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The presence or absence of injures identified from testing human
cadavers (termed post mortem human subjects, PMHS, in impact
biomechanics literature) are used in conjunction with biomechanical
outcomes such as force, deflection, and acceleration to derive injury
probability curves. Injury probability curves are crucial in the de-
sign and improvement of saftey interventions such as seat belts and
airbags. According to latest ISO recommendations, survival analy-
sis has been suggested for the estimation of these injury probability
curves. However, for survival models, we need to choose between mul-
tiple biomechanical metrics, which are routinely collected as apart of
PMHS experiments. We analyze performance measures for survival
regression models in these contexts to help discriminate between the
metrics. We propose a new class of measures, explore their theoret-
ical properties and extensively assess them in a variety of simulated
data scenario and a PMHS test dataset. Our proposed class of mea-
sures have applicability in generic right, censored , interval or current
status data settings.

1. Introduction. Road traffic crashes are among the leading causes of
injury/death. According to the Centers for Disease Control and Prevention
(CDC), the lifetime medical cost of motor vehicle crash injuries in 2012 was
US dollars 18 billion and more than 75% of this was attributed to incur
during the first 18 months following the injury. The lifetime work lost due
to these injuries is estimated to 33 billion, while the total value of societal
harm was estimated as US dollars 836 billion from motor vehicle crashes
alone (Blincoe et al., 2015). CDC also stated that the “best way to keep
people safe and reduce medical costs is to prevent crashes from happening
in the first place. But if a crash does occur, many injuries can still be avoided
through the use of proven interventions” One of the proven interventions is
continued vehicular improvements in the design of safety measures such as
sensors, airbags, seatbelts and load limiters to limit the impact force applied
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on any occupant in the automobile, and other vehicle interior and exterior
structures. This is accomplished through impact biomechanics research.

Injury risk curves form the primary basis for mitigation of injuries and
fatalities in environments such as motor vehicle crashes (Kleinberger et al.,
1998) and events such as underbody blast (UBB) incidents from Impro-
vised Explosive Devices(IEDs)(Danelson et al., 2015). Risk curves are used
by the United States Federal Motor Vehicle Safety Standards(FMVSS) for
evaluating crashworthiness and safety of vehicles sold in the USA, consumer
information appearing as star ratings in the MSRP stickers displayed on
the automobiles for public awareness, and designs of safety systems such as
seatbelts and airbags.

Injury risk curves are typically estimated from data obtained from testing
human cadavers, often called post mortem human subject (PMHS) experi-
ments (Nahum and Melvin, 2012). After the completion of a PMHS experi-
ment, for each subject under observation, data for a variety of biomechanical
metrics and injury status corresponding to these biomechanical metrics are
collected, sometimes accompanied by other subject specific variables of in-
terest, such as age and sex, bone mineral density, body mass index, among
others. Biomechanical metrics could include directly observed ones from the
experiment such as peak force, deflection, or, metrics derived from combi-
nations of other metrics/parameters, such as combined accelerations from
different levels of the rib/spine. Injury outcomes are dichotomized into pres-
ence or absence of injury based on observations of severity of fractures,
organ trauma and other biological measures. Development of an injury risk
curve is then done by estimation of the risk corresponding to each value
of a biomechanical metric, such as peak force, while adjusting for observed
demographic covariates, if present and other experimental conditions.

