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ABSTRACT. The case-cohort study design is widely used to reduce cost when

collecting expensive covariates in large cohort studies with survival or competing

risks outcomes. A case-cohort study data set consists of two parts: i) a random

sample; and ii) all cases or failures from a specific cause of interest. Clinicians

often assess covariate effects on competing risks outcomes. The proportional sub-

distribution hazards model of Fine and Gray (1999) directly evaluates the effect

of a covariate on the cumulative incidence function. They studied the asymp-

totic distribution of the estimators under the non-covariate-dependent censoring

assumption for the full cohort study. However, the non-covariate-dependent cen-

soring assumption is often violated in many biomedical studies. In this paper,

we propose a proportional subdistribution hazards model for case-cohort stud-

ies with stratified data with covariate-adjusted censoring weight. We further

propose an efficient estimator when extra information from the other causes is

available under case-cohort studies. The proposed estimators are shown to be

consistent and asymptotically normal. Simulation studies show (i) the proposed

estimator is unbiased when the censoring distribution depends on covariates; and

(ii) the proposed efficient estimator gains estimation efficiency when using extra

information from the other causes. We analyze a bone marrow transplant data

set and a coronary heart disease data set using the proposed method.

Key words: Case-cohort design; Competing risks data; Efficiency; Hazard of subdistribution;

Inverse probability of censoring weight
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1 Introduction

In large observational studies, collecting exposure information from all subjects over a long

study period may be costly. The majority of cost and effort mainly involve measuring and

assembling expensive exposure information. The case-cohort design is widely used to handle

such difficulties by reducing cost while accomplishing the same goal of large observational

studies (Prentice, 1986).

The extensive work has been done for analyzing case-cohort data with survival outcomes.

For a univariate failure time, a pseudo-likelihood approach was proposed by Prentice (1986)

and Self and Prentice (1988). In order to improve efficiency, Barlow (1994) and Kulich and

Lin (2004) proposed a robust estimator using a time-varying weight and a class of weighted

estimating functions using all available information, respectively. When there are several

diseases of interest, one often studies them using the same subcohort under multiple case-

cohort studies. For such multiple case-cohort studies, Kang and Cai (2009) developed a joint

model with multivariate failure time. However, they did not use extra information from the

other diseases when estimating the effect of risk factors for a disease of interest. Kim et al.

(2013) proposed a more efficient estimation method with a new weight to make full use of

information from the other diseases.

Borgan et al. (2000), Samuelsen et al. (2007), Breslow and Wellner (2007), and Kim

et al. (2018) considered a stratified case-cohort design by selecting the subcohort based

on stratified sampling to increase estimation efficiency. The stratified case-cohort design

assumes the common baseline hazard function for all strata.

The case-cohort design is often used to study competing risks data in which only one

occurrence of failure from one cause can be observed because it hinders the occurrence

of failure from the other causes. The censoring distribution often depends on covariates

under such design. For example, the Atherosclerosis Risk in Communities (ARIC) study

investigated the effect of high-sensitivity C-reactive protein (hs-CRP) on coronary heart

disease (CHD) (Ballantyne et al., 2004). The case-cohort design was used to reduce the cost

of obtaining hs-CRP from the subjects. The subcohort was selected using stratified sampling

based on age, gender, and race. Death prior to CHD was a competing risk for CHD. As shown

in Section 6, several covariates were associated with the censoring distribution based on the

proportional hazards model.

For such competing risks data, a direct evaluation of covariates on the cumulative in-

cidence function of a given cause is often of clinical interest (Saber et al., 2015). There is
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rich literature on such modeling for the full cohort study. Fine and Gray (1999) proposed

a proportional subdistribution hazards model that directly assesses the effect of covariates

on the cumulative incidence function. The proportional subdistribution hazards assumption

often does not hold for certain covariates. Ignoring nonproportional hazards structure in

data analysis could lead to biased parameter estimation. To address such aspect, Zhou et al.

(2011) extended Fine and Gray (1999) to a stratified proportional subdistribution hazards

model by allowing different baseline hazard functions for different strata. However, Fine

and Gray (1999) and Zhou et al. (2011) did not study the asymptotics of the estimators

under the covariate-dependent censoring. Scheike et al. (2008) proposed a direct binomial

modeling based on the inverse probability weighting technique. He et al. (2016) proposed a

proportional subdistribution hazards model with covariate-adjusted censoring weight. They

estimated the censoring probability given covariates based on the proportional hazards model

(Cox, 1972) and the Breslow estimator (Breslow, 1972) and used it for the weight function

in the estimating equation. Mao and Lin (2017) proposed semiparametric transformation

models for the cumulative incidence of competing risks based on the non-parametric max-

imum likelihood estimation. On the other hand, there is limited literature on competing

risks modeling under the case-cohort design. Sorensen and Andersen (2000) studied the

cause-specific hazards model under a single case-cohort study. However, the cause-specific

hazards model method does not explain a direct relationship between the estimated covari-

ate effects and the cumulative incidence of a given cause. In addition, they did not address

the case-cohort design with the nonproportional hazard structure. Pintilie et al. (2010)

considered a pseudo-likelihood approach based on Fine and Gray (1999) to accommodate a

single case-cohort study. However, they assumed covariate-independent censoring and did

not establish the theoretical properties of the estimators. To the best of our knowledge,

there is no methodology that models a direct relationship between covariates and the cu-

mulative incidence and allows covariate-dependent censoring for case-cohort data with the

nonproportional subdistribution hazard structure.

Motivated by Zhou et al. (2011) and He et al. (2016), we propose a stratified subdistri-

bution hazards model under the case-cohort design with stratified sampling so that it can be

used even when the proportional hazards assumption does not hold for some covariates. In

addition, the proposed model allows covariate-dependent censoring. When multiple causes

are of interest, multiple case-cohort studies may be conducted. Under multiple case-cohort

studies, expensive covariate information from the other causes is also available. By incorpo-
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rating such extra information into estimation, we propose a more efficient estimator. Sections

2 to 4 include the proposed method, the asymptotic properties of the proposed estimators,

and the estimation of the cumulative incidence function. Simulation studies are conducted

in Section 5. We apply the proposed method for a bone marrow transplant data set and

the Atherosclerosis Risk in Communities study data set in Section 6. A brief conclusion is

provided in Section 7.

