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Abstract

Cox's proportional hazards model is often �t to grouped survival data, i.e. occur-
rence/exposure data over given time intervals and covariate strata. We derive a Shep-
pard correction for the bias in the grouped data analogue of Cox's maximum partial
likelihood estimator. This is done via a large sample theory in which the covariate
strata and time intervals shrink as the sample size increases.

1 Introduction

In many estimation settings, data are grouped prior to their statistical analysis. Grouping
may be unavoidable, as with round-o� error, or done intentionally, e.g. to economize on data
transmission and storage, to reduce computation, to protect the privacy of individual records,
or to account for the limitations of a measurement instrument. Moreover, some large data
sets are publically released only in grouped form, as discussed by Haitovsky (1973, 1983).

It is important to be able to assess estimation bias caused by grouping and to correct
it if necessary. The bias can be severe, irrespective of sample size; e.g., for a parametric
model and grouping intervals with equi-spaced limits, the bias of the approximate maximum
likelihood estimator (in which observations are approximated by interval midpoints) is of
order O(w2), where w is the interval width. A `Sheppard correction' can be used to reduce
the bias to order O(w3), see Lindley (1950). Sheppard corrections have been obtained in
some other contexts by Haitovsky (1973), Don (1981), Dempster and Rubin (1983), and
Kolassa and McCullagh (1990).

The purpose of the present paper is to obtain a Sheppard correction for Cox's (1972)
proportional hazards model. This popular model speci�es the conditional hazard function
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of the survival time of an individual as �(tjz) = �0(t) exp(�0z), where z is a covariate, �0 is
an unknown baseline hazard function and �0 is a regression parameter. (For notational sim-
plicity, we assume that the covariate is one-dimensional and non-time dependent). Grouped
data in this setting are occurrence/exposure data for cells determined by time intervals and
covariate strata, see, e.g., Breslow (1986), Preston et al. (1987) and Selmer (1990).

Our main result, stated in Section 2, shows how grouping disturbs the asymptotic be-
havior of the maximum partial likelihood estimator of �0. An estimator of the Sheppard
correction is provided in Section 3, and its performance is assessed through a simulation
study in Section 4. The proof of the main result is given in Section 5.

2 Correction for grouping

Let (X;C; Z) be random variables such that the survival time X and the censoring time C
are conditionally independent given the covariate Z. Denote � = 1fX�Cg and T = X^C. The
ungrouped data consist of n independent replicates (Ti; �i; Zi) of (T; �; Z). Cox's maximum

partial likelihood estimator �̂ is obtained by maximizing

L(�) =
nY
i=1

(
e�ZiP

k2Ri
e�Zk

)�i

where Ri is the set of individuals observed to be at risk at time Ti�. Under suitable

regularity conditions (see Andersen and Gill, 1982),
p
n(�̂ � �0)

D�!N(0; V ), where V �1

is consistently estimated by �n�1@U(�̂)=@� and U is the partial likelihood score function
U(�) = @ logL(�)=@�.

The grouped data based estimator �̂g is obtained by maximizing the following approxi-
mation to the partial likelihood:

Lg(�) =
Y
r;j

(
e�zjP

k Yrke�zk

)Nrj

where the product is over the grouping cells, the sum is over the covariate strata, and zj is
the midpoint of the jth covariate stratum. Here Yrj and Nrj are, respectively, the total time
at risk (exposure) and the number of observed failures (occurrence) in the rjth grouping cell
Crj = Tr � Ij. We assume that the time intervals Tr are of equal length l = ln ! 0, and
the covariate strata Ij are of equal length w = wn ! 0. This estimator has been studied
by Kalb
eisch and Prentice (1973), Holford (1976), Prentice and Gloeckler (1978), Breslow
(1986), Hoem (1987), Selmer (1990), and Huet and Kaddour (1994). It can be interpreted
as the maximum likelihood estimator in a Poisson regression model, see Laird and Olivier
(1981).

