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Abstract: In clinical research, competing risks data are frequently encountered. It occurs when 

subjects can fail due to multiple causes.  For example, in bone marrow transplantation for diseases 

such as leukemia, time to relapse and death prior to relapse are competing risks. This paper 

provides a review of statistical methods for competing risks data analysis including the cumulative 

incidence function and regression models. A real data example will be used to illustrate the methods 

mentioned in this paper. 
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1. Introduction 

Time-to-event outcomes are the primary focus in many clinical studies. Some examples of the events of 

interest are death, development of an adverse reaction and disease recurrence. It is not uncommon for 

patients to finish the study without experiencing the event of interest. Such patients are censored at the 

last follow up time. For each patient, the data consists of the event time or the last follow up time and 

an indicator of whether they experienced the event of interest. Traditional survival analysis offers a 

variety of summary and analytical tools to deal with this type of data. However, in some cases patients 

can fail due to several causes. For example, in stem cell transplantation studies, treatment failure is 

comprised of two events: relapse or treatment related mortality (TRM), that is, death prior to relapse. 

The two types of treatment failure constitute competing risks data where time to the first event is of 

interest. Both types of events are usually examined in order to have a comprehensive understanding of 

patients’ experience. Regardless of whether we deal with one failure type or competing risks data, 

information on some other patient, disease and treatment characteristics is usually available and could 

be used in the study. Regression models allow us to evaluate the association between various risk 

factors and the outcome of interest.  In this article, we will briefly review the techniques for analyzing 

survival data while later more emphasis will be placed on the analysis of competing risks data. Statistical 

concepts will be illustrated using a real bone marrow transplantation data example.  

The data used to illustrate the concepts introduced in the following sections is a subset from a study 

published by Hill et al. (1). The data we use in this article contains 423 adult patients with chronic 

lymphocytic leukemia (CLL) without history Richter’s transformation who received either a matched 

sibling or unrelated donor allogeneic hematopoietic stem cell transplantation (HCT) using myeloablative 

(MA), non-myeloablative (NMA) or reduced intensity conditioning (RIC) between 2000 and 2013.  Hill et 

al.  focused on the impact of the combinations of human leukocyte antigen (HLA) alleles: HLA-A1, non-

A2 and non-B44 vs. others on HCT outcomes.  In addition to HLA combinations, risk factors considered 

include cytogenetics, disease status and conditioning regimen. Patient characteristics are summarized in 

Table 1. For the remainder of the paper, relapse will be the main outcome of interest with TRM as a 

competing risk. Note that this is a statistical review paper, and no clinical decisions should be made 

based on the analysis results of this article.  



 

Table 1 Patient characteristics by HLA combination 

 HLA Combination 

Variable HLA-A1, non-A2 and non-B44 
(n=68) 

Other combinations 
(n=355) 

Cytogenetics   

Standard risk 49 (72%) 252 (72%) 

High risk 19 (28%) 103 (28%) 

Disease Status   

Remission 40 (59%) 218 (61%) 

Stable/progressive 28 (41%) 137 (39%) 

Conditioning regimen intensity   

Myeloablative 15 (22%) 79 (22%) 

RIC 24 (35%) 130 (37%) 

NMA 29 (43%) 146 (41%) 

 

2. Survival Data 

Consider survival data where there is only one possible failure type. The outcome of interest is time-to-

event, and each patient either experiences the event of interest or is censored at the last time point of 

observation without the event. When an individual is censored, the exact event time is not observed 

and only his or her status at the last follow up visit is known. Censoring may occur when a patient is lost 

to follow-up or if the patient did not experience the event of interest before the study ended.  

Data analysis usually starts by describing survival experience of the patient cohort being studied. The 

Kaplan–Meier (KM) estimate was developed to measure the probability of patients living beyond a 

certain time point (2). The resulting survival function has a characteristic step-wise shape where it starts 

at 1 (all patients are alive, survival probability at time 0 is 1), and takes a step down at each time point 

when an event of interest occurs. When two or more groups of patients are being compared, a graph 

depicting the KM estimates consists of several curves representing survival experience in each group. 

A formal comparison of the survival probabilities of two or more groups of patients is often desired. 

When the entire survival experience is being compared between groups, a log-rank test can be used (3). 

In a log-rank test, the event rate in each group is compared to the event rates which would have been 

observed in the entire study population if there was no difference in the survival probabilities among 

the groups. Large discrepancies between the failure rates lead to the conclusion that the survival 

probabilities at least in some of the groups or at certain time points are significantly different.  

