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SUMMARY

The problem of testing for a center e�ect following a proportional hazards regression is
considered. Two approaches to the problem can be used. One approach �ts a proportional
hazards model with a �xed covariate included for each center. The need for a center speci�c
adjustment is evaluated using either a score, Wald or likelihood ratio test of the hypothesis
that all the center speci�c covariates are equal to zero. An alternative approach is to intro-
duce a random e�ect or frailty for each center into the model. Recently, Commenges and
Andersen [1], have proposed a score test for this random e�ects model.

By a Monte Carlo study we compare the performance of these two approaches when either
the �xed or random e�ects model holds true. The study shows that for moderate samples
the �xed e�ects tests have nominal levels much higher than speci�ed, but the random e�ect
test performs as expected under the null hypothesis. Under the alternative hypothesis the
random e�ect test has good power to detect relatively small �xed or random center e�ects.
Also if the center e�ect is ignored the estimator of the main e�ect may be quite biased and
the estimator is inconsistent. The tests are illustrated on a retrospective multicenter study
of the recovery from bone marrow transplantation.

1. Introduction

A common question arising in multi-center prospective clinical trials and in retrospective
studies from collaborative registry studies is whether some statistical adjustment is needed
to account for e�ects speci�c to the individual centers contributing patients to the trial.
Such an adjustment may be needed to account for factors, related to the outcome, which
vary from center to center but are not adjusted for in the analysis. These factors may involve
measurable quantities like a center's protocol for supportive therapy, the number of similar
cases treated by the center, etc., or they be unmeasurable factors like the quality of the
center's medical sta� or di�erences in a center's catchment population.

In this paper we study two methods for testing the hypothesis of no center speci�c e�ect
when the outcome measure is the time to some event. In such studies, typically, data is
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analyzed using the Cox [2] proportional hazards regression model. The typical analysis
includes covariates for the main e�ect of interest in the study as well as patient speci�c
covariates which are related to the outcome of interest. The patient speci�c covariates are
included in the �nal model in a partial attempt to make an adjustment for di�erences in
patient demographics between institutions (See Klein and Moeschberger [3] for details on
model building in this situation.)

The �rst method used to test for the presence of a center e�ect in such studies is the use
of a �xed e�ect proportional hazards model. In this approach one institution is picked as a
baseline institution and a set of indicator covariates are included for all other institutions.
If we let Z denote the treatment and patient speci�c covariates and Xi =f1 if the patient
is from institution i; 0 otherwiseg, for i = 1; � � � ; K, where K is the number of institutions
contributing to the study, then the hazard rate for the jth patient from institution i is

�ij(tjZij) = �0(t) expf�
0
Zij + �0Xg (1)

where X = (X1; � � � ; XK�1). If there is no center speci�c e�ect in the study then �1 = �2 =
� � � = �K�1 = 0. To test the hypothesis of no center e�ect one can used a standard Wald,
likelihood ratio or score test available in many statistical packages (See Andersen et al [4] or
Klein and Moeschberger [3] for details).

An alternate approach to testing for a center e�ect is to use a random e�ects or frailty
model. Such models were introduced by Clayton [5] and Vaupel et al. [6] and further dis-
cussed by, among others, Klein [7], Nielsen et al [8], Andersen et al. [4] and Klein and
Moeschberger [3]. Here one assumes that the center speci�c e�ect for the ith center is repre-
sented by a mean 0, variance 1, unobservable random variable, �i, which acts multiplicatively
on the hazard rate for all individuals within the center. That is

�ij(tjZij) = �0(t) expf�
0
Zij + ��ig

= �0(t)ui expf�
0
Zijg (2)

where ui = expf��ig. The �i's are an i.i.d. sample from the unknown frailty distribution. In
this model, the test of no center e�ect reduces to a test of the hypothesis that � is equal to
0. Commenges and Andersen [1] have recently developed a score test of this hypothesis that
does not require speci�cation of the unknown frailty distribution. Computational details of
this test are given in the Appendix.

