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SUMMARY

We consider the problem of selecting one model from a large class of plausible models. A

predictive Bayesian viewpoint is advocated to avoid the speci�cation of prior probabilities for

the candidate models and the detailed interpretation of the parameters in each model. Using

criteria derived from a certain predictive density and a prior speci�cation that emphasizes

the observables, we implement the proposed methodology for three common problems arising

in normal linear models : (i) variable subset selection (ii) selection of a transformation of

predictor variables, and (iii) estimation of a parametric variance function. Interpretation of

the relative magnitudes of the criterion values for various models is facilitated by a calibration

of the criteria. Relationships between the proposed criteria and other well known criteria are

examined.

Keywords: Bayesian Linear Model; Predictive Distribution; Replicated Experiment; Transfor-

mations; Variable Selection

1 Predictive Methodology

Selecting a suitable model from a large class of plausible models is an important problem

in statistics. A classic example is the variable selection problem in linear regression analysis.

The literature contains many Bayesian and nonBayesian techniques advanced to address this

problem. See for example Lindley (1968), Lempers (1971), Mallows (1973), Hocking (1976), and

Mitchell and Beauchamp (1988). Choosing suitable transformations of the predictor and/or the

response variable in linear regression is another major instance of model selection. Box and

Tidwell (1962), Box and Cox (1964), Cook andWeisberg (1982), and Carroll and Ruppert (1988)

de�ne and discuss this at length. Selecting appropriate variance functions in the heteroscedastic

linear model (see Carroll and Ruppert (1988)) can also be looked upon as a model selection

problem. All of these problems arise again in generalized linear models developed in McCullagh

and Nelder (1989). See, for example, Christensen (1990), Hosmer and Lemeshow (1989), and

Cox and Snell (1989). Model selection in time series analysis (see Box and Jenkins (1981),

1



West and Harrison (1989)) and nonlinear models (see Bates and Watts (1988)) has also been

addressed in the literature.

Among the several criteria that have been proposed for model selection, Akaike's AIC

(Akaike, 1973) and Schwarz's BIC (Schwarz, 1978) are widely accepted. An inherent prob-

lem with these criteria is that they do not allow prior input for model choice. Moreover, their

de�nitions and/or calibrations rely heavily on asymptotic considerations. On the other hand,

the \fully" Bayesian approach to model selection requires the daunting speci�cation of prior

probabilities over the large class of models under consideration. Then, one must also specify

appropriate priors for the parameters of each model. In the case of selecting between two mod-

els, often one can reasonably carry out these speci�cations and use Bayes factors or posterior

model probabilities to make the �nal model choice. With a large number of models, the fully

Bayesian solution is di�cult to implement.

In this article we propose three criteria that can be used to address model selection. These

emphasize observables rather than parameters and are based on a certain Bayesian predictive

density. They have a unifying basis that is simple and interpretable, are free of asymptotic

de�nitions, and allow the incorporation of prior information. Moreover, two of these criteria

are readily calibrated.

To �x ideas, consider �rst the variable selection problem in linear regression. Starting with

a full predictor matrix consisting of a column of ones for the intercept term followed by k

columns, each representing a predictor, we can write the full model as

Y = X� + � ; (1.1)

where Y is an n-vector of responses, � is a (k + 1)-vector of regression coe�cients, and � is

an n-vector of random errors. The distribution of � is usually taken to be multivariate normal

with mean 0 and precision matrix �I, where � is a positive scalar and I is the n � n identity

matrix. Following the notation of Aitchison and Dunsmore (1975), we write �j� � Non(0; �I).

In selecting variables, we are interested in considering the 2k possible models obtained from

(1.1) by retaining various subsets of the last k columns of the matrix X, and modifying the

length of � accordingly. To be speci�c, let m be a subset of the integers f0; : : : ; kg containing

0, and let km denote the number of elements of m. Thus m identi�es a model with an intercept

and a speci�c choice of km � 1 predictor variables. With M denoting the set of all 2k models

under consideration, we can write these as

Y = Xm �(m) + �; m 2M ; (1.2)

where Xm denotes the n � km full rank predictor matrix under model m, and �(m) is the

corresponding coe�cient vector. Choosing one of the models in (1.2) is the goal of variable

selection methods.
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For the model selection problem in general, one can replace (1.2) and the accompanying

descriptions of distributions for various quantities by considering probability models for the

observable Y conditioned on each model m and the attendant parameter vector �(m). Thus we

write

p(yjm; �(m)) ; m 2M; �(m) 2 �(m) ;

whereM is the model space and �(m) is the parameter space for model m. To address the task

of selecting an m, we adopt a predictive Bayesian viewpoint that allows one to de-emphasize

the parameters and focus on the observables. Model selection is an ideal setting for such an

approach since the parameter �(m) does not carry much physical meaning at the outset. The

predictive philosophy is implemented below in two ways. First, whenever possible, the priors

for �(m)jm are constructed in an automated fashion from a prior prediction for Y and a number

quantifying one's belief in this guess relative to the information contained in the experiment.