We obtain the following Sheppard correction for �̂g:

� = � V
12

ZZ
e�0zfz � �z(�0; t)gfl2 _�0(t) _F 0(t; z) + w2�0�0(t)F

00(t; z)g dtdz;
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where the double integral is over the region covered by the cells used in grouping the
data, �z(�; t) = s(1)(�; t)=s(0)(�; t), Y (t) = 1fT�tg and F (t; z) = P (T � t; Z � z). Here

s(k)(�; t) = EfY (t)Zke�Zg, and _F ; F 0 denote the partial derivatives of F with respect to t
and z, respectively. The various derivatives implicit in � are assumed to exist and to be
continuous. Two mild conditions, (C1) and (C2) in Section 5, are also assumed to hold. A
somewhat simpler expression for � is given in Section 3.

The Sheppard correction � is justi�ed by the following result.

Theorem 2.1 �̂ = �̂g +�+OPfl3 +w3 + (l+w+ cn)n
�1=2 + c2nn

�1g where cn =
w2p
l
+ 1p

nl
.

This result indicates that the Sheppard correction is potentially useful when the `higher
order' terms above are of order oP (l

2 + w2), e.g., if l � w � n��, where 0 < � < 2=5. In
applications this means that the number of grouping intervals should be small relative to the
sample size. To implement the Sheppard correction, a grouped data based estimator �̂ of �
is required, see Section 3. It would be worthwhile using the corrected estimator �̂c = �̂g+�̂

in place of �̂g if the relative Sheppard correction
p
n�=

p
V is appreciable. We recommend

correcting �̂g if the estimated relative Sheppard correction exceeds .2 in absolute value, as is
the case with the examples considered in Section 4.

Our result also allows the usual asymptotic normality of �̂ to be extended to �̂c; we only
need that the higher order terms above are oP (n

�1=2) (e.g., l � w � n��, where 1=6 < � < 1),
and that �̂�� = oP (n

�1=2), which is a mild condition, see Section 3. Then

p
n(�̂c � �0)

D�!N(0; V ):

This allows the construction of con�dence intervals (say) for �0 centered on �̂c, provided
there are su�ciently many grouping intervals relative to the sample size.

The optimal rate of convergence for the uncorrected �̂g is attained when the squared bias

and variance are of the same order, or if l � w � n�1=4, in which case
p
n(�̂g��0) D�!N(�; V ),

where the asymptotic bias � = �� with l = w = 1 in �.

3 Estimation of �

We �rst express � in a form more suitable for estimation. The follow-up period is taken to
be [0; 1]; any individual that survives beyond the end of follow-up is censored. Also assume
that the covariate Z takes values in [0; 1]. Some elementary calculus shows that

� = � V
12

�
1
2
l2�1 + w2�0�2

�
;

where

�1 =
Z 1

0
f�z(�0; t)� �z(2�0; t)gs(0)(2�0; t)�20(dt); �2 =  (1)�  (0)� P (� = 1)
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and

 (z) =
Z 1

0
fz � �z(�0; t)ge�0z�0(t)F 0(t; z) dt:

It follows from the expression for �1 that if there is only minor variation in the baseline
hazard �0 over the follow-up period, then a correction for grouping in the time domain would
not be necessary. Use Holford's (1976) grouped data based estimator of �0:

�̂0(t) =

P
j NrjP

j Yrje
�̂gzj

for t 2 Tr:

We recommend inspection of a plot of �̂0 to assess the variation in �0 over the follow-up
period.

A grouped data based estimator of s(k)(�; t) is given by S(k)
g (�; t) = n�1

P
j z

k
j Yrje

�zj at
t 2 Tr, see Lemma 5.1(ii). We may estimate F 0(t; z), at (t; z) 2 Crj, by Yrj=(nwl). These
estimators can be plugged into �1 and  , replacing each integral by a sum of terms, where
for �1 the terms involve the increment in �̂20 from one time interval Tr to the next. The

last term in �2 is consistently estimated by
R 1
0 S

(0)
g (�̂g; t)�̂0(t) dt. A consistent grouped data

based estimator of V �1 is given by V̂ �1
g = �n�1@Ug(�̂g)=@�, where Ug is the grouped data

version of U , see Lemma 5.5(ii).
This leads to consistent estimators of �1 and �2, and consequently to an estimator �̂

such that �̂�� = oP (n
�1=2), assuming that l � w � n��, where 1=4 � � < 1.

