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Abstract

The Cox regression model with a frailty factor allows for unobserved

heterogeneity or for statistical dependence between the observed sur-

vival times. Estimation in this model is reviewed and we address the

problem of obtaining variance estimates for regression coe�cients,

frailty parameter, and cumulative baseline hazards using the observed

non-parametric information matrix. A number of examples are given

comparing this approach with fully parametric inference in models

with piecewise constant baseline hazards.
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1 Introduction.

In the analysis of survival data or more general event history data the assump-
tion is frequently made that the life histories for the individuals under study
are all statistically independent (at least conditionally on observed time-�xed
covariates). One alternative model which does allow for dependence between
related individuals is the shared frailty model which has been studied by a num-
ber of authors over the past years, including Clayton (1978, 1991), Clayton and
Cuzick (1985), Hougaard (1986), Nielsen et al. (1992), Klein (1992), and Mors-
ing (1994). Another application of the frailty model is to interpret the frailty
as modeling the e�ects of unobserved covariates (e.g., Vaupel et al., 1979; Hou-
gaard, 1984; and Murphy, 1994, 1995). There are, however, di�culties in in-
cluding both dependence and heterogeneity in the shared frailty model (Yashin
et al., 1995). We return to this in Section 4.

The purpose of the present paper is, �rst, to address the problem of assessing
the uncertainty of the parameter estimates from the semi-parametric frailty
model and, second, to present a number of examples using this model and
some of its fully parametric counterparts. The structure of the paper is as
follows: In Section 2, the shared frailty model is presented and inference in the
model is discussed with special emphasis on how to obtain variance estimates
for the estimated parameters. (Some of the technical details are deferred to
an Appendix.) Section 3 contains a series of examples using the frailty model
while, in Section 4, we discuss our results and give some concluding remarks.

2 Inference in the shared gamma-frailty model.

Consider independent groups (e.g., families or litters) of individuals indexed by
i = 1; � � � ; n, group i consisting of ni � 1 individuals indexed by l = 1; � � � ; ni.
For each (i; l), a multivariate counting process (Nhil(t); h = 1; � � � ; k) is observed,
index h referring to either di�erent types of events which an individual may
experience during his or her life, or to di�erent strata to which (i; l) may belong,
see, e.g., Andersen et al.(1993, Section VII.1) for examples. For each (h; i; l)
we further observe a process Yhil(t) indicating whether or not individual (i; l) is
observed to be at risk for experiencing an event of type h at time t� (or whether
or not individual (i; l) is observed to belong to stratum h at time t�). Finally,
for each (h; i; l) (possibly time-dependent) covariates Xhil(t) are observed.

A model for Nhil(t) is now set up via its intensity process �hil(t) as follows.
For given values of independent, group speci�c frailties zi; i = 1; � � � ; n, the
intensity process is given by

�hil(t j z) = ziYhil(t)�h0(t;) exp(�
T
Xhil(t)); (1)

i.e., individuals l = 1; � � � ; ni in group i share the value, zi, of the unobserved

frailty. Here � = (�1; � � ��p)T is a vector of unknown regression coe�cients

describing the e�ect of the observable covariates Xhil(t), and �h0(t;) is a
baseline hazard for type or stratum h; h = 1; � � � ; k, parametrized by unknown
parameters . A �nite dimensional  2 R

q corresponds to a fully paramet-
ric model while a semi-parametric model with completely unspeci�ed baseline
hazards �h0(t) may be obtained for an in�nite dimensional . Examples of
parametric models include a Weibull baseline: �0(t) = ��t��1 where  = (�; �)
and a piecewise constant baseline: �0(t) = k when t 2 [tk�1; tk ) ; k = 1; : : : ; q;
where 0 = t0 < t1 < : : : < tq = � � +1 and  = (1; : : :q): The latter
model (without the frailty factor) is a version of a Poisson regression model
(e.g., Clayton and Hills, 1993).
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If the frailties z were observed, the (partial) likelihood for (;�) would be