Traditionally, risk curves have been developed using binary logistic re-
gression, estimating the probability of injury, given the observed values of
the biomechanical metrics and other covariates (Robbins, Melvin and Stal-
naker, 1976; Kuppa et al., 2003; Philippens et al., 2009). However, more
recently, survival analysis techniques have been used for risk curve estima-
tion in these impact biomechanic contexts (Kent and Funk, 2004; Petitjean
et al., 2009), where presence or absence of injury correspond to events and
the biomechanical metric in question corresponds to “time”, so that instead
of “time-to-event” data in traditional survival analysis, we have “force-to-
injury” or “acceleration-to-injury” type data in the present context. To bet-
ter elucidate this setting, let us consider a toy example, when two samples
from a PMHS test have yielded a peak force of 10 and 20 Newtons, with
the 10 Newton force resulting in no-injury, while the 20 Newton force re-
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sults in injury. Even though the 20 Newton force resulted injury, this is not
necessarily the exact injury causing force - an injury could well have oc-
cured for a force lesser than 20 Newtons. It is then reasonable to assume
for modeling purposes that the 20 Newton force represents a “left-censored”
observation in survival analysis, while following a similar argument, the 10
Newton force represents a “right-censored” observation. Accounting for cen-
soring information through survival analysis yields better risk profiles than
logistic regression - the ISO/TC22/SC12/WG6 working group of the In-
ternational Standards Organization (ISO) now recommends using survival
analysis over binary logistic for the development of risk curves.

There are however several challenges in adapting survival analysis tech-
niques for risk curve estimation in impact biomechanics contexts. A major-
ity of survival analysis techniques consider uncensored and right censored
data, while the PMHS experiments only yield right, left or interval censored
(when more than one test has been performed on a single sample) data, with
no uncensored observations, bearing conceptual similarity to observations
in current status data. Additionally, survival analysis, typically accommo-
dates only one “time” variable, while PMHS experiments commonly record
multiple biomechanical metrics, most of which could serve as the “time”
equivalent. There is very limited previous work in looking at multiple candi-
date “time” variables. In a PhD thesis Duchesne (1999), considers multiple
time-scales, such as time since purchase and mileage in studying automotive
reliability, where each of the time like measures are a function of the actual
time variable. Similar ideas are echoed in Oakes (1995); Kom, Graubard
and Midthune (1997). However, in our context, we do not have a underlying
actual “time” that all the recorded biomechanical metrics are a function of.
In this paper, we focus on developing a rigorous statistical frame-work for
defining valid “time-type” metrics, developing performance measures and
analyzing the performance of each of metrics using these measures to choose
the metric best suited for the development of risk curves.

Our contribution in this article is two fold. While there is some literature
on mean-squared error, predictive performance and measures on explained
variation in survival analysis, it is exclusively limited to right censored data
typically arising in biomedical contexts (Graf et al., 1999; Gerds and Schu-
macher, 2007; Gerds, Cai and Schumacher, 2008), none of the previous fo-
cused on or relevant to choosing between time variables. To the best of
the authors’ knowledge, the measures proposed in this article are the first
methods developed for systematic evaluation of performance and explained
variation in generic interval censored, left censored and current status data.
Secondly, to the best of the author’s knowledge, this is the first statisti-
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cal performance evaluation of risk curves for impact biomechanics research,
where previously ad-hoc measures of quality have been considered and no
measures for explained variation exist for choosing between biomechanical
metrics. We believe that improved risk curves using our proposed methods
would significantly advance the state-of-the-art in currently held standards
for motor vehicle crashworthiness. We also believe that our methods have
applications beyond impact biomechanics research, being applicable to other
contexts in current status data and competing “time” variables.

The rest of the paper is organized as follows: In section 2, we begin with
a description of basic experimental set-up for PMHS crash tests and some
notations that are helpful throughout the paper. In section 3, we consider
performance measures and in section 4, we evaluate different scenarios with
simulated data. In section 5, we consider a set of PMHS experiments, with
24 biomechanical metrics, for which only logistic regression has been done
before. We end with final conclusions and discussion in section 6. Technical
details and proofs are provided in the supplementary material.

2. Set up and notational preliminaries.

2.1. Data descriptives. For any PMHS experiment, consider a set of n
human cadavers on which crash impact tests are done, indexed by i =
1, 2, . . . , n. In some recent experiments, development of new sensing method-
ology such as strain gages and accoustic emission sensors (Gallenberger,
Yoganandan and Pintar, 2013), might lead to methodology to obtain uncen-
sored “force-to-event” type data for PMHS experiments. The biomechanical
community is however yet to develop consensus on the use and processing of
signals from these sensors. In light of this, we shall only consider observations
which are either right, left or interval censored.

