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Abstract

Structural zeroes, or unobservable data, create
a problem when performing Analysis of Variance.
Replacing the missing cells with estimated values is
inappropriate in this case because these cells cannot
have data in them.  The software packages BMDP and
SPSS, up until recently, had no methods for dealing
with Structural Zeroes.  SAS uses the Type IV Sum of
Squares to handle the problem of missing cells, but is
very sensitive to how the data is organized.  Two
alternatives are a reconstrained Least Squares approach
or a decomposition of the problem into smaller
complete blocks.  These two methods are compared
with the Type IV Sum of Squares approach.

Section 1:  Introduction

Section 1.1:  The Problem

One of the problems one confronts when
doing an Analysis of Variance (ANOVA) is missing
values.  An example of such a problem is when an
investigator cannot observe data because of some
equipment malfunction.  If such a malfunction
occurred for an entire treatment combination, then a
missing cell has occurred.  The standard normal
equations for ANOVA do not allow for missing cells.
There are various methods for dealing with missing
cells, such as filling in missing cells (Kirk, 1968) or
breaking up the data into complete subsets (Searle,
1987).

Let us take the problem of missing cells one
step further.  The previous problem assumes that the
missing cells could be observed under better
conditions.  If the particular treatment combination
cannot be observed under any ideal conditions, then the
missing cell is called a structural zero.  An example
of such data is a SPECT scan of the brain.  Here,
instead of treatment levels, we have the horizontal and
vertical locations of the observations.  Clearly, the
brain is an irregular region.  If one uses ANOVA to
analyze this particular type of data, one would have
many cells that could not be observed, because there is
no tissue that could be scanned.  Structural zeroes

provide a different problem from that of missing cells,
since structural zeroes can never be observed, and
methods for filling in the missing cells are not
appropriate.

Section 1.2:  Analysis of Variance

The model for a two-way Analysis of
Variance can be written as:

yijk i j ij ijk= + + + +µ α β αβ ε ,

where the εijk’s are independent and follow a Normal

Distribution with mean 0 and variance σ
2
.  This model

is known as the effects model.  The random variable,
y, is the outcome variable.  The parameter µ is the
overall mean effect.  The parameter αi corresponds to
the effect of treatment Ai on the outcome.  The
parameter βj corresponds to the effect of treatment Bj
on the outcome.  The parameter αβij represents the
interaction effects of treatments A and B.  The values
of k represent replicate observations.  The following
figure illustrates an example of the rectangular nature
of the data if the data is complete.  The yij• notation
represents more than one observation in each cell.

Figure 1.1:  Data Table for ANOVA

Treatment A
1 2 3 4

Treat- 1 y11• y21• y31• y41•
ment 2 y12• y22• y32• y42•

3 y13• y23• y33• y43•
B 4 y14• y24• y34• y44•

When structurally missing data occurs, the figure could
look like the following table.

Figure 1.2:  Data Table with Structurally Zeroes

Treatment A
1 2 3 4

Treat- 1 y11• y21• y31• y41•
ment 2 y12• y22• y32• y42•

3 y13• y23• y33• y43•
B 4 y14• y24• y34• y44•



The shaded area represents the cells that do not exist.
The values of in these cells are effectively zero.

Section 2:  Methods for Dealing with Missing Data

Section 2.1:  Decomposition as a Solution

Using subsets is appealing for the structured
zero problem, because it does not assume that the
missing cells exist.  Unfortunately, a decomposition as
proposed by Searle, destroys the structure of the
problem.  However, one can modify the decomposition
to include overlapping subsets.  Let us assume we have
the data matrix in Figure 1.2.  This figure can be
decomposed into the following two overlapping
subsets.

Figure 2.1a:  Overlapping (Upper) Block 1

Treatment A
1 2 3 4

Treat. 1 y11• y21• y31• y41•
B 2 y12• y22• y32• y42•

Figure 2.1b:  Overlapping (Right) Block 2

Treatment A
3 4

Treat- 1 y31• y41•
ment 2 y32• y42•

3 y33• y43•
B 4 y34• y44•

With this decomposition into the maximum sized
overlapping rectangles,
• we still keep the structure of the problem and

avoid filling in the missing cells,
• we have the maximum size blocks to test for

inconsistencies due to interactions, and
• we can estimate a complete set of interactions for

the combined problem and for each subset.
This method has its advantages and

disadvantages.  It is certainly easy to implement in
such software packages like SAS.  One is also working
with complete blocks.  On the down side, it clouds the
idea of interaction in the overlap.  In the example
above, does one use the Upper Block, the Right Block
or some combination of both?  Also, when using this
method, one has effectively turned one analysis into
multiple analyses.  Finally, the data needs to be

connected. Otherwise, the decomposition cannot be
made into complete blocks.

