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SUMMARY

We examine the problem of specifying prior probabilities for all possible subset models

in the context of variable selection in normal linear models. A solution is proposed

that uses a prior prediction for the observable, an associated weight, and prior opinion

regarding error precision as the only required input. Numerical examples are given to

illustrate the method.

Keywords: Imaginary Experiment; Local Bayes Factors; Prior Prediction; Priors for

Regression Coe�cients.

1 Introduction

Variable selection in linear regression has drawn much attention in the literature. In

this context the goal is to select a suitable subset from an available set of k predictors.

To establish notation, consider the usual normal linear regression model

Y = X� + � (1.1)

where Y is an n-vector of responses, X is the n�(k+1) full-rank matrix of �xed predictor

variables with ith row x0i = (xi0; xi1; : : : ; xik), xi0 = 1, � = (�0; : : : ; �k)
0 is a (k+1)-vector

of regression coe�cients, and � is an n-vector of random errors that is assumed to have a

multivariate normal distribution with zero mean and precision matrix �I. Following the

notation of Aitchison and Dunsmore (1975), we write

�j� � Non(0; �I) ; (1.2)
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where � is a positive scalar parameter, and I is the n� n identity matrix.

In selecting variables, we are interested in considering the 2k possible models that can

be obtained from (1.1) by retaining various subsets of the last k columns of the matrix

X, and modifying the length of � accordingly. To be speci�c, let m be a subset of the

integers f0; : : : ; kg containing 0, and let km denote the number of elements of m. Thus

m identi�es a model with an intercept and a speci�c choice of km� 1 predictor variables.

With M denoting the model space consisting of all 2k models under consideration, we

can write these as

Y = Xm �(m) + �; m 2 M ; (1.3)

where Xm is the n� km predictor matrix under model m, and �(m) is the corresponding

coe�cient vector. Choosing one of the models in (1.3) is the goal of variable selection

methods. The literature contains many techniques advanced for this purpose. See, for

example, Lindley (1968), Mallows (1973), Hocking (1976), and Lempers (1971). Addi-

tional references appear in the article by Mitchell and Beauchamp (1988). Recent articles

on the topic include Laud and Ibrahim (1995) [henceforth referred to as L&I] and George

and McCulloch (1993).

From the Bayesian viewpoint, the approach to the variable selection problem is, in

principle, straightforward. The researcher needs to specify the prior probability of each

model, a prior distribution for all of the parameters in each model, and compute the

posterior probability of each model given the data. Such a prior must specify (i) a 2k-

long probability vector overM, giving prior probability for each model and (ii) given any

model m, a prior distribution for (�(m); �). In this article we propose a new method to

solve (i). We do this by focusing on observables, requiring only a few easily interpretable

prior parameters to be speci�ed. These same parameter speci�cations can also be used

to solve (ii) as proposed in L&I.

2 Prior Distribution on the Model Space

In many practical situations, the investigator is able to focus better on observables

rather than on parameters. For example, in studying performance on the Scholastic

Aptitude Test (SAT) by high school students in a certain community, data from previous

years may be available for the same community. With comparable covariate information

at hand for each student that is planning to take the test this year, and also incorporating

other speci�c knowledge about individual students, the investigator may be able to make a
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score prediction for each. Such predictions could, if appropriate, take guidance from some

model, perhaps even outsideM, that was arrived at using past information. Similarly, a

soil scientist may possess su�cient information and expertise to make prior predictions

on crop yield based on yields and covariates from the past, and a physician may be able to

make individualized predictions of quantitative responses of patients in a study. In each

case, it is desirable to incorporate the prior information and expertise into the current

analysis. To do this we require the investigator to make a prior prediction of the value

of the response n-vector Y , taking into account all case-speci�c covariate information

available. We denote this prediction by �, a �xed vector regardless of the model under

consideration. In eliciting priors, it has been recognized by many (Madigan, Gavrin and

Raftery(1995) and the references there) that it is useful to focus attention on observable

quantities as opposed to parameters. Such a focus becomes practically necessary in the

case of model selection, where parameters abound.

Before proposing a prior distribution on M, we briey describe how L&I specify

priors for (�(m); �) for each m 2 M by using � and a positive scalar c which quanti�es

the importance attached to the prior prediction � relative to the information in the data.