Suppose that there are m possible biomechanical metrics that are ob-
tained (observed or derived) from the PMHS experiment, indexed by j =
1, 2, . . . ,m. For each such metric j and each sample i, we record the tuple
(Rj

i , L
j
i ), which is obtained as follows. Rj

i is the highest value of metric j

for cadaver i which did not result in an injury. Lj
i is the lowest value of the

metric j which caused an injury. In case of cadavers with multiple crash
tests, none of which resulted in an injury, we shall only have a value for
Rj

i in the tuple and will use the notation ‘NA’ for Lj
i , representing a right

censored observation. In case of a cadaver with a single crash test which
resulted in an injury, we only have a value for Lj

i , with ‘NA’ being recorded

for Rj
i , representing a left censored observation. In case of a cadaver with

multiple crash tests, some of which did not result in injuries, while at least
one test resulted injury, we shall obtain values for both elements of the tuple
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(Rj
i , L

j
i ), representing an interval censored observation. Note that values of

a metric j, which are < Rj
i , which did not cause an injury for cadaver i, are

non-informative and are not recorded. Corresponding to the recorded tuple
(Rj

i , L
j
i ), we consider a censor status indicator variable, ∆j

i , which will take
the values 0, 1, 2 corresponding to a right, left and interval censored observa-
tions respectively. For a cadaver i, Zi = {Zk

i , for k = 1, 2, . . . , p} shall denote

the covariates specific to i. For a cadaver i and metric j, T j
i represent the

unobserved and uncensored value of the metric, the “exact” breaking force
or biomechanical metric at which an injury would have happened. Specific to
cadaver i and metric j, we shall denote the probability of injury happening
at or before value of the metric fj as,

F (fj) = Pr(T j
i ≤ fj) = 1− S(fj),

where S(fj) represents the probability of survival, that is, S(fj) = Pr(T j
i >

fj). We have intentionally dropped covariates Zi from the expressions for
S(·) and F (·), for notationally clarity, whenever covariates are present, the
dependence shall be assumed inherently. Finally, let I(fj) and Ii(fj) be indi-
cators of injury at or before the value fj for the metric j, with I(·) denoting
the generic random variable and Ii(·), the observation corresponding to sam-
ple i. Therefore, I(fj) = 1 [or for sample specific observations, Ii(fj) = 1] if

T j ≤ fj [for sample specific observations if, T j
i ≤ fj ] and = 0 otherwise. We

shall use E(X) to denote the expected value of a random variable X.

2.2. Valid metrics and observations. Not all biomechanical metrics are
always available or perfectly recorded for all cadaver tests, due to limitations
of testing procedures. We impose a few restrictions on the values of the
observed tuples, so that they lead to valid estimation algorithms for risk of
injury. For any biomechanical metric to be considered as a candidate metric
in our evaluation procedure, it cannot have solely right censored or solely left
censored observations, since these observations do not lead to valid survival
estimates (Gentleman and Geyer, 1994; Fay and Shaw, 2010). Therefore a
metric j, for which either all Rj

i ’s are ‘NA’ or all Lj
i ’s are ‘NA’, shall be

dropped from the analysis as not being a valid candidate metric. In some
rare occasions, due to limitations of the experimentation environment, it
may happen that an interval censored tuple (Rj

i , L
j
i ) is incorrectly recorded

such that Rj
i > Lj

i , in such a case, if a value, fj of the metric j is available

for a test on the cadaver i such that fj < Rj
i < Li

j , the value of Rj
i shall

be replaced with fj inspite of this not being the largest non-injury value;
in case such a test does not exist, the observed tuple is converted to a left
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censored observation with the recorded value of Rj
i replaced with ‘NA’ and

∆j
i = 2.