Revisiting the HCT study, Figure 1 shows the KM estimates of the overall survival probabilities for both 

HLA combination groups. Five-year survival probability among patients with HLA-A1, non-A2 and non-

B44 and other HLA combinations was 43% (95% confidence interval [CI], 32-58%) and 44% (95%CI, 39-

50%), respectively. Based on the log-rank test, there is no significant difference in overall survival 

between the HLA groups (p= 0.4893).  

 



 

[Figure 1 Kaplan-Meier curves for overall survival in HCT cohort] 

In many studies, a set of explanatory variables or covariates is available for every subject. The covariates 

may contain information about patients’ age, gender, disease characteristics, and treatment. The goal is 

to identify covariates associated with higher risk of the events of interest. Cox proportional hazards 

model is the most commonly used regression model in survival analysis for assessing the relationship 

between the covariates and time to event of interest (4). The Cox model is concerned with the hazard 

rate which, at each time point, represents the instantaneous rate of failure among individuals who are 

still at risk at that time. For example, if the event is death, then the hazard rate for death at any 

particular time is the chance that a patient dies tomorrow given that he or she is alive today. A 

proportional hazards model assumes that the effect of a covariate is to multiply the baseline hazard by a 

function of the covariate.  Traditionally, results are presented in terms of the hazard ratio or, 

equivalently, the relative risk quantifying the risk of experiencing the event if the individual was in one 

group relative to the risk of having the event among individuals from a different group. The theory for 

inference based on this model has been long established (5) and can be carried out by numerous 

software packages including SAS and R. Table 2 shows the analysis results of the Cox proportional 

hazards model. The analysis results can be interpreted via the hazards ratios. For example, the risk of 

death is 2 times higher among patients who have stable or progressive disease at the time of 

transplantation as compared to those who are in remission after adjusting for the other covariates. 

Table 2 Multivariable analysis for HCT study.  

Variable Hazard Ratio (95% CI) P-value 

HLA Combinations   



HLA-A1, non-A2, non-B44  1  

Other HLA combinations 0.84 (0.60-1.19) 0.3232 

Cytogenetics   

Standard risk 1  

High risk 1.12 (0.84-1.49) 0.4513 

Disease Status   

Remission  1  

Stable/progressive 2.00 (1.55-2.60) <.0001 

Conditioning regimen intensity  0.3128 

Myeloablative 1  

RIC 0.83 (0.59-1.17) 0.2805 

NMA 0.78 (0.56-1.08) 0.1313 

 

3. Competing Risks Data 

Competing risks data arises when subjects can potentially fail from multiple causes but experiencing 

failure from one cause precludes the subject from experiencing any other types of events. The most 

natural example is death from multiple causes such as cancer, cardiovascular disease or accidental 

death. Another simple example of such a scenario is relapse of leukemia. Relapse is not observed for 

those who died from treatment related complications before they could experience a relapse. In this 

case, death prior to relapse (or TRM), is the competing risk for relapse. When more than two competing 

risks are present in the study, all the failure types that are not of direct interest can be grouped together 

and considered a singular type. For this reason, we will consider the case where there are two 

competing risks: the failure type that is of interest and all the other competing failure types in the study. 

In this section, we will review methods used to summarize competing risks data as well as regression 

models used to establish the relationship between a set of risk factors and the occurrence of the event 

of interest.  

4. Cumulative incidence functions 

The cumulative incidence function for competing risks data is a descriptive tool which represents the 

cumulative probability of the event of interest over time in the presence of other competing events. The 

calculations for estimating the cumulative incidence for a specific cause account for its dependence on 

the frequency and timing of other types of failures. Cumulative incidence function starts at 0 (the 

incidence of the event being evaluated is 0 at the start of the study) and is increasing in a stepwise 

fashion with a jump up at each time point when an event of interest occurs. Cumulative incidence 

probabilities should be estimated for all acting competing risks. At each time point, the sum of the 

cumulative incidence probabilities for all possible causes of failure will not exceed 1. In case there is only 

one type of failure, cumulative incidence function reduces to the complement of a KM estimate (1-KM). 

However, the presence of competing risks results in dependency between failure types and 1-KM is no 

longer correct estimate for the probability of experiencing any event of interest.  

Now we will revisit the transplantation example.  At each time point, a patient can be in one of the 3 

states: dead from treatment related complications (TRM), relapsed, and alive and disease-free. Since 

these events are mutually exclusive, the probabilities of being in each of the three sates at any given 

time should add up to 1, as shown in Figure 2.  