2 Model and Estimation

2.1 Model definitions and assumptions

Suppose the full cohort consists of n subjects with K causes of failure ε ∈ {1, . . . , K}, where

ε denotes a cause of failure. We assume the primary cause of interest is ε = 1. Let T , C, and

Z = (Z1, . . . , Zp)
T be the failure time, the censoring time, and a p× 1 vector of covariates,

respectively, where Z consists of time-dependent external covariates which are not affected

by the causes of failure process (Kalbfleisch and Prentice, 2002). Hereafter we suppress its

dependence on time for simplicity. We assume the (T, ε)’s are independent of the C’s given

Z. For right censored data, let X = T ∧C and ∆ = I(T ≤ C) denote the observed time and

the failure indicator, respectively, where I(·) is an indicator function and a ∧ b = min(a, b).

Assume we observe stratified data (Xli,∆li,∆liεli,Zli) for subject i in stratum l, i = 1, . . . , nl,

l = 1, . . . , L, and
∑L

l=1 nl = n. The number of strata L is finite. Non-stratified data can be

handled as a special case of stratified data with L = 1. We assume subjects within-strata

are independent and identically distributed and subjects between strata are independent.

The study period is [0, τ ]. Our primary interest is evaluating the effect of covariates on the

cumulative incidence function of cause 1, F1l(t|Zli), where F1l(t|Zli) = P (Tli ≤ t, εli = 1|Zli).

A proportional subdistribution hazards model for cause 1 given Zli is

λ1l(t|Zli) = λ1l0(t) exp(βT0 Zli), (1)

where λ1l0(t) is an unspecified baseline subdistribution hazard function in stratum l and β0

is a p-dimensional parameter vector of interest (Zhou et al., 2011). Thus, the proposed model

allows different baseline subdistribution hazard functions for different strata and assume all

strata have the same covariate effect β0. A direct relationship between the subdistribution

hazard function and the cumulative incidence function is F1l(t|Zli) = 1− exp{−Λ1l(u|Zli)},
where Λ1l(t|Zli) =

∫ t
0
λ1l(u|Zli)du.

4



In many biomedical studies, the censoring time C may depend on the covariate vector

Z. In such case, we consider the proportional hazards model for the censoring distribution:

λCl (t|ZC
li ) = λCl0(t) exp(γT0 Z

C
li ), where ZC

li is the covariate which is associated with the cen-

soring distribution and can be a subset of Zli, λ
C
l0(t) is an unspecified baseline censoring

hazard function, and γ0 is an unknown parameter vector. Let Y C
li (t) = I(Xli ≥ t) and

NC
li (t) = I(Xli ≤ t,∆li = 0) denote at-risk indicator and counting process for the censoring

time of subject i in stratum l, respectively.

2.2 Estimation under a single case-cohort study

Suppose we randomly select a subcohort with fixed size ñl from stratum l of the full cohort.

Let ξli denote an indicator for the subcohort membership, i.e. ξli = 1 if subject i in stratum

l is selected into the subcohort; otherwise 0. Let αl = Pr(ξli = 1) = ñl/nl denote the

probability of selecting subject i in stratum l for the subcohort. Under the case-cohort design,

expensive covariate informationZli is available for subcohort members and subjects that have

failures from cause 1 outside the subcohort. Thus, we have records on (Xli,∆li,∆liεli, ξli,Zli)

when ξli = 1 or ∆liI(εli = 1) = 1; and (Xli,∆li,∆liεli, ξli) when ξli = 0 and ∆liI(εli = 1) = 0.

We call this design as a single case-cohort study.

Zhou et al. (2011) extended the subdistribution hazards model of Fine and Gray (1999)

to right-censored stratified competing risks data. They assumed the Cli’s have a common

censoring distribution Gl(t) within stratum l to study the asymptotics of the estimators.

Denote Gl(t) as the Kaplan-Meier estimator of Gl(t) in stratum l. Let N1
li(t) = I(Tli ≤

t, εli = 1) and Y 1
li (t) = 1−N1

li(t
−) denote the underlying counting process and risk process,

respectively. Zhou et al. (2011) proposed the following weighted score equation to estimate

β0 for the full cohort study:

U(β) =
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli −El(β, u)} ŵKMli (u)dN1
li(u) = 0, (2)

where El(β, t) = S
(1)
l (β, t)/S

(0)
l (β, t), S

(d)
l (β, t) = n−1l

∑nl
i=1 ŵ

KM
li (t)Y 1

li (t)Z
⊗d
li e

βTZli for d =

0, 1, 2, a⊗0 = 1, a⊗1 = a, a⊗2 = aaT , and ŵKMli (t) = I(Cli ≥ Tli ∧ t)Gl(t)/Gl(Xli ∧ t). We

denote the estimator of β0 obtained by solving (2) as β̂F . The weighted score equation (2)

is reduced to the estimating equation of Fine and Gray (1999) when L = 1.

Under a single case-cohort design, covariate information is not available for subjects
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without failure from cause 1 and outside the subcohort. Thus, we use an inverse probability

weighting scheme to account for it. We propose the following weight function for a single

case-cohort study with competing risks data:

ρli = ∆liI(εli = 1) + {1−∆liI(εli = 1)}ξliα̂−1l ,

where α̂l =
∑nl

i=1 ξli{1 −∆liI(εli = 1)}/
∑nl

i=1{1 −∆liI(εli = 1)} is an estimator of the true

subcohort selection probability αl in stratum l, that is, the proportion of sampled subjects

that do not have failure from cause 1 in stratum l. We have ρli = 1 for subjects who

experienced a failure from cause 1 regardless of their subcohort membership and ρli = α̂−1l
for subjects without a failure from cause 1 in the subcohort. This type of weight function

was used for survival outcomes under a single case-cohort study (Kalbfleisch and Lawless,

1988).