In Section 2, we show how this can be done for the normal linear model. Secondly, we do not

use a prior distribution on the model space M. Instead, for each model m 2 M, we calculate

the criterion and choose the model with a suitably small value. We also provide calibrations of

the criteria.

To introduce the criteria, suppose that a prior �(�(m)jm) has been speci�ed for each �(m),

m 2M. The posterior for �(m) under each model m, given data Y = y, is given by

�(�(m)jy;m) =
�(�(m)jm) p(yjm; �(m))R

�(�(m)jm) p(yjm; �(m)) d�(m)
:

Now envision replicating the entire experiment and denote by Z the vector of responses that

might result. In the variable selection problem, for instance, �(m) = (�(m); �), and each m

speci�es a predictor matrix Xm. The conceptual replicate experiment has the same design

matrix X as the current experiment. Moreover, under any model m 2 M, we again have the

same future design matrix Xm. The predictive density for Z under model m is

p(zjm; y) =

Z
p(zjm; �(m)) �(�(m)jy;m) d�(m) :

We call this density the Predictive Density of a Replicate Experiment and abbreviate it PDRE.

In (1.2) for example, the PDRE depends on the design matrix Xm for model m and would be

given by

p(zjXm; y) =

Z Z
p(zjXm; �

(m); �) p(�(m); � jXm; y) d�
(m) d� :

For notational ease, we denote the PDRE by fm.

Although the PDRE is central to what follows, we neither expect the current experiment

to be repeated nor center our interest on predictions at the current (or any other particular)

predictor matrix. The replicate experiment is an imaginary device that puts the predictive
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density to inferential use, adapting the philosophy advocated in Geisser (1971). The imagined

replication makes y and Z comparable; in fact, exchangeable a priori. Moreover, the parameters

in the model play a minimal role under replication. It seems clear that good models, among

those under consideration, should make predictions close to what has been observed for an

identical experiment. The criteria below are de�ned with this motivation.

For a given model m, consider

L2
m = E[(Z � y)0(Z � y)] ;

where the expectation is taken with respect to the PDRE fm. The measure L2
m has the decom-

position

L2
m =

nX
i=1

n
[E(Zi)� yi]

2 + V ar(Zi)
o
;

as a sum of two components, one involving the means of the predictive distribution, and the

other involving the variances. Thus a model's performance is measured by a combination of

how close its predictions are to the observed data and the variability of the predictions. Good

models will have small values of L2
m. It is often more convenient to use the measure

Lm =
q
L2
m

since it is a distance on the response axis, measured in the same units as the response variable.

We refer to Lm as the L criterion.

To de�ne the second criterion, consider

M�

m = fm(y) :

This is the PDRE under model m, evaluated at the observed response y. A good model will

have a large value of M�

m. A ratio of M�

m's for two di�erent models is an instance of what

Aitkin (1991) calls the posterior Bayes factor. Again, to facilitate interpretation, let

Mm = (M�

m)
�1=n

which is in the units of the response variable, and small values of it indicate good models. We

refer to Mm as the M criterion.

The third criterion we introduce for model selection is the Kullback-Leibler (KL) divergence

between two predictive densities. Suppose f1 and f2 are two densities with respect to Lebesgue

measure. Then, the KL divergence between f1 and f2 is de�ned by

K(f1; f2) =

Z
log [f1(x)=f2(x)] f1(x) dx :
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In general, K(f1; f2) 6= K(f2; f1), and K(a; b) � 0 with equality occurring only if a = b. The

KL divergence has been used in the literature for a wide variety of statistical problems, and in

connection with the Bayesian predictive distribution. For example, with its use Aitchison (1975)

shows that the predictive distribution best approximates the sampling distribution, Johnson

and Geisser (1983) detect in
uential observations in linear regression, and McCulloch (1989)

assesses the in
uence of model assumptions. Bhattacharjee and Dunsmore (1991) use the KL

directed divergence to select variables in logistic regression.