4 Numerical results

We have carried out a Monte Carlo experiment to evaluate the performance of the estimated
Sheppard correction �̂. This is a limited simulation study, but it suggests that the Sheppard
correction is adequate to compensate for the grouping bias that would occur in typical
applications.

We used �0 = 3 and a linear baseline hazard function �0(t) = bt, with b = 1; 3. The
covariate was uniformly distributed on [0; 1]. The censoring time was independent of both
the survival time and the covariate, and exponentially distributed with parameter values
0.35 and 1.25, for b = 1; 3 respectively. The follow-up intervals were taken as [0; 1] and
[0; :6], respectively. In each case, this gave a censoring rate of about 30%, including about
12% that were still at risk at the end of follow-up. We used equal numbers of time periods
and covariate strata. There were 1000 samples in each simulation run.

In Table 1 we report the mean Sheppard correction and the (normalized) mean di�erence

between �̂ and �̂g. The normalization used here was the `standard error' �=
p
n, where

�2 = EV̂g. We also report observed levels of the Wald tests of the null hypothesis that

�0 = 3, based on �̂g, �̂c, and �̂, against the two-sided alternative.
The Sheppard correction has removed most of the grouping bias (compare the �fth and

sixth columns of Table 1). Moreover, it has restored the levels of the hypothesis tests to
be much closer to the level of the analogous continuous data tests (compare the last three
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columns of Table 1). Although the e�ect of the grouping in this example is modest|less
than half a standard error|the Sheppard correction is expected to continue to perform
adequately in cases where the bias is more pronounced.

Table 1: Monte Carlo estimates of the mean Sheppard correction and the the (normalized)

mean di�erence between �̂ and �̂g; observed levels of (nominal 5%) Wald tests of �0 = 3

based on �̂g, �̂c, and �̂ are labeled Pg, Pc and P0, respectively.

b n # strata E�̂
p
nE�̂=�

p
nE(�̂ � �̂g)=� Pg Pc P0

1 100 3 0.210 0.413 0.484 0.082 0.085 0.048
500 5 0.097 0.436 0.454 0.056 0.057 0.039
1000 6 0.069 0.445 0.464 0.086 0.070 0.058

3 100 3 0.203 0.397 0.537 0.085 0.067 0.053
500 5 0.099 0.441 0.466 0.081 0.061 0.055
1000 6 0.071 0.450 0.497 0.084 0.060 0.050

5 Proof of Theorem 2.1

The follow-up period is taken to be [0; 1]. We need two mild conditions:

(C1) There exists a (compact) neighborhood B of �0 such that, for all t and � 2 B,

s(1)(�; t) =
@

@�
s(0)(�; t); s(2)(�; t) =

@2

@�2
s(0)(�; t):

(C2) The functions s(k) are Lipschitz, s(0) is bounded away from zero on B � [0; 1], and

V �1 =
Z 1

0
v(�0; t)s

(0)(�0; t)�0(t) dt

is positive, where v = s(2)=s(0) � (s(1)=s(0))2.

As in Andersen and Gill (1982), hereafter AG, we have �̂ = �0 + U(�0)=I(�
�), where

I(�) = �@U(�)=@� and �� is on the line segment between �̂ and �0. Similarly, in the

grouped data case we have �̂g = �0 + Ug(�0)=Ig(�
�
g) where the ��g is on the line segment

between �̂g and �0, and Ug and Ig are the grouped data versions of U and I. Thus, as
U(�0) = OP (n

1=2) by AG (p.1106), some simple algebra shows that

�̂ = �̂g + V A+OPfjAj(C +D) + (B + C +D)n�1=2g; (5.1)

where A = fU(�0)� Ug(�0)g=n and

B =

����� 1

I(��)=n
� V

����� ; C =

����� 1

I(��g)=n
� V

����� ; D =

����� 1

I(��g)=n
� 1

Ig(��g)=n

����� :
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We shall examine the various terms in (5.1) through a series of lemmas.