3. Estimation and performance evaluation.

3.1. Survival probability estimation. In the presence of multiple candi-
dates for time, one approach for survival analysis might to consider estima-
tion of joint probabilities such as,

F (f1, f2, . . . , fm) = Pr(T 1
i ≤ f1, T 2

i ≤ f2, . . . , Tm
i ≤ fm),

which would be conceptually similar to methods in Berzuini and Clayton
(1994). Even though this is theoretically possible, this is made practically
infeasible due to the sample size in typical PMHS experiments with typi-
cal sample sizes in the range 10 to 30. In the real data example considered
in this paper, we have 30 samples, with 24 metrics being recorded - there-
fore estimation of injury probabilities on a multivariate grid of all time like
biomechanical metrics being infeasible. In what follows, we consider instead
modeling of each biomechanical metric at a time.

Injury curves developed in the biomechanical literature typically rely on
parametric survival regression, such as survival analysis using a underlying
Weibull distribution assumption for the survival times(Kent and Funk, 2004;
Petitjean et al., 2009). While Kaplan Meier and other similar non-parametric
methods for survival models have been extended to accommodate interval
censored data (Turnbull, 1976; Gentleman and Geyer, 1994; Sun, 1996), non
parametric estimation yield step-functions for estimated survival probabili-
ties, which are not desirable in the present context of injury curve estimation.
An exception is in the case of perfectly or quasi separated observations, when
for a biomechanical metric j we have,

max
i=1,2,...,n

Rj
i ≤ min

i=1,2,...,n
Lj
i ,

parametric survival regressions estimates may not converge and we have
to resort to non parametric methods for the metric j. It is worth noting
that there are many ways of survival probability estimation for current sta-
tus data and interval censored data, including several recent developments,
(Zhao et al., 2015; Ma, Hu and Sun, 2015; Chen et al., 2014), many of which
may be adapted to our context. However our focus in this paper is not in this
estimation process, but rather on development of performance measures for
distinguishing between biomechanical metrics for any particular estimation
process - and the measures we propose will be generally applicable to any
valid survival probability estimation procedure.
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3.2. AUC type measures. Area under the receiver operating characteris-
tic curve (AuROC) has been used for binary classification models to provide
a single measure of predictive ability of the model (Swets, 2014; Jiménez-
Valverde, 2012). Using estimated survival probabilities, it is trivial to con-
struct an ROC curve, treating presence/absence of injury as our classes
of interest. It could also be used as a predictive performance measure for
comparing the different biomechanical metrics of interest. There are how-
ever several issues which limit its applicability. The AuROC, in the context
of survival analysis, does not take into account censoring, which can lead
to misleading performance evaluations. Time varying extensions of the Au-
ROC have been proposed to better deal with censoring (Blanche, Dartigues
and Jacqmin-Gadda, 2013; Gerds et al., 2013), but these too clearly suffer
from many deficiencies. The AuROC, which can be shown to be equiva-
lent to the Mann Whitney U statistic (Hanley and McNeil, 1982), as well
as its time varying counterparts are rank based measures, solely dealing
with classification and not calibration. To elucidate this, consider again a
toy example, with two biomechanical metrics yielding survival probability
estimates {0.2, 0.3, 0.4, 0.5} and {0.01, 0.49, 0.51, 0.9} from some estimation
model for 4 samples in a PMHS experiment, with injury status, {0, 1, 0, 1}
respectively. Clearly the probability estimates from the second metric pro-
vides provide better calibration, however the AuROC measures between the
two would be the same. Several other issues exist with AuROC - they are
known to not to be proper scores and can lead to misleading classification
(Mol et al., 2005; Lobo, Jiménez-Valverde and Real, 2008), limiting their
applicability. In our simulation section, we provide further examples of the
limitations of AuROC measures in our contexts.

3.3. Measures of explained variation for survival data at a fixed “time”.
Let us denote by π(fj) an estimator for F (fj), the probability of injury at or
before value fj for biomechanical metric j, using some survival probability
estimation procedure [as mentioned before, we drop the explicit dependence
on covariates for notational clarity, the dependence will be assumed to be
present whenever covariates are recorded and relevant]. Then, the expected
error rate e(·) at fj is given by,

(1) e(fj) = E(I(fj)− π(fj))
2.