For our purposes, suppose m0 is a �xed model inM from which we measure other models.

In variable selection, for instance, a natural choice for m0 might be the full model (1.1) with

all of the k predictors. Using PDRE's of m0 and m, we de�ne

Km = K(m0;m) +K(m;m0) :

The criteria Lm and Mm measure how \close" the data vector is to the PDRE fm for each

m, whereas Km is a measure of how far apart the PDRE's of the two models are. If Km is

small, then m and m0 provide nearly the same information. We see that this criterion is best

used when the focus is on a comparison between two speci�c models. However, one can also

consider using it to compare all possible models by �xing m0 and computing Km for all possible

m 2M. In the variable selection problem, taking the full model as m0, Km can be interpreted

as the amount of information lost in omitting some predictors from m0 to get m. Thus, small

values of Km imply that the subset model is nearly as good as the full model, implying that the

removed variables may not be important. Another reasonable choice of m0 is the model with

just an intercept. In this case, Km can be interpreted as the amount of information gained in

including the predictors from model m in comparison to the model with just a mean. We note

that Km0
= 0, whereas the L and M criteria are not minimized at any model �xed in advance.

Also, desirable values of Km may be either large or small depending on the choice of m0. In

this sense, model choice based on Km is not as straightforward as with Lm and Mm. We refer

to Km as the K criterion.

Although most criterion based methods do not quantify the uncertainty inherent in the

criterion values, it is desirable to do so. Using the model m� with the smallest criterion value,

one can calculate the standard deviation of the criterion, viewed as a function of the observable

Y , with respect to the marginal distribution of Y . In particular, for the L criterion one would

compute

SL = [V ar(Lm�(Y ))]1=2:

We refer to SL as the calibration number for the L criterion. In most instances, its calculation

can be e�ected by obtaining Monte Carlo samples of Y using one of the many techniques

now available. In the context of the variable selection problem (1.1) and (1.2), the marginal

distribution of Y is multivariate t as outlined in Section 2. We illustrate the use of SL and the

analogous calibration number SM via examples in Section 3.
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2 Prior Distributions and Expressions for the Linear Model

Before proposing an informative prior for the linear model (1.2), we note that Je�reys's

modi�ed prior in this case is given by

�(�(m); �) d�(m) d� / ��1 d�(m) d� : (2.1)

The resulting predictive distribution is

Z � Sn(n� km; Pmy; s
2
m(I + Pm)) ; (2.2)

where

s2m = (n� km)
�1y0(I � Pm)y ;

and Sn(�; �;�) denotes the n dimensional multivariate t distribution with � degrees of free-

dom, location parameter �, and dispersion matrix � (see Box and Tiao, 1973). Here, Pm =

Xm(X
0

mXm)
�1X 0

m is the orthogonal projection operator onto the column space of Xm.

Selecting meaningful informative priors for �(m) even for a �xed model m is not an easy

task. For a collection of models, it is generally not feasible to interpret each component of

�(m) for each possible model. One can only hope to use reasonable priors that lead to useful

results rather than hope to quantify precisely any real subjective information. Viewing the

model mainly as a predictive device, we focus on the response variable when specifying a prior

distribution. Incorporating prior knowledge into a guess at the value of the n � 1 response

vector Y to be observed at the design matrix X, we denote this guess by �0. Under model m

with design matrix Xm, the prior mean of �(m)j� is now recommended to be

�(m) = (X 0

mXm)
�1X 0

m �0 : (2.3)

Clearly �(m) is the least squares solution to normal equations written with the design matrix of

the model under consideration and the prior guess for Y . If Xm is less than full rank, then �(m)

is the orthogonal projection of such a least squares solution onto the column space of X 0

mXm.

The vector �0 is a �xed vector regardless of the model under consideration. Its speci�cation

may be made in one of several ways. For example, if in previous analyses, the researcher has

used a particular submodel m of (1.1) with predictor matrix Xm and estimated the coe�cient

vector as ~�(m), he/she may choose �0 to be Xm
~�(m). If the researcher has used previous data

to �t a nonlinear model of the form E(Y ) = f(Xm; �
(m)), where f and � are estimated, then

�0 may be taken to be ~f(Xm; ~�
(m)). Certainly there are many other ways of specifying �0 that

distill all prior information into a guess at Y .