When the censoring distribution depends on covariates, as in He et al. (2016) we propose

to use covariate-adjusted weight function wCoxli (t) = I(Cli ≥ Tli ∧ t)Gl(t|zCli )/Gl(Xli ∧ t|zCli ).
Following He et al. (2016), we assume the Cli’s in stratum l follow the proportional hazards

model: Gl(t|zCli ) = P (Cli > t|ZC
li = zCli ) = exp{−ΛC

l0(t) exp(γT0 z
C
li )}. Because a single

case-cohort study consists of the subcohort and all cases with cause 1, not all censored

observations have expensive covariate information. In other words, when we treat censoring

as an event, expensive covariate information is available for a subset of subjects with censoring

and subjects without censoring. Therefore, to estimate censoring survival probabilities given

covariates, we propose to use a weighted estimating equation approach for generalized case-

cohort data that allows a fraction of cases (Kim et al., 2018). Thus, we can estimate the

censoring survival probability Gl(t|zCli ) by Ĝl(t|zCli ) = exp{−Λ̂C
l0(t) exp(γ̂TzCli )}, where γ̂

is the estimator of γ0 obtained by the proportional hazards model for generalized case-

cohort data (Kim et al., 2018) and Λ̂C
l0(t) =

∫ t
0

∑nl
i=1 ρlidN

C
li (u)/

∑i
j=1 ρliY

C
li (u) exp{γ̂TzCli }

is a weighted Breslow-Aalen-type estimator for the cumulative baseline censoring hazard

ΛC
l0(t) =

∫ t
0
λCl0(u)du. We denote ŵCoxli (t) = I(Cli ≥ Tli ∧ t)Ĝl(t|zCli )/Ĝl(Xli ∧ t|zCli ).

Using weight function ρli and covariate-adjusted censoring weighting wCoxli (t), we pro-

pose the following pseudo-log-likelihood score equation for a single case-cohort study with

competing risks data under model (1):

Û(β) =
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Êl(β, u)}ŵCoxli (u)dN1
li(u) = 0, (3)
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where Êl(β, t) = Ŝ
(1)
l (β, t)/Ŝ

(0)
l (β, t) and Ŝ

(d)
l (β, t) = n−1l

∑nl
i=1 ρliŵ

Cox
li (t)Y 1

li (t)Z
⊗d
li e

βTZli

for d = 0, 1, 2. Denote β̂I as the solution to equation (3).

To estimate the baseline cumulative subdistribution hazard Λ̂I
1l0(β̂I , t), we propose a

Breslow-Aalen-type estimator as follows:

Λ̂I
1l0(β̂I , t) =

1

nl

nl∑
i=1

∫ t

0

ŵCoxli (u)dN1
li(u)

Ŝ
(0)
l (β̂I , u)

. (4)

For covariate-independent censoring, we can estimate regression coefficients and the baseline

cumulative subdistribution hazard function by replacing ŵCoxli (u) with ŵKMli (u) in (3) and

(4).

2.3 Efficient estimation under multiple case-cohort studies

When there are multiple causes of interest, several case-cohort studies can be conducted

by using the same subcohort (Langholz and Thomas, 1990; Wacholder et al., 1991). Under

multiple case-cohort studies, covariate information is available for the following two groups

of subjects: (i) a randomly selected subcohort from the full cohort; (ii) all cases from any

causes outside the subcohort. Thus, the information available under multiple-case cohort

studies is (Xli,∆li,∆liεli, ξli,Zli) when ξli = 1 or ∆liI(εli = k) = 1 for k = 1, . . . , K; and

(Xli,∆li,∆liεli, ξli) when ξli = 0 and ∆liI(εli = k) = 0 for k = 1, . . . , K.

Under multiple case-cohort studies, Kim et al. (2013) proposed an efficient estimation

approach for multivariate survival outcomes by using the collected information on subjects

who have other diseases outside the subcohort. By incorporating the extra information

into estimation, they showed their method improved estimation efficiency compared to the

method ignoring the extra information. Motivated by Kim et al. (2013), we propose the

following efficient weight function πli for multiple case-cohort studies with competing risks

data:

πli =
K∑
k=1

∆liI(εli = k) + {1−
K∑
k=1

∆liI(εli = k)}ξliα̃−1l ,

α̃l =
∑nl

i=1 ξli{1 −
∑K

k=1 ∆liI(εli = k)}/
∑nl

i=1{1 −
∑K

k=1 ∆liI(εli = k)} is the proportion of

sampled subjects who do not have cases from any causes in stratum l. Thus, we have πli = 1

when ∆liI(ε = k) = 1 for some k and πli = α̃−1l when ξli = 1 and ∆liI(εi = k) = 0 for all
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k = 1, . . . , K and l = 1, . . . , L. The weight function πli takes cases from the other causes into

consideration so that our proposed estimator can use the extra information on cases from

the other causes k = 2, . . . , K. Thus, we propose the following pseudo-log-likelihood score

equation for model (1):

Ũ(β) =
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, u)}w̃Coxli (u)dN1
li(u) = 0, (5)

where Ẽl(β, t) = S̃
(1)
l (β, t)/S̃

(0)
l (β, t), S̃

(d)
l (β, t) = n−1l

∑nl
i=1 πliw̃

Cox
li (t)Y 1

li (t)Z
⊗d
li e

βTZli for

d = 0, 1, 2. For w̃Coxli (t) = I(Cli ≥ Tli∧t)G̃l(t|zCli )/G̃l(Xli∧t|zCli ), G̃l(t|zCli ) can be obtained us-

ing Kim et al. (2018) for multiple case-cohort studies and Λ̃C
l0(t) =

∫ t
0

∑nl
i=1 πlidN

C
li (u)/

∑i
j=1 πli

Y C
li (u) exp{γ̂T zCli } similarly to Section 2.2. Let β̂II denote the solution to equation (5).

For multiple case-cohort studies, we propose the following Breslow-Aalen-type estimator

for the baseline cumulative hazard function:

Λ̂II
1l0(β̂II , t) =

1

nl

nl∑
i=1

∫ t

0

w̃Coxli (u)dN1
li(u)

S̃
(0)
l (β̂II , u)

. (6)

For covariate-independent censoring, we can estimate regression coefficients and the baseline

cumulative subdistribution hazard function by replacing w̃Coxli (u) with ŵKMli (u) in (5) and

(6).