This is equivalent to the squared error loss or the Brier score (Gerds and
Schumacher, 2007; Gerds, Cai and Schumacher, 2008). With n samples, this
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error rate in equation (1) can be estimated by,

(2) ˆe(fj) =
1

n

n∑
i=1

(Ii(fj)− π(fj))
2.

In the presence of censoring, Gerds and Schumacher (2007) recommend
using inverse probability of censoring weights as weights in equation (2) to
adjust for potential censoring bias. We note that, in our context, whence all
observations are censored, such adjustment is not necessary.

In equation (2), the quantity Ii(fj) may or may not be known depending
on the censoring status. If the observation for metric j for sample i is a right
censored observation, yielding the tuple, (Rj

i , ‘NA
′), one of the following two

scenarios occur,

1. Either fj ≤ Rj
i , in which case, Ii(fj) = 0.

2. Or, fj > Rj
i , in which case, Ii(fj) is unknown.

Similarly for a left censored observation, (‘NA′, Lj
i ), one of the following two

scenarios occur,

1. Either fj ≥ Lj
i , in which case, Ii(fj) = 1.

2. Or, fj < Lj
i , in which case, Ii(fj) is unknown.

Finally for an interval censored observation, (Rj
i , L

j
i ), one of the following

three scenarios occur,

1. Either fj ≤ Rj
i , in which case, Ii(fj) = 0.

2. Or, fj ≥ Lj
i , in which case, Ii(fj) = 1.

3. Or, Rj
i < fj < Lj

i , in which case, Ii(fj) is unknown.

3.4. Error evaluation over “time” ranges. The procedure discussed so
far yields a measure specific to single value fj for metric j. To obtain a
general measure, over the range of values we consider two possible options.

3.4.1. Evaluation over full range. For the biomechanical metric j, we
choose two extreme values, Fmin

j and Fmax
j , such that the range (Fmin

j , Fmax
j )

is a superset of the likely range of the values of the metric that could have
been observed in the course of the experiment. In the absence of user spec-
ified reasonable guesses, one could also invert the 1th and 99th quantiles
of the fitted distribution π(·) to obtain reasonable boundaries, Fmin

j and

Fmax
j or simply use the minimum and maximum of observed values. Fmin

j

could be chosen as 0, assuming that the biomechanical metric takes only
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non-negative values - however extreme tail probability estimates can some-
times be distorted, leading to inflated error metrics. If the full range route is
followed, we recommend choosing quantile inversion based boundaries - the
same quantiles chosen for all metrics keeps all the evaluations on a similar
footing. Once the range is choose, a cumulative error measure could for each
metric j may be obtained as,

(3) ce =
1

Fmax
j − Fmin

j

∫ Fmax
j

Fmin
j

ˆe(fj)d(fj).

However, evaluation of ˆe(fj) would require imputation of the unknown indi-
cators. We use the following plug-in estimators for the unknown indicators
may be obtained from their conditional expectation based on the censoring
status, namely,

1. For the unknown indicator corresponding to a right censored observa-
tion, and with fj > Rj

i ,

E(Ii(fj)|Rj
i ) = Pr(Ti ≤ fj |Ti > Rj

i ) =
π(fj)− π(Rj

i )

1− π(Rj
i )

2. For the unknown indicator corresponding to a left censored observa-
tion, and with fj < Lj

i ,

E(Ii(fj)|Lj
i ) = Pr(Ti ≤ fj |Ti ≤ Lj

i ) =
π(fj)

π(Lj
i )

3. For the unknown indicator corresponding to an interval censored ob-
servation, and with Rj

i < fj < Lj
i ,

E(Ii(fj)|Rj
i , L

j
i ) = Pr(Ti ≤ fj |Rj

i ≤ Ti < Lj
i ) =

π(fj)− π(Rj
i )

π(Li
j)− π(Rj

i )