Next, we choose the prior precision matrix of �(m)j� to be of the form � Tm, where

Tm = c (X 0

mXm); (2.4)
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with c � 0 quantifying, in multiples of the present experiment, the importance one wishes

to attach to the prior guess �0. Thus under model m, Tm is a scalar multiple of the Fisher

information matrix for �(m). Zellner's g-priors (Zellner, 1986) also have this structure for the

precision matrix. It has the advantage of leading to analytically tractable and computationally

feasible solutions.

Now, we take �(m)j� to be normally distributed, i.e.,

�(m)j� � Nokm(�
(m); � Tm) : (2.5)

As a result of focusing on the observables, only a few easily interpreted quantities are needed

to specify the prior. In particular, the prediction �0 is turned into a prior for �(m)j� for each

m in an automated fashion.

Finally, the prior distribution for � is taken to be a gamma distribution with parameters

(�0=2; 
0=2), i.e., with density

�(�) d� / � �0=2�1 exp f�
0�=2g d� : (2.6)

For a �xed model m, (2.5) and (2.6) result in the conjugate normal-gamma prior.

With this prior and the likelihood implied by (1.2) for each m, a straightforward derivation

yields

Z � Sn
�
n+ �0; �m; s

2
m(I + (1� 
)Pm)

�
; (2.7)

where 
 = c=(1 + c), �m = Pm (
�0 + (1� 
)y), s2m = (n + �0)
�1(qm + 
pm + 
0), qm =

y0(I � Pm)y, and pm = (y � �0)
0Pm(y � �0). The PDRE in (2.2) for noninformative priors can

be obtained from (2.7) by formally setting 
 = 0, �0 = �km, and 
0 = 0. Moreover if Xm has

rank rm < km, replace km by rm in (2.7) above. For brevity, any relevant expressions are given

only for the case of conjugate priors in the remainder of this article.

The L criterion under model m is now given by

Lm = f(1 + �m)qm + 
(
 + �m)pm + �m
0g
1=2 ; (2.8)

where �m = n+(1�
)km
n+�0�2

. We see that L2
m above is a linear function of qm and pm. The quantity

qm is the squared length of the projection of the data onto the error space of model m, i.e., the

error sum of squares for model m. The quantity pm represents a penalty for a bad prior guess

at Y . It is the squared length of the projection of the \guessing error" onto the model's column

space. Under reference priors, (2.8) reduces to Lm =
�
2(n� 1)(n� km � 2)�1qm

�1=2
. In this

case, Lm is similar to the root mean square criterion.

To calculate the calibration number SL, one can sample from the marginal distribution

Y � Sn
�
�0; �m� ; 
0�0

�1(I + 
�1(1� 
)Pm�)
�
;
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and calculate Lm� with each sample. (Here m� is the model that minimizes Lm.) The standard

deviations of these values provides a Monte Carlo approximation to SL. If one is using the ref-

erence priors in (2.1), however, it is well known that the marginal distribution of Y is improper.

In this case, one could sample from the conditional distribution Y j� � Non(0; �(I�Pm�)) with

� replaced by ~� , the mode of the posterior distribution of � usingm�. The standard deviation of

the resulting samples of Lm� can be viewed as an approximation to DL = [V ar(Lm� j� = ~�)]1=2.

For large n one can obtain the analytic approximation

DL �
~��1=2

2
(1�

km�

n
)
1=2

[1�
1

n
f1 +

1

32
(1�

km�

n
)(1�

2

n
)g]1=2 (2.9)

by computing E[L2
m� j� ] and using a Taylor series approximation for E[Lm� j� ]. We use DL and

the similarly de�ned DM in some of the examples in Section 3. Expressions for DM as well as

Mm and Km are given in the Appendix.

3 Applications

3.1 Variable Selection

For this problem stated in (1.2), several criteria have been proposed in the literature. A

widely accepted nonBayesian criterion is Mallows's Cp, which is equivalent to Akaike's AIC for

linear regression models. A standard Bayesian criterion is Schwarz's BIC. Criteria based on

a predictive Bayesian distribution include those of Geisser and Eddy (1979) and San Martini

and Spezzaferri (1984, 1986). In this section, we discuss the issue of possible over�tting, and

illustrate our procedures with data.

When selecting models, an important concern is whether the criterion has a tendency to

prefer the larger of two nested models. To address this issue, Smith and Spiegelhalter (1980)

present a general form for variable selection criteria. For two nested models m � m0, this form

is given by

�(a) = �� a (km0
� km) ;

where � denotes the likelihood ratio statistic and a quanti�es a penalty for over�tting. They

further point out that if a � 1, then smaller models are favored over more complex models.