3 Asymptotic properties

3.1 Asymptotic properties of proposed estimators

In this section, we study the asymptotic properties of the proposed estimators β̂I and

β̂II . Define M1
li(t) = N1

li(t) −
∫ t
0
Y 1
li (u)dΛ1l(u) and the martingale for the censoring pro-

cess MC
li (t) = NC

li (t)−
∫ t
0
Y C
li (u)dΛC

l (u).

We make the following assumptions:

C1 For all l,
∫ τ
0
λ1l0(t)dt <∞ and P{Y 1

li (t) = 1} > 0 and
∫ τ
0
λC1l0(t)dt <∞ and P{Y C

li (t) =

1} > 0 for t ∈ [0, τ ] , i = 1, . . . , nl.

C2 |Zlij(0)|+
∫ τ
0
|dZlij(t)| < Dz <∞ l = 1, . . . , L, i = 1, . . . , nl, j = 1, . . . , p, almost surely

and Dz is a constant.
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C3 For d = 0, 1, 2, there exists a neighborhood B of β0 such that s
(d)
l (β, t) are con-

tinuous functions and supt∈[0,τ ],β∈B ‖S
(d)
l (β, t) − s(d)l (β, t)‖ p−→ 0 where s

(d)
l (β, t) =

E[S
(d)
l (β, t)] and there exists a neighborhood R of γ0 such that s

(d)
C,l(γ, t) are con-

tinuous functions and supt∈[0,τ ],γ∈R ‖S
(d)
C,l(γ, t) − s

(d)
C,l(γ, t)‖

p−→ 0, where S
(d)
C,l(γ, t) =

n−1l
∑nl

i=1 Y
C
li (t)ZC⊗d

li eγ
TZCli and s

(d)
C,l(γ, t) = E[S

(d)
C,l(γ, t)].

C4 For all β ∈ B where B is a neighborhood of β0, t ∈ [0, τ ], and l ∈ {1, . . . , L}, we

have s
(1)
l (β, t) = ∂s

(0)
l (β, t)/∂β, and s

(2)
l (β, t) = ∂2s

(0)
l (β, t)/∂β∂βT , where s

(d)
l (β, t),

d = 0, 1, 2 are continuous functions of β ∈ B uniformly in t ∈ [0, τ ] and are bounded

on B × [0, τ ]. s
(0)
l is bounded away from zero on B × [0, τ ]. For all γ ∈ R where R is a

neighborhood of γ0, t ∈ [0, τ ], and l ∈ {1, . . . , L}, we have s
(1)
C,l(γ, t) = ∂s

(0)
C,l(γ, t)/∂γ,

and s
(2)
C,l(γ, t) = ∂2s

(0)
C,l(γ, t)/∂γ∂γ

T , where s
(d)
C,l(γ, t), d = 0, 1, 2 are continuous func-

tions of γ ∈ R uniformly in t ∈ [0, τ ] and are bounded on R× [0, τ ]. s
(0)
C,l is bounded

away from zero on R× [0, τ ].

C5 The matrix Al(β0) =
∫ τ
0
vl(β0, t)s

(0)
l (β0, t)λ1l0(t)dt is positive definite for l = 1, . . . , L,

where vl(β, t) = s
(2)
l (β, t)/s

(0)
l (β, t)− el(β, t)⊗2 with el(β, t) = s

(1)
l (β, t)/s

(0)
l (β, t);

The matrixAC,l(γ0) =
∫ τ
0
vC,l(γ0, t)s

(0)
C,l(γ0, t)λ

C
l0(t)dt is positive definite for l = 1, . . . , L,

where vC,l(γ, t) = s
(2)
C,l(γ, t)/s

(0)
C,l(γ, t)−eC,l(γ, t)⊗2 with eC,l(γ, t) = s

(1)
C,l(γ, t)/s

(0)
C,l(γ, t).

C6 limn→∞ ñl/nl = α∗l , where α∗l is a positive constant for l = 1, . . . , L.

C7 limn→∞ nl/n = ql, where ql is a positive constant for l = 1, . . . , L.

We have the following theorem on β̂I and β̂II :

Theorem 1. Under assumptions C1 – C7, for w = I, II, β̂w converges in probability

to β0 and n1/2(β̂w − β0) converges in distribution to a zero-mean normal distribution with
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covariance matrix A(β0)
−1Σw(β0)A(β0)

−1, where

A(β0) =
L∑
l=1

qlAl(β0),Σ
w(β0) =

L∑
l=1

ql(V
0
l + V w

l ),

V 0
l = E{(η1,l1 + η2,l1)

⊗2}, V w
l =

1− α∗l
α∗l

E{(ηw3,l1)⊗2},

η1,li =

∫ τ

0

{Zli − el(β0, t)}wCoxli (t)dM1
li(t), η2,li =

∫ τ

0

q
(1)
li (t)dMC

li (t),

ηI3,li =

∫ τ

0

{1−∆liI(εli = 1)}
[
wCoxli (t)Y 1

li (t){Zli − el(β0, t)}dΛl10(t)− q(1)li (t)dMC
li (t)

]
,

ηII3,li =

∫ τ

0

{1−
K∑
k=1

∆liI(εli = k)}
[
wCoxli (t)Y 1

li (t){Zli − el(β0, t)}dΛl10(t)− q(1)li (t)dMC
li (t)

]
,

hC(t, u,ZC) = eγ
TZC

∫ t

v=u

{ZC −
s
(1)
C,l(γ0, u)

s
(0)
C,l(γ0, u)

}dΛC
0l(v),

q
(1)
li (u) = − lim

nl→∞

[ 1

nl

nl∑
j=1

∫ τ

t=Xlj

{
Zlj − el(β0, t)

}
wCoxlj (t)

eγ
T
0 Z

C
lj I(u ≤ t)

s
(0)
C,l(γ0, u)

dM1
lj(t)

+
1

nl

L∑
h=1

nh∑
j=1

∫ τ

t=Xlj

{
Zlj − el(β0, t)

}
wCoxlj (t)hTC(t,Xlj,Z

C
lj )A

−1
C

{
ZC
li − eC,l(γ0, u)

}
dM1

hj(t)
]
,

AC =
L∑
l=1

qlAC,l(γ0).