In this paper we examine the relative performance of these two procedures by a Monte
Carlo study. Details of the study are given in Section 2. In Section 3 we examine the
performance of the two approaches when the null hypothesis is true. In Section 4 we examine
the power of the two approaches when either the �xed or random e�ect model is true. In
Section 5 we illustrate the use of the two statistics on a data set of allogeneic bone marrow
transplants based on data from a collaborative bone marrow transplant registry. Finally, in
Section 6 we summarize our conclusions and make some suggestions of how to proceed when
the hypothesis of no center e�ect is rejected.
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2. The Monte Carlo Study

To study the two approaches to testing for a potential center e�ect a Monte Carlo study
was performed. In the study a single �xed time covariate, Z, was used. The covariate Z
was taken to be +1 for half of the patients at each center and �1 for the remaining half.
The value of the regression coe�cient was taken to be either zero or ln(2). The baseline
hazard rate was assumed to be one for all t. A random censoring time was generated for
each subject from an exponential population with hazard rate equal to either 1/9 or 3/7.
This leads to appoximately 10% or 30% of the observations being censored, respectively.

To investigate the relationship between the number of centers and the number of ob-
servations per center on the power of the tests we generated data coming from 5, 10 or 20
centers with a total of 100, 200, or 400 observations in the total sample. Data was generated
from one of �ve models for the center e�ect. For the �rst case all observations were indepen-
dent and no center e�ect was generated. This corresponds to the null case. For the other
four cases data was generated either from a model with �xed center e�ects (1) or from the
random e�ects model (2) with either a gamma, positive stable or inverse Gaussian frailty
model. To make the model comparable for the random e�ects models the parameters of the
frailty model were chosen to give a Kendall's � of either 0.1, 0.3, or 0.5 between individuals
within a center. Note since the inverse Gaussian model has a � of less than 0.5 only the
� = 0:1 and 0.3 cases were available.

For the gamma frailty model the ui were simulated from a gamma distribution with
mean 1 and variance � using the IMSL routine rngam. This model has a value of � =
�=(� + 1). For the inverse Gaussian distribution with probability density function f(u) =
(��)�1=2 expf2=�g expf�u=� � 1=(�u)g, the ui were generated using the routine in Micheal
et al [9]. For this model Kendall's � is 0:5 � 2=� + (8=�2) expf4=�g

R
1

4=� exp(�u)=udu. For
the positive stable distribution with Laplace transform exp(�u�); 0 � � � 1, the ui's were
generated using results in Chambers et al [10]. Here Kendall's � is 1��. For the �xed center
e�ects model we model the center e�ect as �i = c(i� 3), for i = 1; � � � ; 5 when K = 5 and as
�i = c[�K�2+2i]=2, i = 1; � � � ; K=2 and �i = c[i�K=2] for i = K=2; � � � ; K when K = 10 or
K = 20. To determine the value of c we treat the �i as arrising from a discrete distribution,
E, with mass 1=K at each �i. Then the expected value of E is zero as is the expected value
of �i in (2). To �nd c we match the variance of expfEg with that of the variance of the
gamma frailty distribution. This gives a \association" in the �xed e�ects model of roughly
the same strength as in the gamma frailty model. Note that while we treated the center
e�ect in a random manner to get a value of c, in the simulation the values of c are �xed.
Table 1 summarizes the parameters used in our study.
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Table 1

Parameters used in The Monte Carlo Study
Center E�ect �=0.1 � = 0:3 � = 0:5
Gamma � = 2=9 � = 6=7 � = 2
Positive Stable � = 0:9 � = 0:7 � = 0:5
Inverse Gaussian � = 0:551 � = 4:070 Not Possible
Constant K=5 c=0.311 c=0.534 c=0.709

K=10 c=0.132 c=0.230 c=0.305
K=20 c=0.007 c=0.122 c=0.161

For each sample we compute the Wald, likelihood ratio and score test for the �xed e�ects
model, the score test for the random e�ects model and the estimate of the � based on a
proportional hazards model which does not adjust for center e�ects and for the model which
makes a �xed e�ect adjustment for the center e�ects. This is done in each run for 5,000
samples. We estimate the power of the four test of center e�ects at a 0.05 signi�cance level
and the bias and mean squared error of the two estimates of �.

3. Sign�cance levels of the tests

Table 2 shows the estimated null power of the likelihood ratio �xed e�ects test and the
random e�ects score test, at a 0.05 signi�cance level, based on 5,000 replicates for each
combination of �; K and total sample size. Here we have reported only the likelihood ratio
test for the �xed e�ects model since its performance was in all cases the best of the three
possible �xed e�ects test statistics. From this table we �rst see that the test based on a �xed
center e�ects model requires a very large sample size before it achieves the desired level.
When the number of subjects at each center is small the test is anti-conservative. This fact
appears to be true even when there are ten or more groups with 400 total observations and
the results suggest that unless the number of subjects in each group is very large the �xed
e�ect test should not be used because it rejects the hypothesis of no center e�ect too often
when the null hypothesis is true.