Clayton, Geisser, and Jennings (1986) also mention that this is a sensible property, especially

for prediction problems. Under noninformative priors, it can be shown that

2n log

�
Lm
Lm0

�
= �� aL(km0

� km) ;

where

aL =
n

km0
� km

log

�
n� km � 2

n� km0
� 2

�
:

Similarly, we have

2n log

�
Mm

Mm0

�
= �� aM (km0

� km) ;
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where

aM =
2

km0
� km

log

0
@�(n� km

2 )�(
n�km0

2 )

�(n�
km0

2 )�(n�km2 )

1
A :

Thus aL > 1 for all n, and decreases to 1 as n! 1. On the other hand, aM > 1 for small to

moderate n and decreases to log(2). In this context we note that a = 1 for the criterion given by

Box and Kanemasu (1973) while a = 3=2 yields the local Bayes factor discussed in Smith and

Spiegelhalter (1980). The AIC criterion and the asymptotic version of the PSR criterion (Geisser

and Eddy, 1979) correspond to a = 2, while Schwarz's criterion is equivalent to a = log(n).

San Martini and Spezzaferri (1984) propose a = log
�
n�cb
�
, where �c = 2n��1(e�=n � 1)� 1 and

b = 2=(km0
� km).

Over�tting properties of the criteria under informative priors depend on the prior parame-

ters. Writing r(m;m0) to denote the ratio L2
m=L

2
m0

for two nested models m � m0, we obtain

r(m;m0) =
�m
0 + 
(
 + �m)pm + (1 + �m)qm

�m0

0 + 
(
 + �m0

)pm0
+ (1 + �m0

)qm0

: (3.1)

First, r(m;m0) is a decreasing function of 
, (0 � 
 � 1). Thus smaller models are favored

more when the precision in the prior for the regression coe�cients is increased. Moreover, if

�0 is a linear combination of the columns of Xm, and we let 
 ! 1, then r(m;m0) ! 1, thus

favoring the smaller model. For any �0 in general and 
 ! 1, m will be preferred over m0 if

(y � �0)
0(Pm0

� Pm)(y � �0) � y0(Pm0
� Pm)y

Setting 
 = 0 in (3.1) corresponds to using a noninformative prior on �(m)j� , but a gamma

prior on � with parameters �0 and 
0. Now r(m;m0) is a decreasing function of 
0. Moreover,

it can be shown that

r(m;m0) �

�
n� km0

� 2

n� km � 2

�
qm
qm0

(3.2)

for all 
0 larger than some 
�. The quantity on the right in (3.2) equals r(m;m0) under joint

noninformative priors on (�; �). Noting that the prior variance of � is 2�0=

2
0 , we can interpret

this to mean that, as long as the prior variance of � is not too large (i.e., 
0 not too small), we are

less susceptible to over�tting as compared to the noninformative case. Finally, as n increases, 
�

decreases to zero so that the quali�cation in the last statement becomes inoperative. Overall, in

the context of the L criterion, the informative priors protect the user against over�tting better

than the noninformative priors. Moreover, as can be seen in the examples below, the use of

calibration numbers can mitigate the over�tting problem.

One relevant aspect of Lm is that, under proper priors, it will not equal zero even if the

coe�cient of multiple determination, R2, equals one for some model. Although this can be

deduced easily from (2.8), the basic reason for it lies more generally in the averaging operation

over the parameter space implied in computing the PDRE. In addition, under any nondeter-

ministic model, the observable y is not a constant a priori. This results in a nonzero calibration
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number SL. Under the improper reference priors, however, one is not guaranteed such auto-

matic protection and hence must be careful to not include in M any model that can yield a

PDRE concentrated at y.

Example 1

Data from Hald (1952) are described in Draper and Smith (1981). These contain four

predictors, each measuring the percent composition of each of four ingredients in samples of

cement concrete. The response variable measures the heat evolved in calories per gram of

cement. These data have been analyzed by many in the literature. Here we illustrate how

the priors proposed in (2.3)-(2.6) might be employed in this context. Using experience with

similar past experiments, previous models, rows of the current X matrix and other case speci�c

information, suppose the investigator makes the prediction

�0 = (79; 77; 104; 90; 99; 108; 105; 73; 93; 111; 88; 115; 113)0 .

Putting a relatively small weight on this guess, he assigns 
 = 0:1. Also suppose that previous

analyses indicate a prior mean of 0:2 for the precision parameter � so that �0=
0 = 0:2 and

that he is fairly certain that the precision will not exceed 0.5, i.e., P (� < 0:5) � 0:95. These

conditions lead to �0 = 25, and 
0 = 125.