Adopting the notation of AG, let S(k)(�; t) = n�1
Pn

i=1 Z
k
i Yi(t)e

�Zi for k = 0; 1; 2, where
00 = 1. We denote by �h(�; t) the piecewise constant approximation to a function h(�; t)
obtained by averaging over each time interval Tr. Note that S(k)

g = �S(k)
a , where

S(k)
a (�; t) =

1

n

X
i;j

Yi(t)1fZi2Ijgz
k
j e

�zj :

Lemma 5.1 For k = 0; 1; 2, uniformly in t and � 2 B,
(i) jS(k)(�; t)� s(k)(�; t)j = OP (n

�1=2);
(ii) jS(k)

g (�; t)� s(k)(�; t)j = OP (l + w + n�1=2);
(iii) E sup�fS(k)

g (�; t)� �S(k)(�; t)g2 = O(w4 + wn�1):

Proof We sketch the proof. (i) can be proved using a functional central limit theorem
of Hahn (1978) extended to two-parameter processes via the convergence criteria of Bickel
and Wichura (1971). (ii) follows from (i), the Lipschitz condition on s(k), and since S(k)

a =
S(k) +O(w) uniformly in t and � 2 B. Part (iii) is proved by Taylor expanding the function
z 7! zke�z about each zj, so as to express �S(k) as the sum of S(k)

g and two `higher order'
terms. The means of these terms can be expressed as integrals involving f = F 0, and, by
Taylor expanding f about each zj, are seen to be of order O(w2). The variances of the two
terms are found to be of order O(wn�1).

Lemma 5.2 �̂g is consistent.

Proof De�ne X(�) = n�1 logfL(�)=L(�0)g, and de�ne Xg(�) similarly in the grouped
data case. In terms of the counting processes Ni(t) = 1fTi�t;�i=1g and �N =

Pn
i=1Ni we have

jX(�)�Xg(�)j � 1

n

������
X
r;j;i

Z
Tr
(� � �0) (Zi � zj) 1fZi2IjgdNi(u)

������
+
1

n

Z 1

0

�����log
 
S(0)(�; u)

S(0)(�0; u)

!
� log

 
S(0)
g (�; u)

S
(0)
g (�0; u)

!����� d �N(u):

The �rst term on the r.h.s. is bounded above by

j� � �0j sup
i;j
j(Zi � zj)1fZi2Ijgj �

1

n
�N(1)

P�!0;

since the width of Ij is wn ! 0. If � 2 B the second term tends in probability to zero by
continuity of log, Lemma 5.1 (i) and (ii), and the assumption that s(0) is bounded away from

zero on B � [0; 1]. Thus jX(�) � Xg(�)j P�!0 if � 2 B. The result now follows using the
argument of AG (Lemma 3.1).
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Lemma 5.3 A = fU(�0)� Ug(�0)g=n = �V �1 +OPfl3 + w3 + (l + w + cn)n
�1=2g.

Proof In terms of the martingales Mi(t) = Ni(t)�
R t
0 Yi(u)�0(u)e

�0Zi du and �M =
Pn

i=1Mi

we write A as

1

n

X
i;j

Z 1

0
(Zi � zj) 1fZi2IjgdMi(u) (5.2)

+
1

n

Z 1

0

(
S(1)
g (�0; u)

S
(0)
g (�0; u)

� S(1)(�0; u)

S(0)(�0; u)

)
d �M(u) (5.3)

� 1

n

X
r;i;j

Z
Tr
zje

�0Zi1fZi2IjgYi(u)�0(u) du (5.4)

+
1

n

X
r

S(1)
g (�0; tr)

S
(0)
g (�0; tr)

X
i;j

Z
Tr
e�0Zi1fZi2IjgYi(u)�0(u) du; (5.5)

where tr is the midpoint of Tr. Standard martingale theory gives that (5.2) is of order
OP (wn

�1=2). Next, j(5:3)j is bounded by

1

n

�����
Z 1

0

(
S(1)(�0; u)

S(0)(�0; u)
� �s(1)(�0; u)

�s(0)(�0; u)

)
d �M(u)

����� (5.6)

