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SUMMARY

In survival analysis, deviations from proportional hazards may sometimes

by explained by unaccounted random heterogeneity, or frailty. This note

recalls the literature on omitted covariates in survival analysis and shows

in a case study how unstably frailty models might behave when asked to

account for unobserved heterogeneity in standard survival analysis with no

replications per heterogeneity unit. Accelerated failure time modelling seems

to avoid these di�culties and also to yield easily interpretable results.

We propose that it would be advantageous to upgrade the accelerated

failure time approach alongside the hazard modelling approach to survival

analysis.
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1. INTRODUCTION

Statistical modelling of heterogeneity may be based on strati�cation accord-

ing to factors, regression on covariates, or by assuming a probability distri-

bution of the interindividual variation. In survival analysis Vaupel et al.1

coined the phrase \frailty" in connection with a particular version of such a

stochastic model, in which individual i was assumed to have death intensity

Zi�(a) at age a, where the random variable Zi (the \frailty") is assumed to

have a gamma distribution. The assumptions that the randomness is age-

independent and that it acts multiplicatively on an underlying intensity �(a)

are in principle arbitrary but have been taken as the basis for much sub-

sequent work on random heterogeneity in survival analysis. Useful surveys

are by Andersen et al.2, Chapter IX, Nielsen et al.3, Klein et al.4, Aalen5,

Schumacher et al.6 and Hougaard7. The frailty models are likely to be par-

ticularly useful for modelling multivariate survival times, whether \serial"

or \parallel", see a very interesting series of papers by Oakes8, Pons et al.9

and Prentice & Cai10 with discussion by Turnbull11. The double role of the

frailty distribution with �nite mean in describing both nonproportionality

and intraclass correlation was pointed out by Hougaard in several papers,

e.g. Hougaard12, and critically discussed by Yashin et al.13 who suggested

generalizations to separately account for overdispersion and correlation.

Robins and Greenland14;15 questioned the general applicability of the haz-

ard ratio as mediator of covariate e�ects, and Hougaard et al.'s16 case study

indicated approximate unidenti�abilities that seemed rather more satisfacto-

rily solved by abandoning the hazard ratio in favour of the accelerated failure
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time framework for interpretation of covariate e�ects in survival analysis with

random heterogeneity.

The purpose of this note is to brie
y recapitulate the above framework

and to present another case study which, like that of Hougaard et al.16,

indicates that accelerated failure models may be preferable in accounting for

(residual) heterogeneity in univariate (\single-spell") survival times due to

\missing" (omitted, unrecorded) covariates.

Section 2 presents a brief partial survey on approaches to the study of

omitted covariates in the 1980s, and Section 3 brie
y recalls the proportional

hazards frailty model with aspects of current techniques for its statistical

analysis. Section 4 presents and slightly extends the Struthers-Kalb
eisch

heuristics on omitted covariates in survival analysis based on a normal-theory

linear model equivalent to the accelerated failure time model. Section 5

presents the example and Section 6 a concluding discussion.

2. EARLIER APPROACHES TO THE EFFECT OF

OMITTING COVARIATES IN SURVIVAL ANALYSIS

A series of studies in the 1980s were concerned with the possible bias in the

estimated treatment e�ect when important covariates were omitted. Gail

et al.17 and Chastang et al.18 showed that for nonlinear models bias may

result even when covariates are balanced, as would be the case when study-

ing the treatment e�ect in a randomised experiment without accounting in

the analysis for important covariates. However, this bias would be neg-

ligible for exponentially distributed survival data with moderate censoring.
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Solomon19 showed that regression parameters for the (Cox) proportional haz-

ards model and the accelerated failure time model are often approximately

proportional, so that qualitative inferences should be robust to model spec-

i�cation. Struthers & Kalb
eisch20 showed that if one of two independent

covariates is omitted then the e�ect of the other is underestimated. They

used a heuristic analogue between an accelerated failure time model and

normal-theory linear models which we elaborate in Section 4. Schumacher

et al.6 showed that ignoring a prognostic factor damps the estimated hazard

ratio. Bretagnolle & Huber21;22 gave a de�nitive exposition of this type of

study, treating also the case of several covariates, in general con�rming the

above results on attenuation of e�ects if other important covariates are omit-

ted. Gail23 and (recently) Antes and Schmoor24 gave surveys contrasting

classical linear regression results with those of survival analysis.