For the random e�ects score test, with only a few exceptions, the nominal level of the
test is achieved. When K = 5 and the total sample is 100 the test may be slightly anti-
conservative, but the estimated power achieved is closer to 0.05 than for any of the �xed
e�ects tests.

4. Behavior When There Is A Group E�ect

As seen in the previous section the �xed e�ects test for a group e�ect tends to reject the
null hypothesis of no group e�ect too often when the number of subjects per group is small.
The random e�ects test does, however, appear to maintain the correct signi�cance level for
these small sample cases. In our examination of the power of these tests we found that the
power of the �xed e�ects test was higher in all cases than the random e�ects test. However,
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due to the problem with the �xed e�ects test when the null hypothesis is true these higher
powers give a false impression that this test is performing better than the random e�ects
test. Higher power is to be expected since the nominal signi�cance levels of the �xed e�ects
tests are higher than those of the random e�ects test.

To examine the power of the random e�ects tests we report in Table 3 the estimated
power of the random e�ects tests for � = 0:1 and 0.3 for the gamma, inverse Gaussian, and
positive stable frailty models and the �xed e�ects models. When � = 0:5 for the gamma,
positive stable random e�ects models and for the �xed e�ects model, all tests essentially
have a power of 1. From this table we see that the random e�ects test has good power to
detect �xed group e�ects. The power is quite high for all types of group e�ects for small
associations between individuals within a group when the total sample size is large or the
number per group is large. For a given number of groups and a given total sample size the
power decreases as the censoring fraction increases.

While the random e�ects test for group e�ects has reasonable power to detect these e�ects
a natural question is whether the presence of a group e�ect has an e�ect on the estimate of
treatment e�cacy. To examine this question we studied the relative excess bias in estimating
� in a model that ignores the center e�ect when such an e�ect exists. We computed for each
combination of the total sample size N , number of groups K; the degree of association, � ,
and group e�ect � the quantity

r =
B(0)� B(�)

jB(0)j
; (3)

where B(�) is the estimator of the bias of the estimator of � based on a model which ignores
the center e�ect. Here B(0) is from data simulated from a model with no center e�ect.

We analysed these data using ANOVA techniques as in Andersen et al. [11]. Separate
analyses were made for � = 0 and � = ln(2) and we included the factors N �K, � , percent
CENSoring, and DISTribution of the center e�ects since inclusion of more interactions did
not improve the �t of the model. That is, the model used for both values of � was

E(r) = � + �N�K + 
� + �CENS + "DIST:

For � = 0 none of these factors had any signi�cant e�ect on r which, as one would
expect, was small in all cases. For � = ln(2), E(r) was everywhere larger than for � = 0.
That is because under the random e�ects models and apparantly under the constant e�ects
models as well the estimates computed without adjustment for center e�ects tend to shrink
towards zero. Furthermore, E(r) increased in absolute value as the strength of association, � ,
increases. Thus the averages over the other factors in the model were -17.2, -45.2, and -70.9
for � =0.1, 0.3, and 0.5, respectively. The amount of censoring had no e�ect and the type of
distribution and the number of groups, K, had little e�ect on r whereas E(r) increased in
absolute value when the total sample size, N , increases, the averages over the other factors
in the model being -19.3, -41.7, and -72.7 for N = 100, 200 and 400, respectively.
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This suggests that the estimators computed by ignoring either a �xed or random e�ect
are inconsistent. It implies that the so called marginal approach of Lee et al [12] or Wei et
al [13] which computes the estimate of � under an independent working model and uses a
robust variance estimator is not appropriate in this problem.

5. Example

To illustrate the tests we consider a sample of 609 Acute Myelogenous Leukemia (AML)
patients reported to the International Bone Marrow Transplant registry (IBMTR). All pa-
tients were given an HLA-identical sibling transplant for the leukemia which was in their �rst
complete remission at the time of transplant. The IBMTR is an international cooperative
group which collects data on allogenic transplants conducted world wide. The sample here
consists of data reported by the 60 largest reporting centers over the period 1988-1994. Each
center contributed at least 5 transplants to the study and had at least one patient relapsing
or dying. Table 4 shows the distribution of the number of cases per center.