L( ;� j z) =
Y
i

0@Y
h;l

exp(�

Z �

0

�hil(u j z)du)
Y
t

�hil(t j z)
dNhil(t)

1A ; (2)

� � +1 denoting the upper limit for the observation times. Now, z is not
observed, so (2) cannot be computed from the observations. Assuming zi; i =
1; � � � ; n to be i.i.d with density f(z; �) and assuming censoring to be non-
informative on the frailties z (Nielsen et al., 1992) the marginal (partial) likeli-
hood for the observed data is

L( ;�; �) =
Y
i

Z 1

0

 Y
hl

exp(�

Z �

0

�hil(u j z)du)

�
Y
t

�hil(t j z)
dNhil(t)

!
f(zi; �)dzi: (3)

This likelihood will, obviously, depend on the assumed model f(z; �) for the
frailties. In what follows, we shall make the convenient assumption (e.g., Clayton,
1978; Vaupel et al., 1979; Nielsen et al., 1992; Klein, 1992) that zi is gamma-
distributed with mean 1 and variance �, i.e.,

f(z; �) =
z
1

�
�1e�

z
�

�(1
�
)�

1

�

but it should be emphasized that, in principle, the following derivations can be
carried out for other choices of frailty distribution, see, e.g., Klein et al. (1992).
In the gamma-model, the likelihood (3) reduces to

L( ;�; �) =
Y
i

�(Ni +
1
�
)(1

�
)
1

�

�(1
�
)(�i(�;) +

1
�
)Ni+

1

�

Y
hlt

�
�h0(t;) exp(�

TXhil(t))
�dNhil(t)

;

(4)
where

Ni =
kX

h=1

niX
l=1

Nhil(� )

is the total number of events in group i, and �i(�;) is given by

�i(�;) =
kX

h=1

Z �

0

S
(0)
hi (�; u)�h0(u;)du; (5)

with

S
(0)
hi (�; u) =

niX
l=1

Yhil(u) exp(�
T
Xhil(u))

being the sum over the type h risk set at time u� for group i.
In a parametric model, estimates for ( ;�; �) are obtained by maximising (4)

either directly or by using the EM-algorithm. Variance estimates may then be
based on the inverse information matrix I(�)�1, where � = (�1; � � � ; �q+p+1) =
(;�; �) and

I(�) =
@2

@�2
l(;�; �)

with l(�) = � logL(�). A version of a model with a piecewise constant baseline
hazard was studied by Thall (1988) and more recently by Knudsen (1994). For

2



a semi-parametric model it was discussed by Nielsen et al. (1992), Klein (1992),
and Andersen et al. (1993, Chapter IX) (all based on Gill, 1985) how to use the
EM-algorithm for maximising (4). It is easily seen that a cumulative baseline
hazard

Ah0(t) =

Z t

0

�h0(u)du; h = 1; � � � ; k;

maximising (4) will only put mass on the observed type h event times, say,
Thj ; j = 1; � � � ;mh; that is, we can write the estimator as

dAh0(t) =
X

j:Thj�t

d�hj: (6)

We write the parameter

Ah0(t) =
X

j:Thj�t

�hj

similarly for some unknown jumps�hj; j = 1; � � � ;mh; for the cumulative baseline
hazard Ah0(�) (here mh is the number of distinct type h event times, i.e.,
mh =

P
i

P
l Nhil(� ) only if there are no ties among the type h event times)

and the �i(�;) given by (5) become

�i(�;�) =
kX

h=1

mhX
j=1

S
(0)
hi (�; Thj)�hj

where � = ((�hj ; j = 1; � � � ;mh); h = 1; � � � ; k). Thus, one needs to maximise
(4) over the m + p + 1 parameters � = (�; �1; � � � ; �p; �) where m =

P
h mh.

