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Cox’s proportional hazard model is often fit to grouped survival data (i.e., oc-
currence and exposure data over various specified time-intervals and covariate
bins), as opposed to continuous data. The practical limits to using such data
for inference in the Cox model are investigated. A large sample theory, allowing
the bins and time-intervals to shrink as the sample size increase, is developed. It
turns out that the usual estimator of the regression parameter is asymptotically
biased under optimal rates of convergence. The asymptotic bias is found, and an
assessment of the effect on inference is given.

1. Introduction

The purpose of this paper is to study grouped data based inference for Cox’s (1972) pro-
portional hazards model. This popular model specifies the conditional hazard function of
the survival time of an individual to be «(t, z) = Ag(t) exp{Boz}, where z is a covariate, Ag
is an unknown baseline hazard function and Sy is an unknown regression coefficient. (For
notational simplicity we assume that the covariate is one-dimensional.) Tt is important to
know whether the convenience of analyzing grouped data from a given actuarial life table
is overshadowed by biases that arise when the grouping is coarse. There exist many nu-
merical studies comparing the grouped and continuous Cox model analyses for specific data
sets, see the references in Hoem (1987, p. 137). All these studies have found that the two
approaches give quite similar results. Breslow (1986), considering data on cancer mortality
among Montana smelter workers, found that the estimated regression coefficients from the
grouped data analysis were within one standard error of those from the continuous data
analysis. This 1s to be expected when the variation in the baseline hazard Ag is moderate
over the follow-up period and the covariate effect is mild. Nevertheless, it would be useful
to have a theoretical underpinning for these empirical studies.

Theoretical results for continuous data are well developed. Corresponding results for
grouped data are available only in special cases. The histogram sieve results of Pons and
Turckheim (1987) apply to grouped data (when the covariate takes at most finitely many
values and is non-time dependent), but the asymptotic bias is not identified. As far as we
know, asymptotic bias arising from grouped data under the Cox model has not been studied
in the literature.



Our aim here is to obtain the asymptotic bias of the regression coefficient estimator and
to indicate how it can be estimated consistently.

2. Fitting the Cox model to grouped data

2.1 The estimator

Let (X, C, Z) be random variables such that the survival time X and the censoring time C'
are conditionally independent given the covariate Z. The follow-up period and the range of
the covariate are taken to be [0, 1]. Denote 6 = I{X < C} and T'= X AC. The ungrouped
data consist of n independent replicates (73, 6;, Z;) of (T, 6, 7).

Let the cells into which the data are grouped be denoted Cr; = 7, xZ;, where 7Ty, ..., 7,
and 7y, ...,Zy, are the respective calendar periods (time intervals) and covariate strata. For
simplicity, the time intervals are taken to be of equal length I, = 1/L, and the covariate
strata are taken to have equal width w,, = 1/J,,. Grouped data consist of the total number
of failures and the total time at risk (exposure) in each cell C,;, given by N,; and Y;;,
respectively. In terms of the counting processes N;(¢) = I{T; <t¢,6; = 1}, and allowing the
covariates Z; to be time dependent,

Nyj = Z/T H{Zi(t) € T;}dN;(t) and Yy, = Z/T H{Z;(t) € T;}Yi(t) dt

where Y;(t) = I{T; > t}.

All our estimators are based on such data.

In the continuous data case the regression coefficient [y is estimated by maximizing
Cox’s partial likelihood function which has logarithm

/BZ ) dN;( /log(ZY ﬁZW)dN(")(u),

where N(?) = 5™ N;. Pons and Turckheim (1987) estimate 3, by maximizing a histogram-
type Cox’s partial likelihood function that has logarithm

ZZ/ BZ;(u) dN;(u Zlog Z/ P2y (u du)/ AN (u).

In the grouped data case neither C'(3) nor Cy(3) is observable. In fact C(5) is observable
with grouped data only when the covariate process Z takes at most finitely many values
and is non-time dependent.

For the general grouped data case we need to consider

Cy(B) = ZBZij’ - Zlog (ZYT(],”)eﬁZj)N
r.J r J

where N, = Zj;l Ny; is the number of failures in the rth calendar period, and z; is

the midpoint of the jth covariate stratum. The estimator Bg is defined as a solution to
Uy(8) = 0, where U, is the derivative of Cy. This estimator has been studied by Kalbfleisch
and Prentice (1973), Holford (1976), Prentice and Gloeckler (1978), Breslow (1986), Hoem
(1987), Selmer (1990), and Huet and Kaddour (1994). Tt can be interpreted as the maximum
likelihood estimator in a Poisson regression model, see Laird and Olivier (1981).