Table 1 reports the results for the top eight models along with the calibration numbers for

Lm and Mm. For comparison, values of AIC, BIC and Mallows's Cp are also included.

Table 1 - K, L, and M for the Hald data

Model Km Lm Mm Cp p AIC �2 BIC
x1 x2 x4 0.243 11.43 8.98 3.02 4 61.87 64.12
x1 x2 x3 .229 11.44 8.99 3.04 4 61.90 64.16
x1 x3 x4 0.761 11.61 9.21 3.50 4 62.62 64.88

x1 x2 x3 x4 0 11.63 9.19 5.0 5 63.84 66.66
x1 x2 1.62 11.84 9.54 2.68 3 62.31 64.00
x1 x4 4.64 12.82 10.82 5.49 3 65.63 67.33

x2 x3 x4 3.94 12.99 11.02 7.34 4 67.47 69.72
x3 x4 14.81 17.56 17.51 22.37 3 76.74 78.43

Calibration number 1.74 2.15

The model (x1; x2; x4) yields the smallest Lm (and Mm) value of 11.43 while (x1; x2) has an

Lm of 11.84. Although the latter is larger by 0:41 calories per gram, the value of SL suggests

that this di�erence can be considered small, being about one-quarter calibration unit. Occam's

razor then justi�es choosing (x1; x2). Any further parsimony is not advisable since the best

single-predictor-variable model shows Lm = 36:05. This is a substantial increase, more than 13

calibration units. On the other hand, the two-variable model (x1; x4) appears almost as good

as (x1; x2). The M criterion also yields the same conclusions.
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3.2 Transformation Selection

In linear regression, transformations of the predictor variables can often lead to more ac-

curate predictions and a model that better �ts the data. Box and Cox (1964) discuss transfor-

mations with an emphasis on transforming the response variable. They also mention brie
y a

possible Bayesian approach. It appears, however, that the literature on Bayesian transformation

methods is sparse at best.

Here, we show how two of the predictive criteria can be used to select a speci�c member of

a suitably chosen parametric transformation family. The K criterion as de�ned in this article is

not applicable to this problem. Consider equation (1.2) where a single model m 2 M consists

of a speci�c member of a given transformation family, and is indexed by a vector of parameters

� = (�1; : : : ; �k)
0. Thus Xm in (1.2) denotes a matrix of transformed predictors, and �(m) is

the vector of regression coe�cients corresponding to Xm. The task is to select or estimate �.

The criteria Lm and Mm now are functions of � and can be written alternatively as L(�) and

M(�). Also Xm may be written as X�.

The widely used Box-Cox family of power transformations is given by

g(x;�) =

(
(x��1)

� � 6= 0
log(x) � = 0

:

With this family for each of the predictors, the ith row ofX� would be (g(xi1;�1); : : : ; g(xik;�k)).

One can also choose di�erent families for di�erent predictors. Yet another possibility is to trans-

form two predictors with a common parameter value from the same or di�erent families. For

instance, one may consider two transformations, cos(�t) and sin(�t), of the same variable t

with a common parameter �, leading to X� having ith row (cos(�ti); sin(�ti)). It may also

be meaningful to consider repeating the same transformation family with the same predictor,

but with di�erent parameter values. For example, suppose we have a single predictor x whose

value for the ith observation is xi, and we take � = (�1; �2)
0. Thus X� would have its ith

row of the form (g(xi;�1); g(xi;�2)). These types of transformations may be suitable when one

believes the regression function to be linear in two di�erent powers of a variable. Finally, one

may choose not to transform some of the variables at all. One ordinary instance of this is the

inclusion of an intercept term. The methods presented here allow a great degree of 
exibility, in

principle. Thus, � can have an e�ective dimension that is di�erent from the number of columns

of X�, which in turn can be di�erent from the number of physically meaningful variables in the

problem.

Example 2

Tukey (1977, p.188) considers data obtained to study the relationship between vapor pres-

sure and temperature of water. The response variable, Y , is log(vapor pressure), and the single

predictor x, is water temperature, in degrees Kelvin. Tukey suggests an inverse power trans-

formation on x. To illustrate the proposed procedures, we consider the model in (1.2) with
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an intercept and the Box-Cox transformation on x. Again, to denote the dependence of the

criteria on �, we write Mm � M(�) and Lm � L(�). Under the noninformative prior (2.1),

M(�) and L(�) are equivalent and we get the minimizer �̂ = �1:325, with L(�̂) = 0:160

and M(�̂) = 0:099. Results for the coe�cient of determination (R2), residual sums of squares

(RSS), and the criterion functions are given for three regression models in Table 2.