The matrix Σw(β0) for w = I, II consists of two parts. The first part V 0
l is the contribution

from the full cohort and the second part V w
l is due to sampling the subcohort. When we

select all subjects for the subcohort (i.e. α∗l = 1), the second variance term vanishes. The

asymptotics of the estimators with ŵKMli (u) can be shown similarly to Theorem 1 and thus

its proof is omitted. The asymptotic covariance matrices of the estimators with ŵKMli (u) for a

single and multiple case-cohort studies are provided in the Appendix C of the Supplementary

Materials.

Remark. We considered the same strata for event from cause 1 and censoring times for

mathematical simplicity in Theorem 1. This avoids the abuse of complicated notations and

subscripts. However, one can show the asymptotic results of Theorem 1 even when strata are

10



different between the model for cause 1 and the model for censoring using similar arguments

to the proof of Theorem 1 after redefining all notations that allow different strata between

the model for cause 1 and the model for censoring. When strata for event from cause 1

and censoring times are different, one can do the following to obtain parameter estimates

and their standard errors: i) fit the stratified proportional hazards model for censoring us-

ing strata for censoring and estimate a censoring survival probability for each subject based

on the fitted model; ii) plug the estimated censoring survival probability corresponding to

subject i in stratum l to estimate wCoxli (t), where l = 1, . . . , L are strata for the model for

cause 1; iii) estimate β using the estimated wCoxli (t); iv) similarly to estimating wCoxli (t),

estimate MC
li (t), q

(1)
li (u),η1,li,η2,li, and η3,li by plugging the estimated β and wCoxli (t) into the

expressions in Theorem 1; and v) obtain the standard error using the asymptotic formula

of Theorem 1. In short, one can fit the stratified proportional hazards model using strata

for censoring, estimate all censoring-related terms for each subject, and plug them into the

asymptotic formula of Theorem 1. We conducted a simulation study with different strata

between the model for cause 1 and the model for censoring in the Appendix F of the Supple-

mentary Materials. Table 3 of the Appendix F of the Supplementary Materials shows little

bias and empirical coverage rates close to 95%.

We have the following theorem on the cumulative hazard function:

Theorem 2. Under assumptions C1 - C7, Λ̂w
1l0(t; z0) is a consistent estimator for Λ1l0(t; z0)

for t ∈ [0, τ ] and n
1/2
l {Λ̂w

1l0(t; z0)−Λ1l0(t; z0)} converges weakly to the Gaussian process with

mean zero and the following covariance matrix between Hw(t) and Hw(s) for w = I, II,

where

E{ζ1,l1(β0, t)ζ1,l1(β0, s)}+
1− α∗l
α∗l

E{ζw2,l1(β0, t)ζ
w
2,l1(β0, s)},

for t, s ∈ [0, τ ]. The explicit forms of ζ1,li(β0, t) and ζw2,li(β0, t) are provided in the Appendix.

The details of the proofs for Theorem 1 and Theorem 2 are provided in the Appendix A and

B of the Supplementary Materials, respectively.

3.2 Efficiency gain

We compare the asymptotic variances of β̂I and β̂II and evaluate asymptotic efficiency

gain in this section. Theorem 1 shows the sandwich covariance matrices of β̂I and β̂II

11



depend on the first derivative of the weighted estimating function, A(β0), and the asymp-

totic variance of the weighted estimating functions, ΣI(β0) and ΣII(β0). Since Al(β0) =∫ τ
0
vl(β0, t)s

(0)
l (β0, t)λl0(t)dt is independent of the weight functions, the difference in the

asymptotic variances of β̂I and β̂II comes from ΣI(β0) and ΣII(β0). By Theorem 1, the

difference between ΣI(β0) and ΣII(β0) is due to the difference between E{(ηI3,l1)⊗2} and

E{(ηII3,l1)⊗2}. Define EG = (1 − α∗l )/α
∗
l [E{(ηI3,l1)⊗2} − E{(ηII3,l1)⊗2}]. As explained in the

Appendix D of the Supplementary Materials, the asymptotic efficiency gain gets bigger as

(1 − α∗l )/α
∗
l E{
∑K

k=2 ∆l1I(εl1 = k)} becomes larger. Thus, the asymptotic efficiency gain

is positively associated with smaller subcohort selection probability and larger other cause

rates. More specifically, for fixed α∗, more extra information collected on subjects with the

other causes leads to efficiency gain. When event rates from the other causes are fixed, a

smaller subcohort selection probability induces a larger ratio of case to control. As a result,

it increases efficiency gain.

4 Predicting Cumulative incidence

In this section, we estimate the cumulative incidence at time t for an individual with co-

variate vector Z = z0 under the case-cohort design. We can estimate the cumulative sub-

distribution hazard by Λ̂I
1l(t; z0) =

∫ t
0

exp{β̂TI z0}dΛ̂I
l10(u) under a single case-cohort study

and Λ̂II
1l (t; z0) =

∫ t
0

exp{β̂TIIz0}dΛ̂II
l10(u) under multiple case-cohort studies. By Theorem 2,

n
1/2
l {Λ̂w

1l0(t; z0)− Λ1l0(t; z0)} converges weakly to a Gaussian process on [0, τ ] for w = I, II.

The cumulative incidence function for a single case-cohort study (w = I) and multiple

case-cohort studies (w = II) can be estimated as follows:

F̂l1(t|z0) = 1− exp
{
−
∫ t

0

exp(β̂Twz0)dΛ̂w
1l0(β̂w, u)

}
.