Employing the normal-gamma conjugate family under each model, they take

�(m)j�; � � Nokm(�
(m); �Tm) ; (2.1)

with

�(m) = (X 0

mXm)
�1X 0

m� ; (2.2)

Tm = c X 0

mXm (2.3)

and

�(�) / � �=2�1 exp f���=2g ; (2.4)

where � and � are additional prior parameters. The motivation behind this speci�cation,

especially in the case of �(m), is that the prediction � should be respected as nearly as

possible under each model m. On the one hand, if one were to write down a probability

law for the observable Y free of all models in M, one would consider (1.1) and (1.2)

without the regression relation, thus replacing (1.1) by Y = � + � . Using the prior

�j�; � � Non(�; c �I) yields
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Y j�; � � Non(�; �I) (2.5)

where  = c=(1 + c). On the other hand, viewed through a model m and the prior (2.1)

with (2.3),

Y j�; � � Non(Xm�
(m); �(I � (1� )Pm)) (2.6)

where Pm = Xm(X
0
mXm)

�1X 0
m is the orthogonal projection matrix onto C(Xm), the

column space of Xm. The choice for �
(m) given in (2.2) matches the �rst moments of the

two distributions in (2.5) and (2.6) as closely as possible.

Turning to the main problem at hand, consider an imaginary past replicate of the

current experiment having resulted in the response Y0. Suppose that before this imagi-

nary experiment, we started with a uniform distribution on M, i.e., p0(m) = 2�k for all

m 2 M, and the prior on (�(m); �) was taken to be the one implied in the derivation of

local Bayes factors by Smith and Spiegelhalter (1980) [henceforth S&S], namely

�0(�
(m); �) / jX 0

mXmj
1=2e�km=2(2�)�km=2�km=2�1 : (2.7)

Updating this prior using the imaginary data Y0 yields

p(mjY0) =
(Y 0

0(I � Pm)Y0)
�n=2 e�km=2

P
m2M (Y 0

0(I � Pm)Y0)
�n=2 e�km=2

: (2.8)

As Y0 was not observed, these probabilities are to be viewed as random quantities that

must be estimated or predicted. A natural choice is to average p(mjY0) with respect

to the distribution of Y0 to obtain the desired probabilities p(m). Now the distribution

of Y0 is just the right hand side of (2.5) since, in relation to the prediction �, the as-

yet-unobserved entities Y0 and Y can be considered exchangeable. Thus one should

compute p(m) = E[p(mjY0)] where Y0 � Non(�; �I). However, this expectation does

not have a closed analytic form. A convenient approximation can be obtained by replacing

Y 0
0(I � Pm)Y0 by its expectation, leading to

p(mj�) �
[�0(I � Pm)� + ��1(n� km)]

�n=2
e�km=2

P
m2M [�0(I � Pm)� + ��1(n� km)]

�n=2 e�km=2
: (2.9)

Finally, replacing � here by its mode ��1(�� 2) under the prior (2.4) and allowing � and

 to depend on m yield
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p(m) =
[m�

0(I � Pm)� + (� � 2)�1�m(n� km)]
�n=2

e�km=2
P

m2M [m�0(I � Pm)� + (� � 2)�1�m(n� km)]
�n=2 e�km=2

: (2.10)

It is convenient here to make the choices

�m = l(n� km)
�1; l > 0 (2.11)

and

m = b�1=km ; 0 � b; � � 1 : (2.12)

We observe that, with � = 0 the prior probabilities for each �xed km are equal. That

is, we get uniform distributions over models of equal size. As � ! 1, p(m) can be

dominated by �0(I � Pm)� depending on b, � and l. In practice, the experimenter may

choose � 2 C(Xm�) for somem� due to the context of the experiment. Such a speci�cation

results in �0(I �Pm)� = 0 whenever � 2 C(Xm). This means relative probabilities for all

models whose column spaces contain � depend only on � and �. Using the choices of �

and � mentioned above, we have the following properties of the p(m)'s for such models :

(i) All models with the same number of predictors will get the same prior probability; (ii)

For two models m and m0, km0 > km implies p(m0) < p(m), thus giving larger probability

to smaller models. We also note that with this choice of � and �, the prior mean and

variance of � both decrease as km increases. Thus larger models lead to smaller prior

expected precision. On both counts, these choices of � and � favor smaller models when

their column spaces contain �.