Table 2 - Comparison of Models, Vapor Pressure Data

Model R2 RSS L(�) M(�)
Y on x 0.907 5.858 3.713 2.299
Y on x�1 0.998 0.130 0.554 0.343
Y on x�̂ 0.999 0.011 0.160 0.099

Clearly, Y regressed on x�̂ gives a larger R2, a smaller RSS, and a smaller L(�) (and (M(�))

than Y regressed on x�1. To compare the two transformations, we have DL = :0130 and

DM = :0162. The transformation x�1 has an L criterion value that is about 30 calibration

units larger than the transformation x�̂. A similar large discrepancy is observed under the M

criterion. If one wishes to round o� the power -1.325 to a more convenient number, one can

calculate L(�1:3) = 0:165 and note that this is only a small fraction of the calibration number

away from L(�1:325) = 0:160. Thus -1.3 could be judged an adequate rounded estimate,

whereas further rounding to -1 cannot be justi�ed.

3.3 Estimation of a Parametric Variance Function

The above methodology for estimating a transformation on the predictors can be adapted to

the problem of estimating a parametric variance function arising from a heteroscedastic model.

Consider the regression model

Y = X� + �;

where

�j� � Non(0; � W ) ;

and W is an unknown diagonal matrix with ith diagonal element wi > 0. Thus, the variance

of Yi is �
�1w�1

i . The wi's are often modeled as functions of the predictors and its reciprocal

is called the variance function. A common form is w�1
i = exp(x0i�). For a comprehensive

nonBayesian treatment of variance function estimation in regression, see Carroll and Ruppert

(1988). To emphasize the dependence of W on �, we write Wm �W� and demonstrate the use

of the criteria L(�) and M(�) to estimate �.

With the above precision structure on �, it is convenient to replace Xm and �0 in (2.3) and

(2.4) by W
1=2
m Xm and W

1=2
m �0, respectively. The PDRE now takes the form

Z � Sn
�
n+ �0;W

�1=2
m ~�m; ~s

2
m W�1=2

m (I + (1� 
) ~Pm) W
�1=2
m

�
; (3.3)
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where ~�m = ~Pm((1�
) ~Y +
~�0), ~Pm is the orthogonal projection operator onto the column space

of W
1=2
m Xm, ~Y = W

1=2
m Y , and ~�0 = W

1=2
m �0. Furthermore, ~s2m = (n + �0)

�1(~qm + 
~pm + 
0),

where ~qm, ~pm are like qm , pm with Pm, Y , and �0 replaced by ~Pm, ~Y , and ~�0. The expressions

for the criteria follow from (3.3) in a manner similar to that in Section 2, as do the calibration

numbers.

Example 3

Box and Meyer (1986) give data from a fractional-factorial experiment concerning the tensile

strength of welds (Y ) in an o�-line welding experiment performed by the National Railway

Corporation of Japan (Taguchi and Wu, 1980). An analysis with regard to variance function

estimation is given in Carroll and Ruppert (1988). From the plots they give, there is clear

evidence of non-constant variance, and they discuss two parametric models for the variance

function. These are

var(Yi) = ��1 exp (� Ci) ; (3.4)

and

var(Yi) = ��1 exp (�1Bi + �2Ci) ; (3.5)

where Bi and Ci denote the levels of factors B and C, respectively, each taking the values of

+1 or �1 for each observation. Results using reference priors are summarized in Table 3 below

where �̂L and �̂M denote the estimates of � based on the L and M criteria. The variance

functions (3.4) and (3.5) are denoted by (C) and (B;C), respectively.

Table 3 - Variance Function Parameter Estimates, Tensile Strength Data

Variance Function �̂L �̂M MLE L(�) M(�)
(C) 0.128 0.257 0.257 7.440 5.153

(B;C) (-.121, .824) (-.815, 2.001) (-.815, 2.001) 2.910 1.295

The two criteria give di�erent but comparable estimates. The MLE's of the parameters

of each variance function are the same as the estimates obtained by the M criterion since we

are using the reference prior (2.1). The calibration numbers DL and DM can now be used to

compare the two variance functions. Using the larger model with both factors B and C, we

obtained DL = :762 and DM = :421. The model with only the factor C has an L criterion

value that is about 5.9 calibration units larger. A similar discrepancy is observed under the M

criterion. Since the L andM criteria yield di�erent estimates of �, it is interesting to compute L

at the minimizer ofM and vice-versa. Here, under the model with both factors, L(�̂M ) = 3:783

and M(�̂L) = 1:600. Thus 2.910 and 3.783 are about 1.1 calibration units apart under the L

criterion, and 1.295 and 1.60 are about 0.7 calibration units apart under the M criterion. The

two criteria yield essentially equivalent estimates.
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4 Discussion