Concluding the 1980s-literature in the area, Pepe et al.25 gave a broad

authoritative discussion cautioning against the practical utility of technical

deattenuation procedures, these often being rather model-dependent.

3. THE PROPORTIONAL HAZARDS FRAILTY MODEL

The proportional hazards frailty model assumes that for given frailty

variable Zi and covariates Xi, individual i has hazard

�i(t) = Zi�(t)e
�0Xi

at time t. The model is then completed by assuming a parametric distri-

bution for Zi. If the dependence of �(t) on t is speci�ed by �nitely many
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parameters, maximum likelihood estimation is in principle a routine matter.

However based on the prominent place in survival analysis of the semipara-

metric proportional hazards model of Cox26, interest has also focused on how

to make statistical inference in the above frailty model, if �(t) is allowed to

vary freely.

An EM algorithm approach is then possible, cf. Nielsen et al.3, Klein27

and Andersen et al.2, Chapter IX, for details. The EM algorithm does not

directly yield approximate standard errors of all estimates, and additional

care is required (Andersen et al.28). These references did not contain mathe-

matical proofs of asymptotic properties of the estimators and test statistics,

but such results are being derived by Murphy29;30.

4. STRUTHERS-KALBFLEISCH HEURISTICS

Struthers31 and Struthers and Kalb
eisch20 drew the following instructive

parallel between the omitted variable problem in survival regression models

and the conventional wisdom from normal-theory regression.

Assume two independent covariates x1 and x2 and the proportional haz-

ards model

�(t) = �0(t)e
x1�1+x2�2

in the particular case of Weibull underlying intensity

�(t) = ��t��1ex1�1+x2�2:
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Let W have a standard extreme value distribution of a minimum, that is,

the density of W is exp(w � ew);�1 < w <1. Then T

follows the above Weibull distribution, where

Y = logT = �
log �

�
�
�1
�
x1 �

�2
�
x2 +

W

�
:

This is an accelerated failure time model: an ordinary regression problem

of log(survival time) on x1 and x2 with extreme value distributed residuals

with scale parameter ��1, regression coe�cients ��1=� and ��2=� and inter-

cept ���1 log �. Borrowing experience from normal-theory linear regression

(i.e. assuming W standard normal (0,1)), it is seen that the regression co-

e�cients and intercept are estimated by the usual regression estimates, in

particular E( d�1=�) = �1=�, �
�1 is estimated by the usual residual empirical

variance s2, and for large samples, �̂1
P
! �1, and the asymptotic variance of

�̂1 is

1

n

 
1

�2x1
+
�21
2

!
:

Assume now that rather than the regression of Y on (x1; x2), the regres-

sion of Y on x1 only is considered. This may be written

Y = 
 � ��x1 + �W

with W again standard normal (0; 1) but now, since � 2 = Var(Y j x1); �
�1 =

Var(Y j x1; x2);

� 2 = ��1(1 + �22�
2

x2
)��1 :
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As above, �� is estimated by the usual regression estimate, so E d(��) =
�� = �1=� (= the theoretical regression of Y on x1). Therefore �̂

P
! � =

�1�
�1=2=� , which is closer to 0 than �1: there is the well-known attenuation

due to an omitted covariate. Furthermore

as. var.(�̂) =
1

n

 
1

�2x1
+

�21
2�� 2

!
< as. var.(�̂1) ;

the standard error is also attenuated, indeed if �2x1 is large, the Wald-t-

statistics are similar:

�̂1=ds:d:(�̂1) � �̂=ds:d:(�̂):

Weibull frailty model.