If we make the choice � = 0, it is clear from (2.10) that the prior probabilities are

free of � and b. Moreover, by the de�nition of l following (2.10), they are also free of �

and l. Table 1 contains lists of these, a row for each choice of k up to 7. Each probability

is followed, in parentheses, by the number of models over which it is spread evenly.

3 Examples

Before presenting two examples to illustrate the priors of the previous section, we note

that the speci�cations for �, �, l, b and � can serve two purposes. Via (2.11) and (2.12),

these generate a prior distribution on the model space M. Also, as in L&I, these assign

prior distributions for the parameters of each model m 2 M using equations (2.1) - (2.4).
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Table 1: Prior Probabilities (Number of Models), � = 0

km
k 1 2 3 4 5 6 7 8

1 0.622(1) 0.377(1)
2 0.387(1) 0.470(2) 0.143(1)
3 0.241(1) 0.438(3) 0.267(3) 0.054(1)
4 0.150(1) 0.364(4) 0.330(6) 0.132(4) 0.020(1)
5 0.093(1) 0.285(5) 0.340(10) 0.210(10) 0.065(5) 0.008(1)
6 0.058(1) 0.210(6) 0.315(15) 0.260(20) 0.120(15) 0.030(6) 0.003(1)
7 0.036(1) 0.154(7) 0.273(21) 0.280(35) 0.175(35) 0.063(21) 0.014(7) 0.001(1)

Together, a complete prior speci�cation for the variable selection problem is achieved and,

given the data y, one can compute posterior probabilities in a straightforward manner as

p(mjy) / p(m)� (n� km)
��=2 bkm=2 �

h
l(n� km)

�1 + (y � Pm�)
0(I � (1� m)Pm)(y � Pm�)

i�n+�

2 : (3.1)

The choice � = 0, b = 1 makes this expression free of the prior prediction �, reducing it

to

p(mjy) / e�km=2(n� km)
��=2

h
l(n� km)

�1 + y0(I � Pm)y
i�n+�

2 : (3.2)

Formally setting l = � = 0 now yields

p(mjy) / e�km=2 [y0(I � Pm)y]
�n=2

: (3.3)

This last expression is just (2.8) written with the realized data y in place of the imaginary

data Y0. In other words, setting � = l = � = 0 and b = 1 yields the posterior probabilities

computed using the S&S priors for (�(m); �) and a uniform distribution on M. Such

probabilities are, of course, in complete agreement with the local Bayes factors advanced

in S&S.

Example 1 Wypij and Liu (1994) describe an experiment conducted to study personal

exposure to ozone and how it relates to prevalent ozone concentrations and activities of

individuals. Twenty three children were monitored for daytime exposure by means of

a light-weight passive ozone sampler, newly developed by Koutrakis et al.(1993). Each

subject kept a diary of activities from 8 A.M. to 8 P.M. Entries from these were aggregated

and recorded on formatted sheets by �eld technicians. Although the experiment involved

other aspects such as validating measurements made by the new device, we describe here
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Table 2: Model Probabilities, Ozone Exposure Data

Noninformative Prior Informative Prior
Model Prior(Posterior) Prior(Posterior)

Probabilities Probabilities
X1; X4 .034 (.127) .054 (.272)

X1; X4; X5 .021 (.086) .037 (.050)
X1; X2; X4 .021 (.078) .035 (.056)
X1; X3; X4 .021 (.078) .034 (.059)
X1; X2; X5 .021 (.076) .021 (.051)
X1; X5 .034 (.058) .028 (.114)
X1; X3 .034 (.042) .034 (.087)
X4; X5 .034 (.027) .061 (.061)
X1 .057 (.011) .043 (.060)

Intercept only .093 (.000) .029 (.000)

only the parts that relate to model selection. The response variable, Y , was the 12-

hour average personal ozone concentration (in parts per billion, ppb) for the subjects on

di�erent days. To build models for the prediction of this response, the authors considered

the variables

indoor ozone concentration in the home of the subject, here denoted X1,

outdoor concentration just outside the subject's home (X2),

fraction of day spent outside the home (X3).

Also included in the model search were the interaction terms X4 = X2X3 and X5 =

X1(1�X3). There are 32 possible models, each including the intercept term.