Minus the log-likelihood for these parameters are

l(�) =
nX
i=1

 
�

Ni�1X
r=0

log(r +
1

�
)

+
1

�
log � + (Ni +

1

�
) log(

1

�
+�i(�;�)) (7)

�

kX
h=1

niX
l=1

mhX
j=1

dNhil(Thj)�
T
Xhil(Thj )

1A�

kX
h=1

mhX
j=1

mhj log�hj;

where mhj =
Pn

i=1

Pni

l=1 dNhil(Thj) is the number of type h events at time Thj .
It is easily seen that for model with a model with a piecewise constant baseline
hazard with the smallest possible interval length (e.g., 1 day if the survival times
are in days) the likelihood is also given by (7). To obtain variance estimates for
the parameter estimates in the semi-parametric case we suggest using the same
procedure as for the parametric model, i.e., to calculate the inverse information
matrix I(�)�1, where

I(�) =
@2

@�2
l(�):

Since dAh0(t) is a linear function of the d�hj , see (6), estimation of the variance

of dAh0(t) is straightforward. In the Appendix we present the formulas for the
elements of I(�). Obviously, since the number,m+p+1, of parameters increases
with the sample size this is a non-standard approach and there is no theory
ensuring that consistent variance estimators are obtained in this way. However,
Murphy (1995) studied large sample properties in a special case (k = 1: one

stratum; p = 0: no covariates) of our model (1) �nding conditions under which b�
3



and dA0(�) have an asymptotic joint normal distribution and deriving a consistent
variance estimator which is asymptotically equivalent to ours. Furthermore, in
the next section we present a number of examples comparing results obtained
with this approach with results from approximating parametric models with a
piecewise constant baseline hazard.

It should be noted that Klein (1992) used a related method for �nding vari-

ance estimates for (b�; b�) based on inserting the value

d�hj =
mhjPn

i=1 bziS(0)
hi (�; Thj)

into (7) and treating the resulting function of (�; �) as a pro�le likelihood. Here,bzi is the predicted frailty for group i obtained in the E-step of the EM-algorithm
and d�hj is the value obtained in the M-step. However, by neglecting that

bzi = 1
�
+ Ni

1
�
+�i(�;�)

depends on all the parameters this procedure is likely to produce variance es-
timates which are too low. We shall study this in more detail in the examples
in the next section.

3 Examples.

To illustrate these techniques we present three examples. The �rst two examples
were previously analysed by Nielsen et al. (1992) while the �nal example, drawn
from the Framingham heart study (Dawber, 1980), was analysed by Klein et al.
(1992). For each example we have a single stratum and the processes Yi(t) are
indicators for individual i being at risk just prior to time t, i.e., in Examples
1 and 2 Yi(t) = I( eXi � t) where eXi is the observation time and in Example

3, I(Vi < t � eXi) where Vi is the time of entry into the study of individual i.
For each example we �tted a semi-parametric Cox regression model and models
with piecewise constant baseline hazards. In Example 1 we, furthermore, �tted
a model with a Weibull baseline hazard. The regression and frailty parameters
and their associated standard errors were estimated as described in the previ-
ous section. For comparison for the semiparametric approach we include the
estimated standard error of the parameter estimates based on the formulation
given by Klein (1992).

Example 1.

The data used in this example, published by Mantel et al. (1977), come
from a litter-matched tumorigenesis experiment with one drug treated and two
placebo treated rats per litter. One might expect that times to tumor formation
for rats in a given litter are correlated due to genetic or shared environmental
e�ects. Times are given in weeks, and death before tumor occurrence yield
right-censored observations. Table 1 presents the results.
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Treatment Frailty

Model b� (S.D.) b� (S.D.)
Cox model (frailty) 0.904 (0.323)(0.323)� 0.472 (0.462)(0.431)�

Cox model (independence) 0.897 (0.317) 0 (-)
Weibull (frailty) 0.908 (0.322) 0.492 (0.470)
Weibull (independence) 0.905 (0.380) 0 (-)
Piecewise constant (frailty, q = 6) 0.907 (0.323) 0.485 (0.468)
Piecewise constant (independence, q = 6) 0.907 (0.317) 0 (-)
Piecewise constant (frailty, q = 31) 0.904 (0.323) 0.472 (0.462)
Piecewise constant (independence, q = 31) 0.897 (0.317) 0 (-)

Table 1. Results from analyses of the data of Mantel et al. (1977). Asterisks
indicate standard errors obtained following Klein (1992).