Section 2.2:  SAS and Type IV Sum of Squares

The statistical software package SAS suggests
using Type IV Sum of Squares to handle missing cell
data.  Type IV Sum of Squares can be calculated by
using the R() notation (Speed, Hocking, Hackney;1988
).  We will use the two-way ANOVA with interaction
as our model.  The Type IV Sum of Squares for the
main effect A is R(α | µ, β, αβ), for main effect B, R(β
| µ, α, αβ), and for the interaction R(αβ | µ, α, β)
(Little, Freund, Spector; 1993).  These are identical to
Type III Sum of Squares in all cases except when
missing cells occur.  Unfortunately, Type IV Sum of
Squares can be different depending on how your data is
organized.  Using the identical data set, one can
change a main effect sum of squares by reorganizing
the data set and moving the missing cells.  The
following tables give the results of using Type IV
analysis in SAS and switching rows and columns.

Figure 2.2:  Different Scenarios for Testing Type IV
Analysis

Table 2.1:  Type IV Sum of Squares

Reference
Horizontal

Flip
R1,R2
switch

R3,R4
switch

Sum of Squares
SSA 36.02 40.89 36.02 36.02
SSB 40.16 40.16 40.16 40.16

SSAB 18.57 18.57 18.57 18.57



Table 2.2: SAS’s Parameter Estimates

True
Value Refer.

Horiz.
Flip

R1,R2
switch

R3,R4
switch

Parameter Estimates
µ 5 9.96 4.54 9.96 6.81

α1 -2 -2.55 0.00 -5.56 -2.55
α2 -1 -3.50 -0.94 -2.60 -3.50
α3 1 -2.87 2.56 -2.87 1.29
α4 2 0.00 5.42 0.00 0.00
β1 -2 -4.38 -4.52 -4.38 -1.22
β2 -1 -4.52 -1.65 -4.52 -1.37
β3 1 -3.16 1.00 -3.16 0.00
β4 2 0.00 0.00 0.00 3.16

αβ11 -1 -3.01 0.00 0.00 -3.01
αβ12 1 0.00 0.00 3.01 0.00
αβ21 1 0.89 3.90 0.00 0.89
αβ22 -1 0.00 0.00 -0.89 0.00
αβ31 -.5 0.76 0.90 0.76 -3.40
αβ32 .5 2.87 0.00 2.87 -1.29
αβ33 1 4.16 0.00 4.16 0.00
αβ34 -1 0.00 0.00 0.00 -4.16
αβ41 .5 0.00 0.14 0.00 0.00
αβ42 -.5 0.00 -2.87 0.00 0.00
αβ43 -1 0.00 -4.16 0.00 0.00
αβ44 1 0.00 0.00 0.00 0.00

Looking at Table 2.1, one realizes that the
horizontal flip changes the Sum of Squares for
Treatment A.  The data has not changed, only the
position, yet Type IV analysis gives inconsistent
results.  This is due primarily to the fact that the main
effects hypotheses change when data is reorganized,
although SAS does not tell you what those hypotheses
are. When examining Table 2.2, one notices an odd
behavior.  Take, for instance, the difference α1-α2.  In
all but one case, the difference is approximately 0.95.
The case where rows 1 and 2 are switched leads to a
difference of 2.96.  We can see that this is dramatically
different from the other three cases.  This is
particularly surprising since we did not change the
positioning of the missing cells.

The advantages and disadvantages for SAS
Type IV Sum of Squares should be clear.  Ease of
implementation and the variety of options SAS offers
make SAS an appealing option.  Unfortunately, with
different arrangements come different Type IV
hypotheses.  SAS does not inform the user what
hypotheses it is testing.  It is quite possible that the
hypotheses being tested might be of no interest to the
investigator.  Fortunately one can use the CONTRAST

statement to test appropriate hypotheses.  The
SOLUTION statement is misleading.  It yields biased,
non-unique results that are also dependent on data
arrangement.  One needs to consider what is estimable
and use the appropriate ESTIMATE statement.
Freund (1980) comments that using Type IV analysis
may cause sufficient confusion that one might give up
altogether.  Clearly, Type IV analysis should be used
carefully for the problem of structural zeroes.

Section 2.3:  The Structural Zero Least Squares
Approach

When one is trying to estimate parameters in
an ANOVA model, one needs to use the least squares
equation,

′ X Xβ = ′ X Y,

where X is the design matrix, β is the vector of
parameters and Y is the vector of the observed data.
Solving for β yields,

ˆ β = ′ X X( )− ′ X Y.