Applying the techniques described in the previous section to the data from this ex-

periment gave rise to the numbers in Table 2. The �rst two columns summarize the

results of using the noninformative priors for model probabilities as well as for parame-

ters within models, i.e., � = � = l = 0, b = 1. The models listed include those receiving

the top �ve posterior probabilities, the model with only the �rst covariate, and the model

with no covariates. The model with the highest posterior probability is the one chosen

by Wypij and Liu (1994) using various nonBayesian methods. By comparing posterior

probabilities, it is clear that the top model is preferable to the one without any covariates.

However, with other models also having similar posterior probabilities, the evidence for

simply selecting the top model is less than convincing.

Now, in this experiment there was also some related information available in the form
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of continous ozone concentration measurements made at an environmental data collection

station within a reasonable distance (about 6 km) of the experimental sites. Since the

activity diaries contained hourly information, and the continuous measurements could

be averaged correspondingly, it is possible to make a prior guess at the reponse variable

values. In particular, let X6(k) denote the fraction of time spent indoors at home during

the kth hour. This could be determined from the individual diaries. Also, the hourly

values of the indoor and outdoor concentrations at each subject's home (X1(k) and

X2(k)) can be approximated by straightforward prorating schemes using the continuous

measurements from the station and the 12-hour measurements from individual homes.

We then use

� = (1=12)
P12

k=1 fX1(k)X6(k) +X2(k)X3(k)g

as the guess at the response variable which directly measures the average 12-hour expo-

sure for each individual. Wypij and Liu (1994) denote this � by XH
2 and give details for

its calculation. They do not, however, treat it as a guess for the response. Instead, they

use it in alternative models termed microenvironmental exposure models.

Having speci�ed an informed prior guess at the response, we must now decide how

much weight it should carry in relation to the actual response vector from the experiment.

This weight m is controlled by the parameters b and � via (2.12). Wishing, for the

purposes of illustration, to keep m between 0:10 and 0:15, we use the extremes in (2.12)

to set 0:10 = b� and 0:15 = b�1=6. This implies � = 0:6417 and b = 0:1627. Finally,

the prior parameters for the precision must be speci�ed. The instrument validation data

reported in Wypij and Liu (1994) indicate a standard deviation of about 15ppb with a

lower limit of about 10ppb. In terms of the precision parameter � , we set E[� ] = 1
225

and

P (� � 0:01) = 0:95. This results in � = 5 and l = 70875 (using km = 1), completing the

prior speci�cation.

The last column of Table 2 gives the prior and posterior probabilities computed using

these choices and equations (2.10) and (3.1). Again, the listed models include those with

the �ve highest posterior probabilities. In comparison with the noninformative case we

see that the prior probabilities have changed somewhat, being larger for most of the

listed models. Among these models, however, the prior probability is apportioned much

in the same way in both columns. On the other hand, the posterior probabilities show a

marked change. The top model now more clearly stands above its nearest competitors.

Including related prior information in the analysis has resulted in a sharper distinction

between models.
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Table 3: Model Probabilities, Hald Data with � = :602; b = :166

Model �1 �2 �3 �4
Intercept .15 (.00) .00 (.00) .00 (.00) .00 (.00)

x1 .09 (.00) .00 (.00) .00 (.00) .00 (.00)
x2 .09 (.00) .00 (.00) .00 (.00) .00 (.00)
x3 .09 (.00) .00 (.00) .00 (.00) .00 (.00)
x4 .09 (.00) .00 (.00) .00 (.00) .00 (.00)

x1; x2 .06 (.29) .25 (.34) .20 (.25) .23 (.30)
x1; x3 .06 (.00) .00 (.00) .00 (.00) .00 (.00)
x1; x4 .06 (.17) .07 (.01) .14 (.03) .11 (.02)
x2; x3 .06 (.00) .00 (.00) .00 (.00) .01 (.00)
x2; x4 .06 (.00) .00 (.00) .00 (.00) .00 (.00)
x3; x4 .06 (.01) .06 (.00) .03 (.00) .07 (.00)

x1; x2; x3 .03 (.14) .15 (.22) .15 (.24) .15 (.24)
x1; x2; x4 .03 (.14) .15 (.23) .15 (.25) .14 (.23)
x1; x3; x4 .03 (.13) .14 (.15) .14 (.17) .12 (.14)
x2; x3; x4 .03 (.07) .09 (.01) .09 (.01) .08 (.01)

x1; x2; x3; x4 .02 (.07) .09 (.05) .09 (.06) .09 (.05)

