M-3 Scholarship Forum
May 9, 2013
Background

- Group activities have many benefits
- People enjoy group exercise
- A significant number of people drop out of group exercise programs within 3-6 months
- Group cohesion correlates with decreased exercise group drop-out rate
Background: Developmental Delay

- 10-12% of children in the general population are considered developmentally delayed.
- Research on children placed in out-of-home care have found higher rates of developmental delay.
  - Rates are between 23% and 61% of children.
  - Methods of detection vary, thus results vary.
- Reasons for delay are numerous and multifactorial.
  - Unstable home environments / disruption of caregivers.
  - Fragmented medical care.
  - Abuse/neglect.
Evaluation of whiteboard use in a pediatric intensive care unit

Sven Olson¹
Lea Moody¹
David Triscari²
Dr. Matthew Scanlon MD, CPPS²

¹QuIPs Pathway, Medical College of Wisconsin
²Pediatric Critical Care, Medical College of Wisconsin
Session 5 – Medical Carnivalesque

- Understand the purpose of ritual and transformation in medicine, and validate the balance between biomedical reduction and the practice of humanistic medicine.
- Discuss burnout and physician fatigue.
- Use of humor as an adaptation tool.
- Interact with attending physicians in a safe, casual setting, to discuss how they specifically have dealt with these issues.
TECHNOLOGY TUTORS: THE USE OF EDUCATIONAL TECHNOLOGY TUTORIALS TO PROMOTE ACTIVE LEARNING

Introduction: Lectures

Lecturer’s lecture and student tutorials:
- Support learn and personalize student learning and assessment
- Informative talks on the relevant literature
- Attractive and engaging content for student interest
- Increase learning by embedding interactive and multimedia resources
- Enhance learning by providing feedback on student progress
- Facilitate discussions and interactions among students
- Increase student engagement and motivation
- Enhance understanding and retention of material

Lecturer’s Roles:
- Facilitate active learning through tutorials
- Provide feedback on student learning
- Encourage student participation and engagement
- Promote critical thinking and problem-solving skills
- Foster a collaborative learning environment

Methods

1. Utilize existing UC (University of California) technologies.
2. Develop a technology-based learning environment.
3. Design a comprehensive technology-based learning environment.
4. Integrate technology into the curriculum.
5. Evaluate the impact of technology on student learning.
6. Assess the effectiveness of technology in promoting active learning.
7. Provide ongoing support and feedback to students.
8. Encourage student participation and engagement.
9. Enhance understanding and retention of material.

Results

- Student feedback on the effectiveness of technology-based learning environment.
- Assessment of student learning and comprehension.
- Evaluation of student engagement and motivation.
- Feedback on the effectiveness of technology in promoting active learning.
- Assessment of student understanding and retention of material.

Conclusions and Next Steps

- Technology tutorials: The use of technology in promoting active learning.
- Assessment of student learning and comprehension.
- Evaluation of student engagement and motivation.
- Feedback on the effectiveness of technology in promoting active learning.
- Assessment of student understanding and retention of material.

Acknowledgements

- Acknowledgments to the lecturers and students for their contributions.
- Thank you to the University of California for providing the technology infrastructure.
- Thank you to the students for their participation and engagement.
- Thank you to the lecturers for their support and feedback.

References

- Image and video resources for technology tutorials.
- Online resources for technology tutorials.
- Technology resources for technology tutorials.
- Technology tutorials for technology tutorials.
- Technology tutorials for technology tutorials.
- Technology tutorials for technology tutorials.
Objective: The goal of the study was to evaluate the effectiveness of the online quiz station in improving student knowledge and understanding of cancer genomics.

Methods: The study was conducted in a clinical setting. The online quiz station was integrated into the curriculum, and student performance was assessed using pre- and post-test scores.

Results: The results showed a significant improvement in student knowledge and understanding of cancer genomics after using the online quiz station. The average post-test score was 85%, compared to 70% in the pre-test.

Conclusions/Next Steps:
- The online quiz station is an effective tool for improving student knowledge.
- Further studies are needed to evaluate the long-term effects of using the quiz station.
- Additional features, such as real-time feedback, could be added to enhance student engagement.

References:
Novel Approach in Burn Donor Site Dressing Using Nitric Oxide

Introduction
BURNS: Burns are one of the most common causes of disability. Patients with severe thermal injury are on an increasing scale of specialized care, including burn units, for rehabilitation and mobility. Burns are a major cause of mortality and morbidity. Burns are treated with dressings based on the extent of burns: Split thickness skin grafts for severe burns, full thickness skin grafts for moderate burns, and skin substitutes for minor burns. The most commonly used dressing is the moist dressing, which involves the application of sterile water to the wound.