The goal of the study was to model the relationship between the patient's age (di-
chotomized as �30 versus >30) and Karnofski score (<90 versus �90) at the time of trans-
plant and treatment failure. The treatment is said to fail if the patient dies or relapses.
Ignoring any possible center e�ects the estimates of the risk coe�cients were 0.26 (se=0.13,
p=0.05) for the e�ect of being over thirty at transplant and 0.32 (se=0.17, p=0.07) for hav-
ing a Karnofski score under 90. The four tests for a possible group e�ect give the following
results:

Fixed E�ects
Likelihood ratio Test p=0.228
Score Test p=0.008
Wald Test p=0.104

Random E�ects p=0.996

Note that the �xed e�ects score test suggests the presence of a center e�ect while the
other tests do not show evidence of a center e�ect. In light of our simulation results which
show that the score test rejects too often we conclude that their is no need here to adjust
for a center e�ect. Note that if we had chosen to adjusts for a �xed center e�ect then the
estimates for the risk coe�cients would be 0.33 (se=0.15, p=0.024) for age and 0.25 (se=0.22,
p=0.249) for Karnofski score which would lead to somewhat di�erent conclusions than the
model without a group e�ect.

6. Discussion

Our Monte Carlo study has shown that the use of a �xed e�ects model to test for a center
e�ect in a small to moderate size multi-center trial tells us too often that an adjustment for
such an e�ect is needed when in fact there is no such e�ect. This test requires a large number
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of subjects in each center to give signi�cance levels close to the nominal level. The sample
sizes needed in each center are much larger than what is commonly encountered in practice.
The random e�ects test of Commenges and Andersen [1] seems to behave quite well under
the null hypothesis of center e�ect even when the number of observations in each group is
fairly small and it seems to have reasonable power to detect either a �xed or random group
e�ect.

The random e�ects test has a few additional advantages over the �xed e�ects test. First,
the estimates of the center e�ect in the �xed e�ects proportional regression model requires
at least one event for each center. When this does not hold the estimates do not exist. This
restriction is not required for the random e�ects model. Second, when all the events in one
center occur before (or after) all the events at an other center then the estimates of that
center's �xed e�ect is at minus in�nity (or plus in�nity). Again this is not a problem for the
random e�ects test. Finally, the Wald and likelihood ratio tests for �xed e�ects test requires
the maximization of a log likelihood which is a function of p + (K � 1) parameters, where
p is the number of patient speci�c covariates. When there is a large number of centers this
may be a large number of parameters and numerical problems may occur if good starting
values are not used. Note that the random e�ects test requires maximization with respect
to only p covariates.

When the presence of a center e�ect is detected then the natural question arrises as to
how adjust for this e�ect. As noted earlier some adjustment is needed since the presence of a
center e�ect, either �xed or random, makes the estimators of the risk coe�cients computed
under an assumption of no center e�ect inconsistent. The suggestion of Liang et al. [14] to
use an independence working model in this case and a robust estimator of the variance of
the estimator is not appropriate since the estimators do not seem to be consistent in these
cases.

Some model which incorporates the center e�ect is needed. One possibility is to use
the �xed e�ects model for this adjustment. This model can be �t using standard statistical
software. We looked at the relative excess bias (3) of this main e�ect adjusted for a �xed
center e�ect as compared to the bias under the independence model (data not shown) and
in this case, as opposed to the unadjusted relative bias studied above, the relative bias
decreased as the sample size increases. This was true, not only when the �xed e�ects model
is correct, but is also true when the random e�ect model is true. This suggests that this
model may provide a quick means of making a crude adjustment for a center e�ect when the
sample sizes are large. A second possibility would be to estimate the treatment e�ect in a
Cox regression model strati�ed by center but then centers with no events would contribute
no information to the estimate.