3.4.2. Evaluation over data informative range. It can be argued that the
performance measure should be entirely independent of model fit, and that
evaluation should only be done for the metric value range for which we
have information in the data. Having obtained (Fmin

j , Fmax
j ) as previously,

we could use the following measures instead of the previously suggested
imputation approach,

1. For the unknown indicator corresponding to a right censored observa-
tion, we use the cumulative error measure,

ce =
1

Ri
j − Fmin

j

∫ Rj
i

Fmin
j

ˆe(fj)d(fj).
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2. For the unknown indicator corresponding to a left censored observa-
tion, we use the cumulative error measure,

ce =
1

Fmax
j − Li

j

∫ Fmax
j

Li
j

ˆe(fj)d(fj).

3. For the unknown indicator corresponding to an interval censored ob-
servation, we use the cumulative error measure,

ce =
1

Fmax
j − Lj

i +Rj
i − Fmin

j

{∫ Rj
i

Fmin
j

ˆe(fj)d(fj) +

∫ Fmax
j

Li
j

ˆe(fj)d(fj)

}
.

We use both these proposed measures in our simulated and real data
experiments for comparative evaluation.

3.5. Proper scoring rules and other properties. We discuss a few proper-
ties of the proposed measures. First of all, it is trivial to derive that in each
case, the range of proposed measure is, 0 ≤ ce ≤ 1.

Secondly, our proposed error rate estimator is a proper scoring rule. A
scoring rule S is defined to be proper if an optimal strategy for the experi-
menter is to quote a distribution that matches their actual uncertainty. It is
well known that the squared error loss and Brier score lead to proper scores,
while the AuROCs in general, do not (Gneiting and Raftery, 2007). In our
estimator, we show that the proper scoring is preserved, that is, if for any
pair of biomechanical metrics, F j , F j1 , and observed data Y, we have,

EF j [ce(Y, F j)] ≤ EF j1 [ce(Y, F j)

This implies that all other things remaining the same, our proposed method
would always lead to the correct choice of metric under correct model spec-
ification.

Thirdly, our proposed estimator is asymptotically consistent, as given by
the following theorem.

Theorem 1. Let π(·) be any uniformly consistent estimator for the life-

time distribution function F (·). Then the error estimate, ˆc(fj) converges
almost surely to MSE(fj) as n → ∞. Additionally, if the metric in ques-
tion F j is uniformly bounded as a random variable, then all variants of the
measure ce converge to the respective cumulative MSE with probability 1.
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4. Simulation Examples. We consider three simulation scenarios to
assess the proposed measures in terms of ability to distinguish between can-
didate “time” metrics, for construction of injury probability curves. In the
first scenario, we consider a set of 10 metrics, all of which are closely as-
sociated with injury status, but where the metrics are generated from dis-
tributions with differing variability. We compute the full range cumulative
error estimators, the data informative range error estimators (dubbed fce
and dce henceforth respectively), alongwith AuROC type measures. In the
second scenario, we simulate 10 metrics, which are loosely associated with
the injury status, from distributions with differing variability. In the final
set, we simulate 10 more metrics, which have no association with injury sta-
tus, and are randomly simulated from distributions with differing variability.
For each of these cases, we simulate, 10, 20, 30 and 40 samples respectively.
All the scores perform better with increasing sample sizes, though, clearly,

Sample Size AUC BS Type 1 BS Type 2

10 31% 64% 68%
20 33% 68% 67%
30 38% 72% 76%
40 54% 84% 89%

Table 1
Performance of different metrics. The percentages indicate number of times the best

metric is chosen across simulations. )

both Brier score Type I and Brier score Type II perform substantially better
than AuROC. Brier Score Type II seems to have a slight edge over Brier
Score Type I. Further details of the simulation set-up is provided in the
supplementary materials.