The minimizations of the criterion functions L andM for the transformation problems were

carried out numerically since analytic methods are not readily available. The computations were

greatly facilitated by LISP-STAT (Tierney, 1990), which made it possible to carry out the calcu-

lations with relatively few lines of code. The functions NEWTONMAX and NELMEADMAX

were used with good success. For the examples of this paper, the calculations proceeded quite

fast on a SUN SPARC station. Starting values of � = (1; : : : ; 1)0 worked well. Other starting

values were also used.

An important issue in any model selection procedure is that of model assumptions. It

is well known that violations of the same can result in the addition or omission of variables

in a variable selection procedure. AIC and BIC, for instance, are not robust to outliers or

in
uential points. The criteria proposed in this article likely su�er from the same problems.

Simultaneously checking and selecting models is di�cult, and there are no de�nitive solutions

to this problem. However, Cook and Weisberg (1982) recommend that diagnostic checking

should precede any variable selection. They advise that the initial or full model be used in

the former step. Bayesian techniques available for this purpose include those in Pettit and

Smith (1985), Johnson and Geisser (1983), Geisser (1980), Bhattacharjee and Dunsmore (1991)

and Bernardo (1985). In the presence of outliers and/or in
uential points, computation of the

criterion with and without the suspect cases will shed light on their e�ects. Once a model is

selected, we recommend the investigator do another diagnostic check with this selection. More

work is needed in the area of investigating the robustness of the proposed criteria.

There are several advantages to using the proposed criteria over other well accepted existing

model selection criteria in the literature such as AIC and BIC. First, they allow prior input

whereas criteria such as AIC and BIC do not. Moreover, our criteria stem from a uni�ed

predictive philosophy and the simple notion of a replicate experiment. Justi�cation of BIC

for example, is based on an asymptotic argument. Another major advantage is the available

calibrations of the L and M criteria. AIC and BIC for example do not have calibrations, and

model selection is based on the minimum value. Asymptotic considerations are required for

a formal comparison of the AIC values of competing models. The proposed criteria are quite

general and, in principle, may be applied in various types of model selection situations. For

example, this methodology has been successfully implemented by the authors for the class of

generalized linear models.

Appendix

The expression for the M criterion, under model m in (1.2) and priors as in (2.3)-(2.6), is
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given by

Mm = �1=2
 

�(n+�02 )

�(n+ �0=2)
(2� 
)km=2

!1=n

a1=2m

�
1 +

bm
am

�1+ �0

2n

;

where am = qm+
pm+
0 and bm = qm+

2

2�
 pm. Again, both am and bm are linear combinations

of the residual sum of squares and the \guessing error".

An exact expression for the K criterion is not available since the necessary integral is not

tractable. However, for large n, we can approximate the distribution in (2.7) by a

Non

�
�m;

�
n+�0

n+�0�2

�
�1

s�2m (I + (1� 
)Pm)
�1

�
distribution. Taking m0 to be the full model,

de�ne

v =
(n+ �m)(n+ �m0

� 2)

(n+ �m0
)(n+ �m � 2)

;

where �m = �m0
= �0 for the normal-gamma priors, and �m = �km, �m0

= �km0
under

noninformative priors. With

� =
n+ �m0

� 2

2s2m0
(n+ �m0

)(2� 
)
+

n+ �m � 2

2s2m(n+ �m)
;

and �m;m0
denoting �m as in (2.7) with Pm replaced by Pm0

� Pm, we get

Km � � �0m;m0
�m;m0

+
n

2

 
vs2m
s2m0

+
s2m0

vs2m
� 2

!
+

km0
� km
2

 
(1� 
)s2m0

vs2m
�
(1� 
)vs2m
(2� 
)s2m0

!
:

If one takes m0 to be the intercept model, a similar expression for Km follows.

Analogous to (2.9), we have

DM = (2�)1=2 ��1=2 2
k
m�

2n

 �
n

n� 2

�(n�km� )=2

�

�
n

n� 1

�(n�km� )
!1=2

:
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