Assume now that x2 is not observed but that instead a frailty random

variable Z is multiplied onto the proportional hazards model, to yield

�(tjZ) = Z��t��1ex1�1 :

This corresponds to

Y = log T = �
log �

�
�
�1
�
x1 +

W

�
+
U

�
;

where U = � logZ independent of the extreme value distributed W .

This is again an accelerated failure time model with intercept ���1 log �

and regression coe�cient ��1=� (same as before), only the residual distri-
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bution has changed, now being that of (W + U)=�. Again borrowing expe-

rience from normal-theory linear regression, ��1=� would be estimated by

the usual regression estimate, E( d�1=�) = �1=�, but if we had erroneously

assumed no frailty (U = 0); ��1 would have been overestimated by the fac-

tor � = (VarW + VarU)=VarW and the hazard model regression parameter

�1 = (�1=�)=�
�1 similarly underestimated by the factor �1, leading to atten-

uation by disregarding frailty.

Conclusion. For the Weibull model the accelerated failure time parametriza-

tion conveniently separates regression coe�cients from dispersion param-

eters, allowing unchanged estimation of regression coe�cients under the

frailty-amended model, which only contributes to the dispersion. This was

previously pointed out by Hougaard et al.16.

5. EXAMPLE

Andersen et al.2 considered in their Examples VII.3.1, VII.3.4 and IX.4.3

survival after operation for malignant melanoma for 205 patients from Odense,

Denmark. Of these, 57 died from the disease in the follow-up period, while

the 14 who died from other causes and the remaining 134 who were alive at

the end of follow-up were considered censorings. A number of clinical and

histological covariates were registered at entry. Andersen et al. �tted a Cox

regression model and after careful analysis concluded that only the binary co-

variate ulceration and the continuous covariate log(tumour thickness) were

required to obtain an adequate description. There were several somewhat
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similar ways of incorporating these covariates. If the covariates are included

in a standard Cox model the estimated regression coe�cients and standard

errors were

log(tumour thickness) 0.610 (0.176)

ulceration 0.971 (0.321)

but graphical checks (Andersen et al.2, Figs. VII.3.3 and VII.3.6) raised

some suspicion that hazards for patients without and with ulceration, were

not proportional but rather converging. Therefore a time-dependent covari-

ate to account for possible time � covariate interaction was added:

log(tumour thickness) 0.607 (0.177)

ulceration 1.082 (0.357)

ulceration �(log(t)� 7) -1.198 (0.589);

here t is measured in days and 7 � log(3� 365). A likelihood ratio test of no

e�ect of the latter variable yielded P = :02, giving some evidence to support

the suspected deviation from proportionality.

Semiparametric frailty model.

Because this deviation might be interpreted as a selection e�ect in a

heterogeneous population arising from important unmeasured confounders

not being included in the analysis, a frailty model was postulated. To the
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Cox regression model speci�cation of the death intensity with the two co-

variates was multiplied a frailty factor Z, assumed gamma distributed with

E(Z) = 1;Var(Z) = �. The �tted parameters were (with the no-frailty model

estimates attached for comparison)

Frailty No frailty

log(tumour thickness) 1.370 (0.472) 0.610 (0.176)

ulceration 1.696 (0.686) 0.971 (0.321)

frailty variance 4.215 (2.266) 0 (-)

with likelihood ratio test statistic of no frailty variance yielding P = :007.

For details on estimating the standard errors under the frailty model, cf.

Andersen et al.27.

It is thus seen that incorporation of unmeasured population heterogeneity

in this case deattenuates the e�ects of the measured covariates (as well as of

their standard errors) by a factor of about 2.

Weibull frailty model.