The results show good agreement between the various parametric and semi-
parametric models. As expected, the standard errors from Klein's (1992) for-
mulation are (slightly) smaller than those found using the results in this report.
The close agreement between the estimates based on the Cox regression model
and the models with a piecewise constant hazard provide some evidence that
our suggested variance estimator is reasonable. It is well known that (in the
absence of a frailty factor) results from Cox and Poisson regression models give
results that tend to be very similar and in this example we have seen that the
same is true for the gamma frailty model: with q = 6 intervals (each of length
13 weeks) the results are close and with q = 31 intervals (equal to the num-
ber of di�erent failure times in the data set) our results from the two models
are identical (which they should be since the likelihoods as mentioned above
are identical). Also the likelihood ratio tests for independence gave comparable
results: 1.52 for the Cox model 1.62 for the Weibull, and 1.58 and 1.52 for the
two models with piecewise constant hazards. In this litter-matched study an
obvious alternative approach would be to use a standard strati�ed Cox regres-
sion model, i.e., a model with a separate baseline hazard for each litter. In this
analysis the estimated treatment e�ect is b� = 0:880 with a somewhat higher
standard deviation (0.377) than seen in Table 1.

Example 2.

The second example is based on data reported by Batchelor and Hackett
(1970) on sixteen severely burned patients treated with skin allografts. Patients
received one to four skin allografts from donors who were either closely or poorly
HL-A tissue matched with the patients. The event of interest is the time (in
days) to rejection of the graft due to an immune response by the patient and,
since the immune response is likely to depend on factors like the patient's ge-
netic constitution and preceeding stimulation, times within a patient may be
correlated. Here, the models are �tted with a single covariate indicating close or
poor HL-A matching. Since the Weibull model in this example did not provide a
reasonable �t under the independence assumption only results from Cox models
and models with piecewise constant hazards are presented in Table 2.

close match Frailty

Model b� (S.D.) b� (S.D.)
Cox model (frailty) -1.166 (0.484)(0.468)� 0.555 (0.580)(0.335)�

Cox model (independence) -1.029 (0.426) 0 (-)
Piecewise constant (frailty, q = 6) -1.177 (0.487) 0.652 (0.503)
Piecewise constant (independence, q = 6) -1.104 (0.448) 0 (-)

Table 2. Results from analyses of the data of Batchelor and Hackett (1970).
Asterisks indicate standard errors obtained following Klein (1992).
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In this example, the Klein (1992) estimates for the standard errors in the
Cox model with frailty are quite a bit smaller than those based on the methods
described in Section 2 above. Furthermore, the estimated frailty parameter
using q = 6 intervals (each of length 2 weeks) is slightly larger than for the
Cox model (which is this case corresponds to q = 17 intervals). The likelihood
ratio tests for independence are 1.34 for the Cox model and 1.42 for the gamma
Poisson model with q = 6.

Example 3.

As a third example we consider a cohort of 1571 individuals selected from
the Framingham Heart Study, see Dawber (1980) for details. Subjects were in-
cluded in the sample if they reached age 45 with no prior history of hypertension
or glucose intolerance while in the Framingham Study prior to age 45. Covari-
ates included in the model were body mass index (BMI) in kg=m2, cholesterol
(CHOL) in mg=dL, sex (males=1, females=0), smoking status (smokers=1),
and hypertension status (HYP) (hypertensive or borderline hypertensive =1).
The covariate used for each subject was the value of the variate measured at
the examination closest to age 45 and the entry time used in our analyses is
the age at this examination. Since the patients enter the Framingham Study at
di�erent ages it is possible that there may be a cohort e�ect on the outcome and
to test this we included the waiting time on study to inclusion as a covariate.
This was, however, found to be insigni�cant in all models and is excluded from
the results presented here.