For multiple case-cohort studies, by the functional delta method, n
1/2
l [F̂l1(t|z0)−Fl1(t|z0)]

converges weakly to a Gaussian process with mean zero and asymptotic variance, which can

be consistently estimated by nl

{
1− F̂l1(t|z0)

}2∑
i

{
ŴF,li(t|z0)

}2

, where

ŴF,li(t|z0) = exp{β̂TIIz0}[Λ̂II
l10(t)Â(β̂II)

−1Ũ(β̂II)z0 + Ĥ(t; z0)],

Â(β̂II) =
L∑
l=1

nl
n

∫ τ

0

[S̃(2)
l (β̂II , t)

S̃
(0)
l (β̂II , t)

− S̃
(1)
l (β̂II , t)

S̃
(0)
l (β̂II , t)

⊗2]
S̃
(0)
l (β̂II , t)dΛ̂II

l0 (t),
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Ĥ(t; z0) = n
−1/2
l

nl∑
i=1

{ζ1,li(β̂II , t) + (1− ξli/αl)ζII2,li(β̂II , t)}.

The asymptotics of F̂l1(t|z0) for a single case-cohort study can be similarly established.

Its detailed variance formula can be found and in the Appendix E of the Supplementary

Materials.

5 Simulation

We conducted a simulation study to evaluate the performance of the proposed estimators

β̂I and β̂II for two case-cohort studies with stratified sampling. We considered two causes.

The cumulative incidence function for cause 1 and cause 2 given Zli in stratum l had the

following form:

Fl1(t|Zli) = 1−
{

1− q + qe−ψlt
κl
}exp(βZli) ,

Fl2(t|Zli) = {1− q}exp(βZli)
{

1− e−t exp(θZli)
}
,

where Fl1(t|Zli) is a Weibull mixture with mass 1− q at ∞ when Zli = 0 and uses the pro-

portional subdistribution hazards model to obtain the subdistribution for nonzero covariate

values. Two parameters ψl and κl allow to generate stratified data.

We considered two strata with (ψ1, ψ2)
T = (1, 1)T and (κ1, κ2)

T = (1, 2)T . One covariate

Z was considered. Covariate Z1i in stratum 1 and Z2i in stratum 2 were generated from

the Bernoulli distribution with Pr(Z1i = 1) = 0.4 and Pr(Z2i = 1) = 0.6, respectively.

We set (β0, θ0)
T to (1,−1)T . We generated censoring time from the following two scenarios:

S1) the uniform distribution; and S2) the proportional hazards model with the constant

baseline hazard rate, γ = 2.53, and ZC
li = Zli. We set the failure rate for cause 1 to 20%. We

considered 20% and 40% of failure rates for cause 2. The sample size of the full cohort in each

stratum was set to 1000. Two subcohort sizes were examined: 100 (α1 = α2 = 0.1) and 200

(α1 = α2 = 0.2) in each stratum. For each configuration, 2000 iterations were conducted. For

each simulation study, we compared the performance of using covariate-unadjusted weight

and covariate-adjusted weight.

Table 1 reports the average bias of the estimates β̂I and β̂II , the average of the estimated

standard error (SE), empirical standard deviation (SD), average of standardized bias (STB)
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defined as E{‖β̂ − β0‖/SE}, the empirical coverage rate (%) with the nominal 95% confi-

dence interval for various simulation settings. The simulation results show all estimators are

approximately unbiased when the censoring time does not depend on covariates (scenario

S1). The average of the estimated standard errors for both proposed estimators β̂I and

β̂II are close to their empirical standard deviations, which indicates the proposed estimated

standard errors provide a consistent estimate of the true variability of β̂I and β̂II regardless

of censoring weights.

When the censoring time depends on covariates (scenario S2), the covariate-unadjusted

estimators are significantly biased while the covariate-adjusted estimators are approximately

unbiased for both β̂I and β̂II . Moreover, the empirical coverage rates for the majority of the

covariate-unadjusted estimators are not close to 95%. As the censoring rate becomes smaller

and the subcohort selection probability gets larger, the average of estimated standard error

is decreased. The empirical coverage rates for the covariate-adjusted estimators are between

94% and 96%. Because the censoring time depends on binary covariates, one can nonpara-

metrically estimate the censoring survival function separately for each level of the covariate

as suggested in Fine and Gray (1999). The results with this nonparametric covariate-level-

specific weight are similar to those with the covariate-adjusted weight in Table 1. These

results are provided in Table 2 of the Appendix F of the Supplementary Materials.

In both scenarios S1 and S2, all sample relative efficiency (SRE) values, defined as the

empirical standard deviation for β̂I divided by that for β̂II , are larger than 1. This indicates

β̂II using extra information on covariates collected from subjects with failure from cause 2 is

more efficient than β̂I ignoring such extra covariate information. The efficiency gain ranges

between 14% and 91%. The efficiency gain is larger as subcohort sizes get smaller and failure

rates for cause 2 become larger as discussed in Section 3.2.

We also conducted a simulation study for non-stratified case-cohort data. The results

were similar to Table 1 and are provided in Table 1 of the Appendix F of the Supplementary

Materials. To examine the robustness of using the proportional hazards model for censoring,

we conducted a small simulation study, where we generated censoring times from an addi-

tive hazards model, but used the proportional hazards model to model censoring. Detailed

simulation settings can be found in the Appendix F of the Supplementary Materials. As in

Table 4 of the Appendix F of the Supplementary Materials, the proposed method showed

robustness against model misspecification including approximately unbiased estimates and

empirical coverage rates close to 95%. A similar robust result against model misspecification
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for censoring was observed in He et al. (2016) for the full cohort study.

6 Data analysis

We applied the proposed methods to a real bone marrow transplant study data set and the

Atherosclerosis Risk in Communities study data set (Ghosh et al., 2016; Ballantyne et al.,

2004). The former data set had two competing risks outcomes: relapse/progression and non-

relapse mortality. Because the bone marrow transplant data set was not case-cohort data, we

used it to generate non-stratified case-cohort data consisting of the subcohort and all failures

from relapse and non-relapse mortality. We used these data to compare the performance of

β̂I and β̂II .

The Atherosclerosis Risk in Communities study conducted a single case-cohort study

with stratified sampling for two competing risks: coronary heart disease (CHD) and death

prior to CHD. This case-cohort data set consisted of the subcohort and all cases with CHD.