Andersen et al.2 noted that the underlying intensities of the �tted Cox

regression models varied so regularly that a hypothesis of Weibull underlying

intensity should be acceptable. In order to study the role of the choice of

frailty distribution on the above e�ects, we therefore also considered pro-

portional hazards models with Weibull underlying intensity and three frailty

distributions: gamma, positive stable, and inverse Gaussian, cf. the sur-
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vey by Klein et al.4, as well as the power variance family P (�;  ; �) due to

Hougaard32, of which all of these are special cases. Hougaard's model is most

easily characterized by the Laplace transform

exp

(
�
 

�
[(� + s)� � ��]

)
:

Our gamma distribution is P (0; ��1; ��1), while P (�;  ; 0)(0 < � < 1)

are the positive stable distributions and P (1
2
;  ; �) the inverse Gaussian dis-

tributions. As is well known, the positive stable frailty distribution leads

to unidenti�ability in the present case of observing only one event per indi-

vidual. For the other frailty models, with the no frailty model included for

comparison, the estimates are given in Table 1.

It is seen that the results from the all-inclusive power variance frailty

model are virtually indistinguishable from that of the gamma frailty model,

which in turn �ts signi�cantly better than the inverse Gaussian frailty and the

no frailty/positive stable frailty (the latter two having the same likelihood).

Also, the estimates for no frailty and gamma frailty are well compatible with

the semiparametric estimates quoted above, and also there is a deattenuation

factor of 2 to 3 on the regression parameter when considering the gamma

frailty model. The assumption of inverse Gaussian frailty yields intermediate

results, and judging from the likelihood also a less e�ective accounting for

the heterogeneity.

Table 2 records the estimated correlations between the estimated frailty

parameter (indicating the spread of the frailty distribution) and the estimates

of the regression coe�cients and the Weibull shape parameter. The positive

12



correlation re
ects the inherent negative correlation between two alternative

ways of describing the observed heterogeneity in survival times: either by a

large frailty parameter (wide frailty distribution), or by a \
at" underlying

intensity (small Weibull shape parameter). Indeed, while the underlying

Weibull distribution in the no-frailty model is insigni�cantly di�erent from

an exponential distribution (shape parameter=1), a much more concentrated

underlying distribution is estimated for the gamma and inverse Gaussian

frailty models.

The positive correlations between estimated frailty parameter and es-

timated regression parameters re
ect the deattenuation e�ect described in

Section 3. Intuitively: The interindividual variation is either described by

covariates (high regression coe�cients) or frailty (large frailty parameter).

Accelerated failure time interpretation.

Alternatively, we may start from the accelerated failure time (AFT) inter-

pretation outlined towards the end of Section 3. We then obtain the results

of Table 3, accounting for the multiplicative indeterminacy in the positive

stable frailty distribution and still assuming underlying Weibull distribution.

It is seen that in the AFT interpretation, the various models agree. Let

us emphasize that the AFT interpretation is actually very intuitive: we have

estimated that (taking the best �tting gamma frailty model as example)
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log(survival time) = const. { 0.60 � log tumour thickness

{ 0.75 � ulceration

+ noise .

That is, for �xed value of ulceration, if tumour thickness increases by a factor

�, survival time will decrease by a factor �0:60. Similarly, for �xed value of

tumour thickness, ulceration of the tumour will decrease life by a factor of

e�0:75 � 0:47 compared to what it would have been if the tumour was not

ulcerated.

6. DISCUSSION

Frailty interpretation: individual or population risk. The original impetus

for the frailty concept such as de�ned by Vaupel et al.1 was to clarify the

behaviour of the mean hazard among the survivors in a heterogeneous pop-

ulation. In our example we observed a (slight) deviation from proportional

hazards when assuming no heterogeneity beyond that given by the covariates

tumour thickness and ulceration. The convergence of the \population" risk

of the survivors could be explained by a statistically signi�cant unobserved

heterogeneity in a model with proportional individual hazards. These results

were maintained whether the underlying intensity was allowed to vary freely

or restricted to having a Weibull parametric form, and the best �t among

the tested frailty models was obtained by the gamma frailty distribution, for

which the deattenuation e�ect was estimated as about 2 to 3. However for
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the only slightly worse �tting inverse Gaussian frailty distribution deattenu-

ation was halved, and for the positive stable frailty model it (the parameter

� above) is inherently unidenti�able. (Motivated in part by this feature of

the positive stable frailty distribution, Robins and Greenland14;15 discussed

consequences of such unidenti�ability problems for compensation schemes).