The endpoint of interest is the �rst evidence of coronary heart disease (CHD)
which occurred in 250 individuals. In this example, siblings, who share a com-
mon genetic code and a common environment in childhood, have a common
value of the frailty. In this example, we looked at the Cox model and models
with piecewise constant baseline hazards with and without frailty, see Table 3.

Frailty models
Model Cox model piecewise constant (q = 6) piecewise constant (q = 27)

Variable b� (S.D.) b� (S.D.) b� (S.D.)
BMI 0.373 (0.204)(0.203)� 0.366 (0.197) 0.372 (0.205)
CHOL 0.447 (0.169)(0.169)� 0.439 (0.165) 0.450 (0.170)
SMOKE 0.352 (0.160)(0.159)� 0.333 (0.155) 0.353 (0.161)
SEX -0.748 (0.162)(0.152)� -0.716 (0.154) -0.756 (0.164)
HYP 0.393 (0.163)(0.161)� 0.375 (0.157) 0.395 (0.164)
Frailty 0.835 (0.604)(0.375)� 0.562 (0.503) 0.894 (0.623)

Independence models
Model Cox model piecewise constant (q = 6) piecewise constant (q = 27)

Variable b� (S.D.) b� (S.D.) b� (S.D.)
BMI 0.360 (0.182) 0.359 (0.183) 0.359 (0.182)
CHOL 0.426 (0.152) 0.423 (0.153) 0.427 (0.152)
SMOKE 0.318 (0.145) 0.312 (0.145) 0.317 (0.146)
SEX -0.651 (0.135) -0.652 (0.135) -0.652 (0.135)
HYP 0.351 (0.143) 0.348 (0.144) 0.351 (0.144)

Table 3. Results from analyses of the Framingham data. Asterisks indicate
standard errors obtained following Klein (1992).

Again in this example, a nice agreement is seen between the Cox models and
the parametric models with large numbers of intervals (here, q = 27 correspond-
ing to 1-year intervals) both with repect to the estimates and to their associated
standard errors. For q = 6 (5-year intervals) both the frailty parameter and its
S.D. is smaller than for q = 27 similar to what we saw in Example 2. Though, in
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this example times are given with an accuracy of 1 month, we did not go beyond
q = 27 since this would have required a substantial computer storage capacity.
Comparing the standard errors based on the non-parametric informationmatrix
with those based on Klein (1992) we see that the latter are slightly smaller forc�1; � � � ;c�5 but substantially smaller for b� - the same tendencies were present in
Examples 1 and 2 but less pronounced. Comparing, �nally, the models without
frailties it is seen that both the estimates and their estimated standard errors
are smaller in the frailty-less models. However, except for the e�ect of sex which
was expected to change when a possible association within sibling pairs is ac-
counted for, the di�erences here are rather small and the likelihood ratio tests
for independence (3.01 for the Cox model, 1.75 for q = 6, and 3.30 for q = 27) are
not signi�cant. In this example, however, the Wald test statistic (0:835=0:375)2

based on the standard error obtained following Klein (1992) corresponds to a
P-value of 0.01.

4 Discussion.

In this paper, we have discussed how to use information calculations in a non-
parametric setting: the Cox regression model with gamma frailties. If one uses
the same procedure for the standard Cox regression model without frailty then
it is quite easily seen that the inverse information matrix gives the variance
estimates usually used for that model and which are known to be consistent
(Andersen et al., 1993, Section VII.2).

Asymptotic results for the gamma frailty model without covariates were
proved recently by Murphy (1995). Her results, however, do not cover the
regression model that we have been studying in this paper but it is likely that
her methods of proof may be adapted to this situation.

Morsing (1994) studied the performance of our variance estimator in a sim-
ulation study designed to investigate models for cross-over designs. He found
the estimator to be in satisfactory agreement with the empirical variance of the
parameter estimates over repeated samples.

Finally, since in our examples in Section 3 the variance estimates for the
semi-parametric model based on the inverse information matrix came out very
close to variance estimates in an approximating parametric model with piecewise
constant baseline hazard there is some indication that our procedure may work
in general.