Without constraints, (X' X) is a singular matrix, and
one needs to find a generalized inverse to solve this
equation.  Another way of handling this problem is to
put constraints on β.  The general form for constraints
on β is,

Kβ = 0.

In the example of a balanced two-way ANOVA with
interaction, one usually uses the following constraints,

τ i
i

∑ = 0,

β j
j

∑ = 0,

αβij
i

∑ = αβij
j

∑ = 0.

One can then write some of the parameters in terms of
the others, and reduce the design matrix X to a
nonsingular form.

When dealing with structural zeroes, one
needs to modify these constraints to take into account
that there are no parameters in the holes  Take for
instance the example in Figure 1.2.  Here, αβ13 ≡ αβ23

≡ αβ14 ≡ αβ24 ≡ 0.  Since the degrees of freedom left
for interaction after estimating the main effects are



now different as a result of the missing cells, we will
need to impose additional constraints to keep the
design matrix X nonsingular.  Using Figure 1.2, we see
that we do not need to adjust the constraints for the
main effects.  We do, however, need to adjust the
constraints for interaction:  αβ11= -αβ12, αβ21= -αβ22,
αβ33= -αβ43, and αβ34= -αβ44.  So, we need to work
around the hole by setting the interaction terms of the
hole to 0 and adjusting the constraints on the
remaining terms.

To have a nonsingular design matrix, one
needs to reduce the number of parameters down to the
number of degrees of freedom of each effect.  In our
example, we clearly have 3 degrees of freedom for
Treatment A and three degrees of freedom for
Treatment B.  We then need only estimate α2, α3, and
α4 for Treatment A and β2, β3, and β4 for Treatment B.
By the constraints, we have

α1 = − α2 + α 3 + α4( ),
β1 = − β2 + β3 + β4( ).

For the interaction effect, we would normally have 9
degrees of freedom.  By reconstraining the problem, we
now have only 5 degrees of freedom for interaction as a
result of  removing the 4 parameters (2x2 hole) and
setting them to 0.    In other words we only have 5
linearly independent parameters, given our constraints.
The method is similar  for 1x1 holes and 3x3 holes.
The following figure is one possible way to choose the

5 degrees of freedom (marked with a †).

Figure 2.4:  Degrees of Freedom for the Interaction
Effect

Treatment A
1 2 3 4

Treat- 1 αβ11† αβ21† αβ31 αβ41†

ment 2 αβ12 αβ22 αβ32 αβ42
3 αβ13 αβ23 αβ33 αβ43†

B 4 αβ14 αβ24 αβ34 αβ44†

For the given pattern, the remainder of the parameters
can be written from the constraints as,

αβ12 = −αβ11       αβ22 = −αβ21

αβ33 = −αβ43        αβ34 = −αβ44

αβ31 = − αβ11 + αβ21 + αβ 41( )
αβ42 = − αβ41 + αβ43 + αβ44( )
αβ32 = αβ11 + αβ 21 + αβ41 + αβ43 + αβ44  .

Clearly, this is not the only pattern one can choose.
Choosing different patterns will result in different
equations.

The advantages to this method are clear.  The
full rank design allows for unique, unbiased parameter
estimates.  Also, results are not dependent on
arrangement since all that changes is column order in
the design matrix (and rows in the parameter matrix).
Finally, depending on how this method is
implemented, parameter estimates and sum of squares
are readily extractable.  SAS does not extract
parameter estimates easily.  One the other hand, since
this method is not currently automated,
implementation is difficult and time consuming.

Section 3:  Discussion

Upon reviewing the various methods, there is
no clear winner when dealing with Analysis of
Variance with Structural Zeroes.  As with all statistical
analyses, the investigator needs to be aware of what
hypotheses are being tested and what hypotheses need
to be tested.  Although the easiest to use, Type IV Sum
of Squares analysis does not tell the investigator what
is being tested.  Instead, it is up to the investigator to
supply the appropriate hypotheses relative to what is
being studied.  The Structural Zeroes Least Squares
method gives the investigator the advantage of working
with a full rank model, but implementation can be
difficult depending on the level of the investigator and
diagnostics even more cumbersome.  The Overlapping
Block Decomposition method is probably the least
favorable.  While easy to implement, it does not work
for all cases.  Interaction becomes difficult to
understand in the overlap and neither of the treatments
are fully expressed in either block.  The deciding
factors on which method to use are how much time and
what resources are available to perform the analyses
and what analyses are required.
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