 

[Figure 2 Probabilities of relapse, TRM and disease-free survival] 

In Figure 2, the height of the lowest curve is the cumulative incidence probability of relapse at time t. 

The distance between the 2 curves is the cumulative incidence probability for death before relapse at 

each time point. The area between the top curve and the horizontal line drawn at 1 represents the 

disease-free survival probability after transplant. Notice the probabilities for all three events add up to 

1.  

Figure 3 presents the cumulative incidence curve for relapse, as well as the 1-KM curve, where patients 

who died before relapse are simply censored. Since the 1-KM curve still considers patients who died 

before relapse at risk of experiencing relapse, it overestimates the true cumulative incidence. Quantity 

1-KM for relapse only depends on the rate of relapse ignoring the failures due to TRM which makes it 

not interpretable as the probability of relapse when TRM is present.   



 

[Figure 3 Relationship between cumulative incidence curve and 1-KM curve for relapse] 

When cumulative incidence probabilities are being compared between two or more groups of patients, 

a graph depicting their experience consists of several curves representing cumulative incidence 

functions for the event of interest in each group. A formal comparison of the cumulative incidence 

probabilities of two or more groups of patients is done using Gray’s test (6). Gray’s test is an adaptation 

of the log-rank test developed for competing risks data.   

In HCT data example, Gray’s test can be used to examine whether there is a significant difference in 

cumulative incidence probabilities of each outcome between HLA-A1, non-A2 and non-B44 

combinations and other HLA combinations. Figure 4 presents the cumulative incidence functions by HLA 

combinations for relapse and TRM respectively. There is no significant difference in cumulative 

incidence of relapse (p=0.2957) nor TRM (p=0.7804) between patients with HLA-A1, non-A2 and non-

B44 combinations as compared to patients with other HLA combinations. 



 

[Figure 4 Cumulative incidence functions by HLA combinations] 

5. Regression models for competing risks 

Regression models are employed to assess the effect of various risk factors on the occurrence of a 

certain type of event. In competing risks setting, this type of analysis is commonly carried out using one 

of two methods: Cox model or Fine-Gray model (4,7). 

Cox model introduced in section 2 can be applied to analyze competing risks data. In the presence of 

multiple causes of failure, the rate of occurrence of each one of them is quantified by the cause-specific 

hazard. Cause-specific hazard at each time point for any failure type is defined as the instantaneous rate 

of occurrence of the event of interest at that time for the subjects who have not yet experienced any 

type of event (i.e. subjects who have not yet experienced the event of interest or the competing risks).  

Since the probability of failure of a certain type depends on the rates of other competing events, there is 

no longer a direct relationship between cause-specific hazard rate and the probability of a particular 

type of event. In addition, covariates are not necessarily associated with the cumulative incidence 

function in the same way as they are associated with the cause-specific hazard. This difficulty motivated 

regression models which would directly link the covariates and the cumulative incidence function. Fine 

and Gray proposed a modification of the Cox model based on the transformation of the cumulative 

incidence function (7). 

Fine-Gray regression model is based on an alternative failure rate summary measure, the 

subdistribution hazard function. The subdistribution hazard for a specific cause is the instantaneous rate 

of experiencing that particular cause given the individual have not yet experienced failure from that 

cause. For example, if the subdistribution hazard for relapse is of interest, patients who died before they 

experienced relapse are considered still at risk for relapse. Note the subtle difference between the 

cause-specific hazard and subdistribution hazard. For the cause-specific hazard, patients who die from 

other causes are no longer considered to be in the risk set, that is they are unable to experience the 

event of interest. With the subdistribution hazard, subjects who fail from another cause remain in the 



risk set. The fact that there is a direct link between the subdistribution hazards and cumulative incidence 

function enables us to directly model covariate effect on the cumulative incidence function while 

dealing with subdistribution hazards.  Fine-Gray model makes similar assumptions about subdistribution 

hazard functions as those made in Cox model for cause-specific hazards. The model assumes that the 

subdistribution hazards in two groups are proportional to each other at every time point and the 

magnitude of the ratio of those two hazards is estimated from the data. The analysis results of the Fine 

and Gray model are summarized by subdistribution hazard ratios which reflect the effect each covariate 

has on the risk of the event of interest. 