An alternative to using �xed e�ect models to adjust for a center e�ect would be to use
a frailty model. The technology for �tting a proportional hazards model with a �xed e�ect
can be found in Nielsen et al [8], Klein [6] and Andersen et al [15], for the gamma frailty
model and Klein et al [16] for the inverse Gaussian model and Wang et al [17] for the positive
stable model.
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Table 2. Estimated Null Power Of The Fixed and Random E�ects Tests

Total Number Percent Likelihood Random
Sample Size of Groups Deaths � Ratio E�ects Test

100 5 0.7 0.00 0.0674** 0.0588*
100 5 0.7 0.69 0.0540 0.0538
100 5 0.9 0.00 0.0670** 0.0626**
100 5 0.9 0.69 0.0590* 0.0582*
100 10 0.7 0.00 0.0802** 0.0610**
100 10 0.7 0.69 0.0774** 0.0532
100 10 0.9 0.00 0.0860** 0.0592*
100 10 0.9 0.69 0.0816** 0.0498
100 20 0.7 0.00 0.1592** 0.0590*
100 20 0.7 0.69 0.1486** 0.0526
100 20 0.9 0.00 0.1996** 0.0556
100 20 0.9 0.69 0.1494** 0.0552
200 5 0.7 0.00 0.0590* 0.0608**
200 5 0.7 0.69 0.0566* 0.0564*
200 5 0.9 0.00 0.0640** 0.0556
200 5 0.9 0.69 0.0520 0.0530
200 10 0.7 0.00 0.0704** 0.0572*
200 10 0.7 0.69 0.0600** 0.0568*
200 10 0.9 0.00 0.0690** 0.0508
200 10 0.9 0.69 0.0652** 0.0564*
200 20 0.7 0.00 0.0948** 0.0556
200 20 0.7 0.69 0.0956** 0.0544
200 20 0.9 0.00 0.1032** 0.0578*
200 20 0.9 0.69 0.0926** 0.0508
400 5 0.7 0.00 0.0550 0.0528
400 5 0.7 0.69 0.0508 0.0566*
400 5 0.9 0.00 0.0564* 0.0566*
400 5 0.9 0.69 0.0556 0.0626**
400 10 0.7 0.00 0.0542 0.0556
400 10 0.7 0.69 0.0604** 0.0580*
400 10 0.9 0.00 0.0584* 0.0490
400 10 0.9 0.69 0.0562* 0.0500
400 20 0.7 0.00 0.0670** 0.0462
400 20 0.7 0.69 0.0690** 0.0534
400 20 0.9 0.00 0.0736** 0.0506
400 20 0.9 0.69 0.0668** 0.0470

��-more than 3 SE larger than the nominal level
�- 2-3 SE larger than the nominal level.
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Table 3. Power Of The Random E�ects Test For Group E�ects

Constant Gamma Inverse Gaussian Positive Stable
70% 90% 70% 90% 70% 90% 70% 90%

N K � � Dead Dead Dead Dead Dead Dead Dead Dead

100 5 0.00 0.1 0.659 0.784 0.538 0.618 0.555 0.644 0.446 0.486
100 5 0.00 0.3 0.995 1.000 0.909 0.942 0.903 0.952 0.891 0.921
100 5 0.69 0.1 0.638 0.767 0.541 0.620 0.542 0.630 0.444 0.477
100 5 0.69 0.3 0.994 1.000 0.903 0.944 0.902 0.953 0.890 0.911
100 10 0.00 0.1 0.495 0.619 0.502 0.619 0.485 0.608 0.454 0.466
100 10 0.00 0.3 0.979 0.996 0.944 0.984 0.948 0.986 0.947 0.963
100 10 0.69 0.1 0.470 0.612 0.495 0.608 0.481 0.598 0.440 0.454
100 10 0.69 0.3 0.972 0.996 0.939 0.979 0.944 0.983 0.943 0.964
100 20 0.00 0.1 0.278 0.386 0.301 0.501 0.297 0.451 0.289 0.303
100 20 0.00 0.3 0.850 0.937 0.839 0.978 0.871 0.977 0.923 0.948
100 20 0.69 0.1 0.271 0.381 0.313 0.492 0.299 0.431 0.272 0.278
100 20 0.69 0.3 0.841 0.938 0.861 0.980 0.881 0.978 0.924 0.942
200 5 0.00 0.1 0.967 0.994 0.784 0.846 0.790 0.853 0.624 0.680
200 5 0.00 0.3 1.000 1.000 0.975 0.986 0.969 0.986 0.960 0.977
200 5 0.69 0.1 0.954 0.987 0.777 0.842 0.778 0.845 0.610 0.661
200 5 0.69 0.3 1.000 1.000 0.971 0.979 0.971 0.987 0.955 0.974
200 10 0.00 0.1 0.902 0.973 0.827 0.894 0.824 0.901 0.689 0.730
200 10 0.00 0.3 1.000 1.000 0.996 0.999 0.995 0.999 0.990 0.997
200 10 0.69 0.1 0.897 0.964 0.814 0.886 0.826 0.895 0.672 0.717
200 10 0.69 0.3 1.000 1.000 0.995 0.998 0.997 0.999 0.991 0.995
200 20 0.00 0.1 0.767 0.875 0.767 0.877 0.776 0.876 0.659 0.696
200 20 0.00 0.3 1.000 1.000 0.997 1.000 0.999 1.000 0.998 0.999
200 20 0.69 0.1 0.741 0.866 0.757 0.871 0.746 0.867 0.651 0.671
200 20 0.69 0.3 1.000 1.000 0.998 1.000 0.998 1.000 0.997 1.000
400 5 0.00 0.1 1.000 1.000 0.920 0.942 0.927 0.952 0.766 0.814
400 5 0.00 0.3 1.000 1.000 0.993 0.996 0.992 0.995 0.987 0.993
400 5 0.69 0.1 1.000 1.000 0.924 0.947 0.920 0.949 0.765 0.809
400 5 0.69 0.3 1.000 1.000 0.993 0.997 0.991 0.996 0.985 0.993
400 10 0.00 0.1 0.999 1.000 0.974 0.990 0.974 0.990 0.861 0.891
400 10 0.00 0.3 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
400 10 0.69 0.1 0.999 1.000 0.964 0.983 0.972 0.988 0.854 0.895
400 10 0.69 0.3 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
400 20 0.00 0.1 0.995 1.000 0.983 0.992 0.983 0.994 0.900 0.924
400 20 0.00 0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 20 0.69 0.1 0.993 0.999 0.979 0.992 0.979 0.993 0.895 0.921
400 20 0.69 0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. The Distribution Of The Number Of Cases Per Center