It is well known that ratios of regression coe�cients are much less sensi-

tive to model misspeci�cation than the regression coe�cients themselves,

see Solomon19 for examples from the present context and Li and Duan31 for

a careful general discussion with review of earlier work. This is also very

apparent in our example.

A conceptual explanation may be obtained from the observation above

about strong positive correlation between the estimates of the Weibull shape

parameter � and the spread of the frailty distribution. The single-spell

data contain only limited power as to distinguishing the random variation

as within-individual (large �) or between-individual (large frailty spread),

and therefore interpretations based only on the within-individual hazard are

unstable.

Accelerated failure time interpretation: As seen above the AFT interpre-

tation (which was here feasible starting from log-Weibull error distribution)

avoids the unidenti�ability problem by shifting attention of the dependence

on covariates from the elusive concept of 'individual hazard' to the accelera-

tion factor of the life time itself, thereby combining the within- and between-

individual components of variation into much more stably determined func-

tionals. The heterogeneity is conveniently relegated to an overdispersion
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element, and the interpretation is easy, direct and uncontroversial. Notice

that the well-determined ratio of the hazard rate regression coe�cients is

also the ratio of the AFT regression coe�cients.

A referee has remarked that the linearity of the AFT is what yields the

independence of regression estimates and frailty distribution, and that a sim-

ilar e�ect could be obtained by formulating a linear model for the hazard.

Such a model has been extensively discussed by Aalen34.

Conclusion. Stable estimation of hazard rate regression coe�cients in the

frailty models requires precise knowledge of the frailty distribution, and this

will often be hard to expect from single-spell data. In this case the acceler-

ated failure time parametrization o�ers an attractive alternative.
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Table 1. Estimates for Weibull frailty models.

Frailty distribution Power variance Gamma Inverse Gaussian No

Weibull shape parameter 2.83 (.817) 2.917 (0.718) 1.747 (0.299) 1.150 (0.131)

log(tumour thickness) 1.717 (.607) 1.754 (0.592) 0.932 (0.281) 0.577 (0.175)

ulceration 2.069 (.995) 2.180 (0.875) 1.512 (0.518) 1.020 (0.322)

-2 log likelihood 1074.84 1074.88 1083.14 1093.90

Likelihood ratio

test for no frailty, P <.0001 <.0001 .003

22



Table 2. Weibull frailty models. Correlations between estimated frailty pa-

rameter and parameter estimates as speci�ed.

Gamma frailty Gamma frailty Inverse Gaussian frailty

semiparametric Weibull Weibull

Weibull shape parameter | .882 .793

log(tumour thickness) .632 .598 .323

ulceration .532 .511 .430
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Table 3. Weibull frailty models. Hazard rate regression coe�cients con-

trasted to accelerated failure time regression coe�cients.

Gamma Inverse Gaussian No frailty

frailty frailty (� assumed=1)

or Positive stable frailty

(� indeterminate)

Weibull shape parameter 2.917 (0.718) 1.747 (0.299) 1:150 � � (0:131 � �)

log(tumour thickness) 1.754 (0.592) 0.932 (0.281) 0:577 � � (0:175 � �)

ulceration 2.180 (0.875) 1.512 (0.518) 1:020 � � (0:322 � �)

log(tumour thickness)
Weibull shape parameter 0.60 (0.15) 0.53 (0.18) 0.50 (0.16)

ulceration
Weibull shape parameter 0.75 (0.25) 0.87 (0.28) 0.89 (0.29)
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