On the other hand, this argument may be turned around to the conclusion
that, at least in moderate and large samples, one may just as well use the Poisson
regression model with frailties in situations where dependence or overdispersion
is likely to be present in event history data.

Some care must be exercised, however, when one wishes to model simultan-
eously correlation and heterogeneity (Yashin, et al., 1995) since in the shared
gamma frailty model there is only one parameter, �, to account for both. These
authors then suggested (for, e.g., twin studies) a correlated frailty model where
the frailty for individual l in pair i is a sum of a pair speci�c term Zi0 and an
individual speci�c term Zil which are both assumed to follow a gamma distri-
bution and which are independent. Inference in a slightly extended version of
that model (using the EM algorithm) was discussed by Petersen et al. (1995)
and information calculations as described in the present paper should also be
possible in the correlated frailty model.
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5 Appendix: The information matrix based on
(7).

To derive the information matrix from l(�) given by (7) where

� = ((�hj ; j = 1; � � � ;mh); h = 1; � � � ; k; �1; � � � ; �p; �)

we �rst obtain (minus) the score @
@� l(�):

@l

@�hj

=
nX
i=1

(Ni +
1

�
)
S
(0)
hi (�; Thj)

1
�
+�i(�;�)

�
mhj

�hj

;

@l

@��
=

nX
i=1

(Ni+
1

�
)

Pk

h=1

Pmh

j=1 S
(1)
hi�(�; Thj)�hj

1
�
+�i(�;�)

�

nX
i=1

kX
h=1

niX
l=1

mhX
j=1

dNhil(Thj)Xhil� (Thj );

@l

@�
=

nX
i=1

 
Ni�1X
r=0

1

r�2 + �
+

1

�2
(1 � log �) �

1

�2
log(

1

�
+�i(�;�)) �

Ni +
1
�

� + �2�i(�;�)

!
:

Here,

S
(1)
hi�(�; t) =

niX
l=1

Yhil(t)Xhil� (t) exp(�
T
Xhil(t))

is the derivative of S
(0)
hi (�; t) with respect to �� . The second order derivatives

are then:

@2l

@�hj@�h0j0

=
nX
i=1

�(Ni +
1

�
)
S
(0)
hi

(�; Thj)S
(0)
h0i

(�; Th0j0)

(1
�
+�i(�;�))2

+ �(h;j);(h0;j0)
mhj

(�hj)2
:

@2l

@�hj@��
=

nX
i=1

Ni +
1
�

(1
�
+�i(�;�))2

�
(
1

�
+�i(�;�))S

(1)
hi�(�; Thj)

� S
(0)
hi (�; Thj)

kX
h=1

mhX
j=1

S
(1)
hi� (�; Thj)�hj

1A :

@2l

@�hj@�
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nX
i=1

S
(0)
hi (�; Thj)

Ni � �i(�;�))

(1 + ��i(�;�))2
:

@2l

@��@��
=

nX
i=1

Ni +
1
�

(1
�
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�

0@(1
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S
(2)
hi��(�; Thj)�hj
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S
(1)
hi�(�; Thj)�hj)(

kX
h=1

mhX
j=1

S
(1)
hi�(�; Thj)�hj)

1A ;
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where S
(2)
hi��(�; t) is the derivative of S

(1)
hi� (�; t) with respect to ��. Furthermore,

@2l

@��@�
=

nX
i=1

(Ni � �i(�;�))(
Pk

h=1

Pmh

j=1 S
(1)
hi�(�; Thj)�hj)

(1 + ��i(�;�))2
;

@2l

@�2
=

nX
i=1

 
Ni�1X
r=0

(�
1 + 2r�

(r�2 + �)2
)

+
1

�3
(2 log � � 3) +

2

�3
log(

1

�
+�i(�;�)) +

3
�
+Ni + 2�i(�;�)(2 + �Ni)

(� + �2�i(�;�))2

�
:
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