5. Analysis of a PMHS experiment dataset. A published biome-
chanical dataset (Table 1) in Kuppa et al. (2003) is used to assess the each
of performance evaluation methods along with AuROC. It consists of injury
and noninjury information from side impact sled tests conducted at the Med-
ical College of Wisconsin. They were obtained from whole body PMHS (Post
Mortem Human Subject) tests conducted at different velocities, padding and
rigid load wall conditions, offsets, and supplemental restraint systems, i.e.,
with and without side impact airbags. Specimens were subjected to sin-
gle lateral impact loading. A total of 24 metrics are chosen from Table 2 in
Kuppa et al. (2003). Biomechanical metrics included data obtained from dif-
ferent types of sensors: accelerometers for the thoracic trauma index (TTI),
peak pelvic acceleration and Average Spine Acceleration (ASA) metrics,
and load cells for the thoracic and pelvic forces. Unilateral or bilateral rib
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12 A. BANERJEE ET AL.

fractures in isolation or in combination with solid organ trauma occurred
in some tests due to impact with the load wall, representing compression-
related injury mechanism. Presence and absence of injury is done based on
the Maximum Abbreviated Injury Scale (MAIS) scale, with injury severities
greater than MAIS 3 classified as having an injury.

For the purpose of an easier visual comparison, we transform each of the
two types of Brier scores by subtracting them from 1 and then multiplying
them by 100, so that each is a score out of 100, with a higher score indicating
better performance. The relative performances of the metrics are given in
table 1 and also plotted in figure 1. While the AUC chooses TTI as the
best metric among those available, Brier Score Type 1 chooses fvc and Brier
Score Type 2 chooses TTI. Both of these metrics are valid biomechanical
parameters that could be used for an injury curve. Based on our simulations,
Brier Score Type II may be given priority. However Brier Score Type I
also plays an important role - it helps vet metrics for which the parametric
survival model has not converged - which are not picked up by AUC or Brier
Score Type II - as has happened for the first couple of metrics - namely, fxrb
and rbfx.

Fig 1. Performance of different metrics. (Note: All scores are out of 100. The two Brier
type Scores have transformed, so that in each case, higher is better. )
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AUC BS Type 1 BS Type 2

1 100.00 67.84 100.00
2 100.00 68.03 100.00
3 54.81 72.42 76.15
4 64.99 84.99 87.80
5 56.57 84.28 87.82
6 81.83 83.10 97.09
7 84.72 83.47 97.55
8 47.69 81.90 84.85
9 64.35 90.90 92.02

10 80.90 82.08 96.80
11 84.03 82.08 97.32
12 46.64 81.20 82.50
13 63.77 92.45 92.50
14 47.11 82.30 85.19
15 62.85 88.84 90.49
16 52.55 77.90 79.90
17 62.85 91.71 90.49
18 80.56 85.12 98.22
19 64.29 88.86 91.36
20 73.86 89.82 94.40
21 65.21 87.83 93.42
22 72.35 89.79 94.73
23 66.01 87.46 92.77
24 74.21 87.42 94.87
25 66.37 88.37 91.88
26 59.03 84.81 88.91

Table 2
Performance of different metrics. (Note: All scores are out of 100. The two Brier type

Scores have transformed, so that in each case, higher is better. )

6. Concluding remarks. We develop a new measure for comparing
performance for general survival models with right, left and/or interval cen-
sored data, an advantage over over ROC type metrics, which ignore cen-
soring information. We have shown applicability of the proposed measures
in PMHS experiments, where multiple biomechanical metrics are routinely
gathered and/or derived during post processing. The present statistical anal-
ysis assists in the post processing phase, and may also have implications in
designing future experiments of similar complexity and or loading. More
importantly, however, it underscores the need to gather similar data from
physical models if the overall experiment is designed to derive injury as-
sessment risk curves for anthropomorphic test devices, routinely used to
improve human safety and crashworthiness in automotive and military en-
vironments. The present methodology can therefore, be effectively used for
dummy design, evaluation, injury criteria and human safety.
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Beyond the current context, the proposed methods and results established
are applicable in general “current status data” settings. The results establish
properties and connections with scoring rules and could serve as benchmarks
for estimation procedures in these contexts.
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