The subcohort included subjects who experienced death prior to CHD. Thus, we estimated

β̂I only for this data set.

6.1 Example 1: Non-stratified data under two case-cohort studies

We applied the proposed methods to a bone marrow transplant study data set collected by

the Center for International Blood and Marrow Transplant Research (Ghosh et al., 2016).

After excluding missing covariates, the full cohort consisted of 902 patients aged 18 years or

older with Hodgkin lymphoma and aggressive non-Hodgkin lymphoma undergoing their first

reduced-intensity or nonmyeloablative conditioning allogeneic hematopoietic cell transplanta-

tion between 2008 and 2013. Non-relapse mortality was an outcome of interest. Non-relapse

mortality is defined as death without evidence of lymphoma relapse or progression. Thus,

relapse or progression is a competing risk for non-relapse mortality. The number of subjects

who had non-relapse mortality, relapse/progression, and censoring in the full cohort were

114 (13%), 344 (38%), and 444 (49%), respectively.

To compare the performance of β̂I and β̂II for case-cohort studies, we generated a data set

for two case-cohort studies for non-relapse mortality and relapse/progression. The shared

subcohort was selected from the full cohort using simple random sampling with selection

probability 0.4. The subcohort size was 361 including 170 failure-free patients, 44 patients

15



with non-relapse mortality, and 147 patients with relapse or progression. Thus, the data

set consisted of the shared subcohort and all cases with relapse/progression and non-relapse

mortality. To obtain β̂I , we used the shared subcohort and all patients who experienced

non-relapse mortality only. For obtaining β̂II , we used the shared subcohort and all patients

who experienced non-relapse mortality or relapse/progression.

The covariates of interest were donor type (haploidentical donors vs. haplotype-identical

siblings donors), standardized patient’s age, Karnofsky performance status (KPS) at trans-

plant (≥ 90% vs. < 90%), and histology (Follicular lymphoma, Diffuse large B-cell lym-

phoma, Mantle cell lymphoma, Mature T- and NK-cell lymphomas, and Hodgkin lym-

phoma). We checked the subdistribution proportional hazards assumption by testing whether

the coefficient of log t × Z is equal to zero for each variable and all p-values were greater

than 0.16. We also examined whether the censoring distribution depends on covariates using

the proportional hazards model. KPS and histology were significantly associated with the

censoring distribution with p-values 0.0302 and 0.018, respectively. We obtained β̂I and β̂II

for non-stratified data with covariate-unadjusted and covariate-adjusted weights. We also

obtained β̂F by fitting the subdistribution hazards models of Fine and Gray (1999) with

covariate-unadjusted weight and He et al. (2016) with covariate-adjusted weight for the full

cohort.

Table 2 presents the regression parameter estimates, their estimated standard errors, and

their p-values. In general, the parameter estimates for β̂II are closer to the full-cohort-based

parameter estimates β̂F than those for β̂I . All standard errors of β̂II are smaller than

those of β̂I . Age and KPS with covariate-adjusted weight were statistically significant at the

significant level 0.05 in both β̂I and β̂II , which is consistent with the result from the full

cohort data analysis based on He et al. (2016), that is, β̂F with covariate-adjusted weight.

Compared to younger patients and patients with KPS ≥ 90%, older patients and patients

with KPS < 90% experienced more non-relapse mortality, respectively.

We also fitted the cause-specific hazards models with the full cohort, the single case-

cohort data set with ρli, and the two case-cohort data set with πli (Kim et al., 2013). Their

results are provided in the Appendix G of the Supplementary Materials. The magnitude of

the parameter estimates from the cause-specific hazards models is similar to that in Table

2. However, the interpretations of the estimates from these two models are different. For

example, consider the parameter estimate for KPS < 90% based on β̂II with covariate-

adjusted weight. The parameter estimate from the cause-specific hazards model is 0.749.
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Thus, at any time after bone marrow transplant, patients with KPS < 90% had a hazard

of death before relapse or progression exp(0.749) ≈ 2.11 times higher than those with KPS

≥ 90% after adjusting for the other covariates, among patients who were disease-free, that

is, had not experienced death or relapse or progression, at that time. On the other hand,

the hazard ratio from the subdistribution hazards model is exp(0.555) ≈ 1.74. Thus, the

cumulative incidence of death before relapse or progression was higher in patients with KPS

< 90% when compared with patients with KPS ≥ 90%. However, the hazard ratio 1.74 is

not straightforward to interpret because it is the mortality ratio before relapse or progression

among patients who are alive or have been relapsed or progressed before. For more details

on the interpretation of the subdistribution hazards ratio, see Austin and Fine (2017).

Figure 1 shows the predicted cumulative incidence curves using β̂F , β̂I , and β̂II with

covariate-adjusted weight for KPS < 90% when age is 50 years old, donor type is HLA-

identical siblings donor, and disease subtype is Follicular lymphoma for Histology. The

predicted cumulative incidence curves with the two case-cohort estimators β̂I and β̂II are

close to that with the full cohort estimator β̂F . Especially, compared to the curve using the

estimate with the traditional case-cohort weight β̂I , the curve using the estimate with the

efficient weight β̂II is closer to that based on the full cohort estimate β̂F .

6.2 Example 2: Stratified data under case-cohort studies

The Atherosclerosis Risk in Communities study is a longitudinal and large cohort study

consisting of 15,792 men and women aged from 45 to 64 years at baseline. After a baseline

examination during 1987–1989, subjects in this study were prospectively followed for the

development of an incident coronary heart disease (CHD) and death though 1998 (Ballantyne

et al., 2004). An event due to CHD is defined as definite or probable myocardial infarction,

electrocardiographic evidence of silent myocardial infarction, definite coronary heart disease

death, or coronary revascularization procedure. Death prior to CHD was a competing risk

for CHD.

