MEG (Magnetoencephalography) Program

EmailEmail    |   Bookmark Page Bookmark  |   RSS Feeds RSS  |   Print Page Print  

Epoch averaging: evoked responses across trials

An enduring tradition of MEG/EEG signal analysis consists in enhancing brain responses that are evoked by a stimulus or an action, by averaging the data about each event – defined as an epoch – across trials. The underlying assumption is that there exist some consistent brain responses that are time-locked and so-called 'phase-locked' to a specific event (again e.g., the presentation of a stimulus or a motor action).

Hence, it is straightforward to enhance these responses by proceeding to epoch averaging across trials, under the assumption that the rest of the data is inconsistent in time or phase with respect to the event of interest. This simple practice has permitted a vast amount of contributions to the field of event-related potentials (in EEG, ERP) and fields (in MEG, ERF) (Handy, 2004, Niedermeyer & Silva, 2004).


Trial averaging necessitates that epochs be defined about each event of interest (e.g. the stimulus onset, or the subject’s response, etc.). An epoch has a certain duration, usually defined with respect to the event of interest (pre and post-event). Averaging epochs across trials can be conducted for each experimental condition at the individual and the group levels. This latter practice is called ‘grand-averaging’ and has been made possible originally because electrodes are positioned on the subject’s scalp according to montages, which are defined with respect to basic, reproducible geometrical measures taken on the head. The international 10-20 system was developed as a standardized electrode positioning and naming nomenclature to allow direct comparison of studies across the EEG community (Niedermeyer & Silva, 2004). Standardization of sensor placement does not exist in the MEG community, as the sensor arrays are specific to the device being used and subject heads fit differently under the MEG helmet.

Therefore, grand or even inter-run averaging is not encouraged in MEG at the sensor level without applying movement compensation techniques, or without at least checking that limited head displacements occurred between runs. Note however that trial averaging may be performed on the source times series of the MEG or EEG generators. In this latter situation, typical geometrical normalization techniques such as those used in fMRI studies need to be applied across subjects and are now a more consistent part of the MEG/EEG analysis pipeline.


Once proper averaging has been completed, measures can be taken on ERP/ERF components. Components are defined as waveform elements that emerge from the baseline of the recordings. They may be characterized in terms of e.g., relative latency, topography, amplitude and duration with respect to baseline or a specific test condition. Once again, the ERP/ERF literature is immense and cannot be summarized in these lines. Multiple reviews and textbooks are available and describe in great details the specificity and sensitivity of event-related components.

The limits of the approach

Phase-locked ERP/ERF components capture only the part of task-related brain responses that repeat consistently in latency and phase with respect to an event. One might however question the physiological origins and relevance of such components in the framework of oscillatory cell assemblies, as a possible mechanism ruling most basic electrophysiological processes (Gray, König, Engel, & Singer, 1989, Silva, 1991, David & Friston, 2003, Vogels, Rajan, & Abbott, 2005). This has lead to a fair amount of controversy, whereby evoked components would rather be considered as artifacts of event-related, induced phase resetting of ongoing brain rhythms, mostly in the alpha frequency range ([8,12]Hz) (Makeig et al.., 2002). Under this assumption, epoch averaging would only provide a secondary and poorly specific window on brain processes: this is is certainly quite severe.

Indeed, event-related amplitude modulations – hence not phase effects – of ongoing alpha rhythms have been reported as major contributors to the slower event-related components captured by ERP/ERF’s (Mazaheri & Jensen, 2008). Some authors associate these modulations of event-related amplitudes to local enhancements/reductions of event-related synchronization/desynchronization (ERS/ERD) within cell assemblies. The underlying assumption is that as the activity of more cells tends to be synchronized, the net ensemble activity will build up to an increase in signal amplitude (Pfurtscheller & Silva, 1999).
 

Event-related, evoked MEG surface data in a visual oddball RSVP paradigm. The data was interpolated between sensors and projected on a flattened version of the MEG channel array. Shades of gray represent the inward and outward magnetic fields picked-up outside the head during the [120,300] ms time interval following the presentation of the target face object. The spatial distribution of magnetic fields over the sensor array is usually relatively smooth and reveals some characteristic shape patterns that indicate that brain activity is rapidly changing and propagating during the time window. A much clearer insight can be provided by source imaging.

 


Copyright 2010 Sylvain Baillet, PhD

 

webmaster@mcw.edu
© 2014 Medical College of Wisconsin
Page Updated 03/12/2012