+
1

n

X
r

������s
(1)(�0; tr)

�s(0)(�0; tr)
�

�S(1)(�0; tr)
�S(0)(�0; tr)

����� j �Mrj (5.7)

+
1

n

X
r

�����
�S(1)(�0; tr)
�S(0)(�0; tr)

� S(1)
g (�0; tr)

S(0)
g (�0; tr)

����� j �Mrj; (5.8)

where �Mr is the increment of �M over Tr. Using the Lipschitz property of s(k), the Cauchy{
Schwarz inequality, the uniform boundedness of EfS(0)(�0; u)g�4, and since s(0)(�0; u) is
bounded away from zero, it can be shown that the second moment of the integrand in (5.6)
is of orderOP (n

�1+l2) uniformly in u. The integrand is also predictable, so martingale theory
gives (5:6) = OP (n

�1 + ln�1=2). Martingale theory also gives E �M2
r = O(nl) uniformly in r,

so that, using Lemma 5.1 (i), we �nd (5:7) = OP (n
�1l�1=2). Lemma 5.1 and the Cauchy{

Schwarz inequality give (5:8) = OP (cnn
�1=2). Combining terms gives (5:3) = OPf(l +

cn)n
�1=2g.
Next, Taylor expanding z 7! e�0z about each zj and �0 about each tr, gives

(5:4) = � 1

n

X
i;r;j

zje
�0zj

Z
Tr

rj(u)1fZi2IjgYi(u) du+OP (l

3 + w3);

where


rj(u) = �0(tr) + (u� tr) _�0(tr) +
1
2
(u� tr)

2��0(tr) + �0(u)
n
�0(Zi � zj) +

1
2
�2
0(Zi � zj)

2
o
:
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There is a similar decomposition for (5.5). Note that the leading terms involving �0(tr) in
these decompositions cancel. By examining means and variances of the remaining terms,
Taylor expanding f = F 0 about each tr or each zj, and cancelling the terms involving �2

0 or
��0, we �nd that

(5:4) + (5:5) = �V �1 +OPfl3 + w3 + (l + w)n�1=2g:

Combining the above rates for (5.2){(5.5) completes the proof.

Lemma 5.4 fI(�)� Ig(�)g=n = OPfl + w2 + (1 + cn)n
�1=2g uniformly over � 2 B.

Proof Using Lemma 5.1 and the uniform boundedness of s(0) away from 0, we �nd that

sup
�
jI(�)� Ig(�)j=n � OP (1)

2X
k=0

�X
r

sup
�

���S(k)
g (�; tr)� �S(k)(�; tr)

��� �N(Tr)=n

+sup
t;�

��� �S(k)(�; t)� S(k)(�; t)
��� �N(1)=n

�

= OPfw2 + (
p
w + cn)n

�1=2g+OP (l + n�1=2);

where the Cauchy{Schwarz inequality was used for the �rst term, and the Lipschitz property
of s(k) for the second term.

Lemma 5.5

(i) I(��)=n = V �1 +OP (n
�1=2)

(ii) I(��g)=n = V �1 +OPfl2 + w2 + (1 + cn)n
�1=2g.

Proof Part (i) is proved by inspecting (3.1) in AG, and use of Lemma 5.1 (i), the rate
�� = �0+OP (n

�1=2) given by Theorem 3.2 of AG, and the Lipschitz property of v. For part
(ii), �rst note that ��g is consistent for �0 by Lemma 5.2. Also, from a grouped data version

of AG's (3.1) and Lemma 5.1 (ii), we have I(��g )=n
P�!V �1. Thus, �̂g converges at rate

�̂g � �0 = Ug(�0)=Ig(�
�
g) = OPfl2 + w2 + (1 + cn)n

�1=2g; (5.9)

by Lemma 5.3, since U(�0)=n = OP (n
�1=2) and � = O(l2 + w2). Once more using the

grouped data version of AG's (3.1), but with the rate (5.9) applied to ��g , proves part (ii).

The proof of Theorem 2.1 is completed by using (5.1), applying Lemma 5.3 to A, Lemma
5.5 to B and C, Lemma 5.4 to D, and simplifying.
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