MEG (Magnetoencephalography) Program

EmailEmail    |   Bookmark Page Bookmark  |   RSS Feeds RSS  |   Print Page Print  

 

Data acquisition

  • A typical MEG/EEG session consists of usually several runs.
  • A run is a series of experimental trials.
  • A trial is an experimental event whereby a stimulus has been presented to a subject, or the subject has performed a predefined action, within a certain condition of the paradigm.

Trials and runs certainly vary in duration and length depending on experimental contingencies, but it is certainly a good advice to try to keep these numbers relatively low. It is most beneficial to the subject’s comfort and vigilance to keep the duration of a run under 10 minutes, and preferably 5 minutes. Longer runs augment the participant’s fatigue, which most commonly results in more frequent eye blinks, head movements and poorer compliance to the task instructions. For the same reasons, it is not recommended that a full session lasts longer than about 2 hours. Communication with the subject is made possible at all times via two-way intercom and video monitoring.

Setting the data sampling rate is the first parameter to decide upon when starting an MEG/EEG acquisition. Most recent systems can reach up to 5KHz per channel, which is certainly doable but leads to large data files that may be cumbersome to manipulate off-line. The sampling rate parameter is critical as it conditions the span of the frequency spectrum of the data. Indeed, this latter is limited in theory to half the sampling rate, while good practice would rather consider it is limited to about one third of the sampling frequency.

A vast majority of studies target brain responses that are evoked by stimulation and revealed after trial averaging. Most of these responses have a typical half-cycle of about 20ms and above, hence a characteristic frequency of 100Hz. A sampling rate of 300 to 600Hz would therefore be a safe choice. As briefly discussed above, high-frequency oscillatory responses in the brain have however been evidenced in the somatosensory cortex and may reach up to about 900Hz (Cimatti et al.., 2007). They therefore necessitate higher sampling rates of about 3 to 5KHz.

Storage and file handling issues may arise though, as every minute of recording corresponds to about 75MB of data, sampled at 1KHz on 300 MEG and 60 EEG channels.

During acquisition, MEG and EEG operators shall proceed to basic quality controls of the recordings. So called ‘bad channels’ may be readily detected because of evident larger noise amounts in the traces, and shall be addressed (by e.g., posing more gel under the electrode or tuning the deficient MEG channel).


Filters may be applied during the recording, though only with caution. Indeed, band-pass filters for display only are innocuous to subsequent analysis, but most MEG/EEG instruments feature filters that are applied definitely to the actual data being recorded. The investigator shall be well aware of these parameters, which may transform into roadblocks to the analysis of some components of interest in the signals. A typical example is a low-pass filter applied at 40Hz, which prohibits subsequent access to any upper frequency ranges. Notch filters are usually applied during acquisition to attenuate power line contamination at 50 or 60Hz, though without preventing possible nuisances at some harmonics. Low-pass anti-aliasing filters are generally applied by default during acquisition – before analog-to digital conversion of signals – and their cutoff frequency is conditioned to the data sampling rate: it is conventionally set to about a third of the sampling frequency.

As a general recommendation, it is suggested to keep filtering to the minimum required during acquisition – i.e. anti-aliasing and optionally, a high-pass filter set at about 0.3Hz to attenuate slow DC drifts, if of no interest to the experiment – because much can be performed off-line during the pre-processing steps of signal analysis, which we shall review now.
 

 


Copyright 2010 Sylvain Baillet, PhD

webmaster@mcw.edu
© 2014 Medical College of Wisconsin
Page Updated 03/12/2012