Number Of Cases Number Of Centers
5 11
6 13
7 7
8 6
10 2
11 5
12 2
13 1
14 1
15 2
17 1
18 1
19 2
20 2
22 1
26 1
28 1
34 1
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Appendix

For the jth subject j = 1; : : : ; Si in the ith group i = 1; : : : ; n let Tij be the observation
time of subject and Dij = 1 if subject died and 0 otherwise. The frailty model (2) proposed
in Section 1 can be speci�ed as a counting process Nij = I(Tij � t; Dij = 1) with

dNij(s) = dMij(s) + Yij(s) expf�"i + �
0

zijg �0(s) ds;

where Yij(s) = I(Tij > s); Mij(�) is a martingale, "i's are iid random variables with an
unspeci�ed distribution G which has mean 0 and variance 1:

Let �N =
P

i;j Nij; S(0)(�; s) =
P

i;j Yij(s) exp(�
0

zij); and b� be the maximum partial
likelihood estimate of � under the null hypothesis of � = 0: The cumulative baseline hazard
function �0(t) =

R t
0 �0(s)ds can be estimated by

b�0(t) =
Z t

0

d �N(s)

S(0)( b�; s) :
Then the martingale Mij(t) can be estimated as

cMij(t) = Nij(t)� b�ij( b�; t);
where b�ij(�; t) = exp(� 0zij) b�0(t):

Let pij(�; s) = Yij(s) exp(�
0zij)=S

(0)(�; s) and pi(�; s) =
P

j pij(�; s): To test the hypoth-
esis of homogeneity of � = 0; the score test statistic is given by

T ( b�) = nX
i=1

0
@ SiX

j=1

cMij(t)

1
A
2

� �N(1) +
Z
1

0

nX
i=1

p2i (
b�; s)d �N(s):

Let Hi(�; s) = 2
ncMi(s)�

Pn
l=1

cMl(s�)pl(�; s)� pi(�; s) +
Pn

l=1 p
2
l (�; s)

o
; where cMi(s) =P

j
cMij(s): The variance of T ( b�) can be consistently estimated by

bIc = bI( b�)� bJ( b�) I�1b� bJ( b�)0;
where I�1b� is the information matrix relative to b� ,

bI(�) = nX
i=1

Z
1

0
H2

i (�; s) pi(�; s) d �N(s); and

bJ(�) = nX
i=1

Z
1

0
Hi(�; s)

SiX
j=1

zij pij(�; s) d �N(s):

Then the test statistic for homogeneity is H = T ( b�)=qbIc which has an asymptotic standard
normal distribution under the null hypothesis.
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