Both - Cox and Fine-Gray regression models - are fitted for predicting relapse in the HCT study and the 

estimated hazard ratios, confidence limits and their associated p-values are presented in Table 3. The 

discrepancy in hazard ratios for each covariate is expected since each model deals with different hazard 

functions. In addition, the interpretation for cause-specific hazards and subdistribution hazards is 

different. Consider the effect of disease status in predicting the relapse risk.  Based on Cox model, we 

conclude that at any time after transplant, the rate of relapse is 2.81 times higher among patients who 

have stable or progressive disease at the time of the transplantation as compared to those who are in 

remission in subjects who have not yet experienced relapse or TRM. Whereas the interpretation for 

disease status in Fine-Gray model is that patients who have stable/progressive disease have relapse rate 

which is 2.27 times higher than that of the patients in remission among subjects who have not yet 

experienced relapse, including those who have died from treatment-related complications without 

experiencing relapse. Because the risk set includes those who have died from treatment-related 

complications without experiencing relapse, the interpretation is only applicable to a hypothetical set of 

patients which includes patients who experienced TRM. 

 

Table 3 Multivariable analysis results for relapse from Cox and Fine-Gray model for HCT study.  

 Cox model Fine-Gray model 

Variable HR (95% CI) P-value HR (95% CI) P-value 

HLA Combinations     

HLA-A1, non-HLA-A2, non-HLA-B44  1  1  

Other HLA combinations 0.71 (0.48-1.05) 0.0859 0.76 (0.51-1.13) 0.1730 

Cytogenetics     

Standard risk 1  1  

High risk 2.09 (1.53-2.85) <.0001 2.17 (1.59-2.97) <.0001 

Disease Status     

Remission 1  1  

Stable/progressive 2.81 (2.08-3.80) <.0001 2.27 (1.69-3.06) <.0001 

Conditioning regimen intensity  0.0078  0.0006 

Myeloablative 1  1  

RIC 2.00 (1.24-3.25) 0.0049 2.34 (1.44-3.82) 0.0007 

NMA 2.07 (1.29-3.33) 0.0025 2.49 (1.55-4.02) 0.0002 

 

Sometimes it is of interest to evaluate the effect of events that happen after transplantation on the 

outcome of interests. For example, we could be interested in evaluating the effect developing an acute 



graft-versus-host disease (aGVHD) has on mortality. These types of covariates are referred to as time-

dependent covariates since all patients belong to the non-event group at the time of transplant and only 

change to the event group at the time of experiencing such an event. In contrast to time-dependent 

covariates, the variables we have considered so far in this paper, such as disease status or conditioning 

regimen intensity, are referred to as fixed covariates, meaning the groups are predetermined at the time 

of the transplantation, and will not change over time. One important feature of Cox cause-specific 

hazards model is that it allows the inclusion of time-dependent covariates. On the other hand, in most 

competing risks problems, time-dependent covariates cannot be incorporated into Fine-Gray model (8). 

Time-dependent covariates should never be considered in Fine-Gray model when death is a competing 

risk because the covariate value would be unknown for the patients experiencing the competing event 

and staying in the risk set. Even for non-terminal competing events, careful assessment of available data 

and observation window for all patients needs to be performed prior to considering inclusion of time-

dependent covariates. 

In the HCT study, if aGVHD is added to the Cox model described in Table 4, the estimated hazard ratio 

for aGVHD is 0.81 (95% CI, 0.59-1.13).  Patients who develop aGVHD have 0.81 times lower rate of 

relapse as compared to similar patients without aGVHD. However, aGVHD has no significant effect on 

relapse (p=0.2178).   

 

6. Summary 

The article reviews statistical techniques for the analysis of survival and competing risks data. The log-

rank test and the Cox proportional hazards model are widely used to summarize and analyze survival 

data. On the other hand, the Gray’s test, the Cox cause-specific hazards model, and the Fine-Gray model 

can be used in competing risks setting. Both Cox model and Fine-Gray model can be used to determine 

the covariates effects on competing risks outcomes. Due to unnatural risk set which includes patients 

who have experienced the competing event, interpretation of Fine-Gray model in terms of event rates is 

nonintuitive and hard to understand. However, Fine-Gray approach allows to directly model the 

covariate effect on the cumulative incidence function. Although the covariates in Cox model may not be 

associated with the event probabilities in the same way they are associated with the cause-specific 

hazard, the interpretation for Cox model is straight-forward and this modeling approach is preferred if 

event rates are of primary interest. Cox model can also easily incorporate time-dependent covariates. 

The choice of the appropriate model depends on the question of primary interest.  
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