)’s theorem 3.3 implies weak consistency of our procedure.

Proof. The proof to show that conditions (1)-(4) imply weak consistency in general for

a base measure supported on Rt x R is similar to the proof of theorem 3.3 in Tokdar

(2006) and is omitted. We show that the Weibull mixture formulation as specified in

our article satisfies the base measure conditions (3)&(4) of Tokdar (2006)’s theorem 3.3.
As in remark 3.4 of Tokdar (2006), we have,

Go((0,00) x (0417’7/2700)) x Ga(a € (f()\),uf(27"))|aa,)\a)

uw— 2=

x / a®e"legmAaqny
F)

g kla_aoz(Q_n),

for some positive scalar ky. Also following similar arguments as in remark 3.4 of Tokdar

(2006),

1=Go((0,u) x (0,6 = 2)) < Ga(A € (0,u)lao, Ao) + Gala € (f(A),e" = 5 )laa; Aa)
S kQu—Qaa7

for some positive constant ko for large enough u. This completes the proof that our

proposed Weibull mixture satisfies the additional conditions needed to show weak con-
sistency on a large class of densities, including those without finite second moment. [
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The proof of weak consistency for the multivariate case - for our item (3) follows from
the results in theorem 2 in Wu and Ghosal (2010). Note that these results also do not
permit densities for which second moment is not finite. It is possible to further impose
conditions on the base measure, implying conditions on the eigenvalues of covariance
matrix, but this treatment is fairly involved and does not follow directly from earlier
results - a discussion of this will be omitted here.

Strong consistency (also referred to as Ly consistency) on a restricted class of densities
as given by theorem 3 in Wu and Ghosal (2010) applied directly to our rescaled data
procedure, and by virtue of our equivalence results, to the induced procedure on the
observed data. Some weaking of the conditions of theorem 3 is possible for admitting
a broader class of true densities, once again by imposing strict decay conditions on the
tails of the base measure, but further involved details omitted here.

7 Discussion

We offer a technique and low information prior specification that can handle data of
various scales and demonstrated its value with the mixture of Gaussians model and the
mixture of Weibulls model using data simulated from a variety of distributions. To im-
plement the Gaussian DPM model with our prior, we have developed a wrapper for the
DPdensity function of the R package DPpackage (?) that provides density estimation
for scalar and vector-valued random samples.

We illustrated this method of prior specification for DPMs of Gaussian and Weibull
distributions. However, a similar approach can be used to obtain a low information
prior of mixtures of distributions from any location-scale family, such as t distributions.
Additionally, a similar application could be used for mixtures of distributions from a
family that, like the Weibulls, are closed under a change of scale; Gamma distributions
are one such family.

The process of obtaining a low information prior for scaled data only needs to be done
once and is selected to be vague but computationally reliable. While the LIO prior
can be used as a default choice, sometimes substantive prior information is available in
the context of the application. To incorporate prior information elicited from the in-
vestigator, we might consider this information when choosing what underlying mixture
components should be likely to arise in the model. For example, if an expert suggests
that most events will happen by the end of a clinical study, a statistician can give
higher prior probability to components that have peaks close to 10 and, subsequently,
get hyperparameters that are likely to generate those needed components by repeating
the steps in the subsection 4.3.

Inspired by De Iorio et al. (2004)’s Dependent Dirichlet process (DDP) of Gaussian
mixtures model, we plan to extend DPM of Weibulls model to a DDP regression model
for survival data that could directly model event time and handle censoring data. For
both De Iorio et al’s model and our model, prior specification requires great subtlety.
A rescaling approach might be useful for producing a scheme, similar to that offered
for inference on a homogeneous population in this paper, for delivering robust inference
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with these models.
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