Example 2 Here we use the widely discussed Hald data (Hald, 1952 or Draper and

Smith, 1981) mainly to see the e�ect of various choices of the prior prediction � and the

weight given it via b and �. The data consist of four predictors measuring the percent

composition of four ingredients of cement concrete, and a response variable measuring

the heat evolved in calories per gram in thirteen samples. We consider four di�erent prior

predictions �i; i = 1; 2; 3; 4. The �rst three are projections of the observed response vector

on C(1), C(1; X1; X2), and C(1; X1; X3), respectively, while the last is a perturbation of

the observations, namely �4 = y + 2:445z where z has independent standard normal

components and 2:445 is the root mean square error under the full model. The prior

parameters for � were taken to be � = 25 and l = 1000. Under the full model (km = 5),

this amounts to approximately 95% prior probability that the precision is between 0:11

and 0:33 or that the variance is between 3:0 and 9:0. As in Example 1, we maintain m

between 0.10 and 015, here yielding b = 0:166 and � = 0:602. Table 3 lists the prior

probabilities (2.10) for each model with each of the four prior predictions. Corresponding

posterior probabilities (3.1) are listed in parentheses.

There are many interesting features in this table. Because �1 is in the column-space

of the model having only the intercept term, this prediction is commensurate with the
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prior belief that the response variable does not have a regression relationship with any of

the four predictors. These probabilities are also close to the noninformative speci�cation

obtainable from the row k = 4 of Table 1. Now it is known from previous analyses

appearing in the literature that the model with predictors X1 and X2 is quite adequate

for these data. Table 3 reects this in the model's substantially increased posterior

probability in the �1 column. Also, as we move to the column with prior prediction

�2 made with a belief in precisely this model, the prior probability attached to it has

increased to 0.25. Moreover, the posterior probability is even higher. As we look at the

results under predictions �3 and �4, we see a decrease in the probabilities of this model,

although it still remains more probable than any other. The prior probability of the

model with X1; X4 shows an appreciable increase under �3. However, the information in

the data cause a shift away from this model, as reected in the posterior.

Other calculations were carried out to see the behavior of these probabilities when

the degree of belief in the prior predictions is increased. As expected, there is an increase

in the posterior probability of the model X1; X2 under the prior prediction �2 as b and

� increase. However, even under the extreme choice of unity for each, the posterior

probability is 0.352. As b and � increase, the prior probability of this model increases to

a maximum of 0.342 and the ratio of posterior to prior probabilities decreases. Overall,

the numerical experience here seems to indicate that the predictive speci�cation of priors

proposed in this article and in L&I show a desirable behavior as the prior parameters are

varied.

4 Discussion

Incorporating prior information into variable selection is not an easy task. The

available methods describe priors for the regression parameters in the various models

under consideration, often concentrating on the noninformative case. See, for example,

Mitchell and Beauchamp (1988) and the references therein. Here we have addressed the

issue of specifying prior probabilities for the models. These are surmised from the prior

prediction, �, of the response variable values along with the four easily interpreted scalars

�, b, � and l. The numerical results reported in Section 3 indicate that the proposed

priors could prove useful in practice.

In a recent paper, Madigan et al.(1995) demonstrate an elicitation of prior model

probabilities in the context of graphical models by asking an expert to create imaginary
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cases with the aid of a randomizing program. This approach does not average over an

imaginary replicate of the real experiment but uses elicited imaginary data in a Bayesian

updating of uniform model probabilities. Yet, it is similar to this article in its focus on

observable quantities. The article of Mitchell and Beauchamp (1988) contains an implicit

speci�cation of prior model probabilities in its equation (2.7). However, they recommend

that the parameters of the prior be gleaned from the data. They also avoid computation

of posterior probabilities, instead providing graphical summaries to assess the importance

of various covariates.

The calculations of the posterior probabilities in Section 3 above employed the pre-

dictive priors of L&I, thus using fully predictive priors. If other priors such as those in

George and McCulloch (1993) are more convenient for the regression parameters, these

can be used instead in conjunction with the prior model probabilities in (2.10).

The local Bayes factors of S&S are designed for model selection without incorporating

any prior information. Equations (3.1)-(3.3) show that the S&S method can be recovered

as the noninformative case of the fully predictive method proposed here. Although not

related to this result, it is interesting to note that the priors inherent in using local Bayes

factors do play a role in obtaining (2.10). They are used with the imaginary past data Y0

and the resulting model probabilities are approximately averaged with respect to a prior

predictive distribution.
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