Purpose
The purpose of this study is to evaluate the effectiveness of the nitric oxide dressing in reducing the incidence of infection and improving wound healing in burn patients. The study was conducted at a tertiary care hospital in the United States.

Methods
The study included 50 patients with burns ranging from minor to severe. The patients were randomly divided into two groups: the experimental group, which received the nitric oxide dressing, and the control group, which received the standard dressing. The dressing was applied to the wounds twice a day. The incidence of infection and the healing rate were recorded. The results were compared between the two groups using statistical analysis.

Results
The results showed a significant reduction in the incidence of infection in the experimental group compared to the control group. The healing rate was also faster in the experimental group, with a shorter duration of hospital stay.

References

[References listed]
Blunt Liver Injury Triage: A Retrospective Analysis

John Weigelt, MD, DVM, MSc
Medical College of Wisconsin, Froedtert Hospital

**Introduction**

Literature review suggests that patients with blunt liver injury and hypotension unresponsive to fluid resuscitation should receive a Focused Abdominal Sonogram for Trauma (FAST) exam. The FAST exam is used during the circulatory portion of the primary survey to evaluate for intra-abdominal bleeding. Patients who are hemodynamically unstable during this portion of the evaluation should receive a FAST exam. The exam is considered positive when free fluid is identified in the peritoneal cavity. Those patients with a positive FAST exam and persistent hypotension despite volume resuscitation should proceed to surgery. Management of blunt Grade IV and V liver lacerations at Froedtert Hospital was compared to the standard of care.

**Methodology**

All patients seen at Froedtert Hospital with a liver injury identified on FAST exam from January 2011 to December 2012 were included in the study. A chart review was conducted to collect patient’s files. Review focused on Emergency Department history, appropriate use of the FAST exam, and OR and mortality in the non-operated patients.

**Table 1: Non-operated Patients**

<table>
<thead>
<tr>
<th>Case</th>
<th>Initial Hypotension</th>
<th>Initial Tachycardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 4</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 5</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 6</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 7</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 8</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 9</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 10</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 11</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 12</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 13</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 14</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Case 15</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

**Table 2: Operated Patients**

<table>
<thead>
<tr>
<th>Case</th>
<th>Initial Hypotension</th>
<th>Initial Tachycardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Case 2</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Case 3</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Case 4</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

**Purpose**

This is a Quality Improvement Study comparing management and mortality of Grade IV and V Liver Lacerations at Froedtert Hospital to standard of care practices and national mortality rates.
Determining FAST Exam Competency Guidelines for Undergraduate Medical Students

**Introduction**

**Objectives**

**Methods**

**Results**

**Results Continued**

**Conclusions**

**References**
Technology Outcomes: The Use of Educational Technology in Collaborative Learning

Purposes
1. To promote awareness of the various tools available in higher education and how they can be used to enhance learning experiences.
2. To provide faculty with the necessary tools to support the integration of technology into their teaching practices.
3. To address the need for more interactive and engaging learning environments.

Methods
- Utilize existing UC Technologies: Workgroups create learning modules using available tools.
- Develop comprehensive learning modules using the UC Learning Management System.
- Ensure accessibility for all learners through the use of universal design principles.
- Implement the use of technology to support collaborative learning activities.

Results
- Students experienced an increased level of engagement and collaboration.
- Faculty feedback was positive, indicating the potential for widespread adoption.

Conclusions
- The integration of technology in collaborative learning environments can lead to improved outcomes.
- Further research is needed to fully understand the impact of technology on academic performance.
Results
The residents from each of the specialties who participated in the GFT educational sessions rated the sessions highly, with an average Likert Scale rating of 6.2 out of 7 across specialties. Ophthalmology rated the session the highest, averaging 6.7 out of 7, while Emergency Medicine residents rated the session lowest, averaging 5.5 out of 7. Among individual evaluation questions, residents evaluated the effectiveness of teachers and the overall session highest, while rating the overall effect on learning, content of the session, and use of instructional materials to advance learning slightly lower.

Discussion & Conclusions
Many subspecialty program residents responded favorably towards the implementation of innovative geriatric-focused curricula. The overall ratings indicate that the educational materials were engaging to residents. A future area of evaluation would be assessing the efficacy of the geriatric curricula via in-service training exam results and repeat "needs assessments."

Overall, the curricula assisted programs in (1) meeting the needs of changing demographics of their patient population; (2) helping to fulfill ACGME-required geriatric competencies; and (3) providing innovative ideas towards revitalizing graduate medical education.

Finally, GETs provided an opportunity for interdisciplinary collaboration. It allowed medical students to learn about the importance of geriatric specific knowledge, methods of developing curricula, and ways of effective teamwork and communication across specialties.