2.2 Asymptotic results

As in Andersen and Gill (1982), we denote S(*)(3,1) = % >, ZE)Y;(1)eP i) and s(F)(3,1) =
ESH)(B,1) for k= 0,1,2, where 0° = 1. We need the following mild conditions:

(C1) There exists a compact neighborhood B of fy such that, for all ¢ and 8 € B,

5(1)(5,15) — 38_55(0)(6’t)’ 5(2)(5,15) — 88—;25(0)(6’t)'

(C2) The functions s*) are Lipschitz, s(”) is bounded away from zero on B x [0, 1], and

1
Vol= / v(Bo, 1) (Bo, ) Ao (1) dt
0
is positive, where v = s(*)/5(%) — (5(1)/5(0))2,
Here we state the main results.

Therorem 2.1 (Consistency of Bg). If w, — 0 and [, — 0, then

Bgiﬁw

Theorem 2.2 (Asymptotic normality of Bg). If I, ~ wy ~ n~ /% then

5 D
\/ﬁ(ﬁg - 60)—>N(/'La V)a
where the asymptotic bias
p= 15 // ePor Ly — 2(Bo, ) H{ Ao (@) F'(t, 2) + Boro(t) F'(t, 2) } dtdz,
the double integral is over the region covered by the cells used in grouping the data, z =
s /s and F(t,z) = P(T > 1,7 < z). Here F, F’ denote the partial derivatives of F' with
respect to ¢ and z, respectively. The various derivatives implicit in g are assumed to exist

and to be continuous.

The proofs of these asymptotic results can be found in McKeague and Zhang (1994).

2.3 Estimation of p

Some elementary calculus shows that

p=1 (/0 LE2(Bo,t) — 2(200,6) s (280, )AZ(dE) + Bo{tb(1) — (0) — P(6 = 1)}) ,

where

P(z) = /0 {2 = 2(Bo, ) }ePo" Xo () F' (1, 2) dt.



If the variation in the baseline hazard Ag is moderate over the follow-up period, then a
correction for grouping in the time domain would not be necessary. Use Holford’s (1976)
grouped data based estimator of Ag:

Xo(t) = % for t € 7,.
Z] Yr] eﬁgzj

We recommend inspection of a plot of Ao to assess the variation in Ay over the follow-up
period.

A grouped data based estimator of s(¥)(3,1) is given by S;k)(ﬁ, ty=n"1 Z]' z]]»“Yrj eP%i at
t € 7,. We may estimate F'(t, z), at (¢, z2) € Cyj, by Y} /(nw,l,). These estimators can be
plugged into p, replacing each integral by a sum of terms. The last term in g is consistently
estimated by fol S;O)(ﬁfg,t)ﬂo(t) dt. A consistent grouped data based estimator of V! is
given by —n_lﬁUg(Bg)/ﬁﬁ.

This leads to a consistent estimator g of p.

3. Simulation

We have carried out a Monte Carlo study to evaluate the performance of our method of bias
correction.

We used Sy = 3 and a linear baseline hazard function Ag(¢) = bt, with b = 1,3. The
covariate was uniformly distributed on [0, 1]. The censoring time was independent of both
the survival time and the covariate, and exponentially distributed with parameter values
0.35 and 0.70, for b = 1,3 respectively. The follow-up intervals were taken as [0, 1] and
[0, .6], respectively. In each case, this gave a censoring rate of about 30%, including about
12% that were still at risk at the end of follow-up. We used equal numbers of time periods
and covariate strata. There were 1000 samples in each simulation run.

Table 1 contains the results. We report Monte Carlo estimates of the mean bias correc-
tion, the (normalized) mean bias correction, and the (normalized) mean difference between
B and Bg, where B is the regression parameter estimator based on the continuous data. The
normalization used here was the ‘standard error’ o//n, where 0% = Ef/g. The corrected
estimator is given by Bc = Bg + A, where A = —ji/y/n. We also report, observed levels of
Wald tests of the null hypothesis that gy = 3, based on Bg, Bc, and B, against the two-sided
alternative.

Table 1: Monte Carlo estimates: mean bias correction, mean relative bias correction, and
mean relative difference between 3 and f,; observed levels of (nominal 5%) Wald tests of

Go = 3 based on Bg, Bc, and B are labeled P,, P. and Py, respectively.

b| n | L. J.| EA | VaEAJo | VaE(B—B,)/c | P, P, Py

1100 | 3,3 0210 0413 0.484 0.082 | 0.085 | 0.048
500 | 5,5 |0.097 | 0.436 0.454 0.056 | 0.057 | 0.039
1000 | 6,6 | 0.069 | 0.445 0.464 0.086 | 0.070 | 0.058

37100 | 3,3 0203 0.397 0.537 0.085 | 0.067 | 0.053
500 | 5,5 |0.099 | 0.441 0.466 0.081 | 0.061 | 0.055
1000 | 6,6 | 0.071 | 0.450 0.497 0.084 | 0.060 | 0.050




The simulation results indicate that A adequately removes the bias from Bg (compare
the fifth and sixth columns of Table 1). Moreover, it has restored the levels of the hypothesis
tests to be much closer to the level of the analogous continuous data tests (compare the last
three columns of Table 1). Although the effect of the grouping in this example is modest—
less than half a standard error—the bias correction is expected to continue to perform
adequately in cases where the bias is more pronounced.
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