The primary interest of this study was evaluating the effect of high-sensitivity C-reactive

protein (hs-CRP) on CHD (Ballantyne et al., 2004). To reduce cost and preserve the blood

sample, a single case-cohort study was implemented. The values of hs-CRP were available

on all subjects with CHD and the subcohort members. The subcohort was obtained based

on stratified sampling with age groups (≥ 55 or < 55 years), race (Caucasian or African

American), and gender as strata. We excluded the subjects who missed their second visit
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Figure 1: Predicted Cumulative incidence of non-relapse mortality for Karnofsky perfor-
mance status groups

in 1990–1992, did not have information on CHD history, were under-represented minorities

other than blacks, or had no valid follow-up time. There were 12,193 subjects in the full

cohort consisting of 639 (5.3%) CHD cases, 965 (7.9%) deaths prior to CHD, and 10,589

(86.8%) event-free subjects. In this analysis, the total number of assayed blood sample with

hs-CRP was 1409 including 818 subcohort members and 591 subjects with CHD outside

the subcohort. The subcohort consisted of 48 subjects who experienced CHD, 176 subjects

who died prior to CHD, 594 subjects who experienced neither CHD nor deaths. Tertiles of

hs-CRP were classified into low (< 1.0mg/L), middle (1.0−3.0mg/L), and high (> 3.0mg/L)

hs-CRP groups. The following covariates were adjusted in the analysis: smoking status,

diabetes, standardized systolic blood pressure, and standardized high density lipoprotein

and low density lipoprotein cholesterol. We tested the subdistribution proportional hazards

assumption and whether the censoring distribution was covariate-dependent similarly to

Section 6.1. All p-values from testing the subdistribution proportional assumptions were

greater than 0.08. The censoring distribution depended on all covariates listed above (all

p-values were less than 0.01).

Table 3 reports the regression parameter estimates and their estimated standard er-
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rors from fitting the stratified subdistribution hazards model by solving (3). The results

show the high hs-CRP group was significantly associated with increased risks of CHD com-

pared with the low hs-CRP group after adjusting for smoking status, diabetes, systolic

blood pressure, and high density lipoprotein and low density lipoprotein cholesterol. We

also obtained covariate-unadjusted estimators and the results are very similar to those for

covariate-adjusted estimators. Since the regression coefficients for the censoring distribution

were from −0.0587 to 0.114 and were small in terms of magnitude, they had little impact

on difference between covariate-unadjusted and covariate-adjusted estimates. Although we

did not report additional simulation results in the article, we also observed the difference in

covariate-unadjusted and covariate-adjusted estimates and their standard errors were small

when the magnitude of the parameters for the censoring distribution was small.

The results for the cause-specific hazard models are provided in the Appendix G of the

Supplementary Materials. The magnitude of the parameter estimates is similar to that of

Table 3. The estimates for the two models can be interpreted similarly to Section 6.1.

Figure 2 shows the predicted cumulative incidence curves using β̂I with covariate-adjusted

weight for the three hs-CRP groups when low and high density lipoproteins are averages,

patients do not have diabetes and do not smoke in stratum with white female who are older

than 55. It shows the high (low) hs-CRP group experienced the highest (lowest) CHD.

7 Discussion

We proposed a stratified subdistribution hazards model for case-cohort data with a pos-

sible covariate-dependent censoring distribution. The proposed method can be used via

stratification when the proportional subdistribution hazards assumption is not valid. For

multiple case-cohort studies, we proposed an efficient estimator by considering information

on subjects who experienced a failure from causes other than cause of interest. Although

the interpretation of the parameter estimates from the subdistribution hazards model is not

straightforward, it directly estimates the effect of the covariates on the cumulative incidence

function of cause of interest.

In this paper, we considered the stratified subdistribution hazards model, which allows

different baseline hazards for different strata. We can modify the proposed model for the

stratified case-cohort design under which the common baseline hazard is assumed for all

strata. Under the stratified case-cohort design, a subdistribution hazard model is λ1(t|Zli) =
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Figure 2: Predicted Cumulative incidence of Coronary heart disease for CRP groups

λ10(t) exp(β0Zli), and the weighted score equation with covariate-adjusted weight is

U∗(β) =
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli −
S

(1)
∗ (β, u)

S
(0)
∗ (β, u)

}w̆Coxli (u)dN1
li(u) = 0,

where S
(d)
∗ (β, t) = n−1

∑L
l=1

∑nl
i=1 π

∗
liw̆

Cox
li (t)Y 1

li (t)Z
⊗d
li e

βTZli for d = 0, 1. One can use π∗li =

ρli and w̆Coxli (t) = ŵCoxli (t) for a single case-cohort study, and π∗li = πli and w̆Coxli (t) = w̃Coxli (t)

for multiple case-cohort studies. The weight functions ρli and πli under the stratified case-

cohort design still remain the same as that for the stratified subdistribution hazards model.

Under the stratified case-cohort design, the effect of sampling strata, e.g. a surrogate of an

exposure of main interest, can be adjusted by using stratified sampling for the subcohort to

improve estimation efficiency.

The proposed method uses the stratified proportional hazards model for the censoring

distribution. Although the limited simulation study we conducted suggested the robustness

of the proposed method against model misspecification for censoring, when the stratified

proportional hazards model is inappropriate for fitting the censoring outcome, one can use

different methods such as the accelerated failure time model or the additive hazards model.
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In this case, the proposed method can be easily modified for different models for censoring so

that it can be used when the asymptotic variance of the estimator is established. Studying the

asymptotic properties of the parameter estimator when using different models for censoring

is an important future research topic. Another interesting topic is examining the robustness

of using the proportional hazards model for the censoring distribution when the proportional

hazards model is inappropriate. Exploring this aspect requires extensive simulation studies

under the accelerated failure time model or the additive model for censoring with various

sample sizes.

Under our simulation settings, the performance of the model with covariate-adjusted

censoring weight was better than or at least equivalent to that with covariate-unadjusted

censoring weight whether the censoring distribution depended on certain covariates or not.

However, when the number of covariates is large, fitting the proportional hazards model

for censoring could lead to inefficient parameter estimation. In such cases, one may select

significant covariates for the censoring distribution first and then use the covariate-adjusted

censoring weight with the selected covariates. Investigating estimation efficiency gain from

variable selection for the censoring distribution would be an interesting study.

For our bone marrow transplant data example, all patients got transplant. Thus, they

are left truncated by the waiting time to transplant if we start clock at time of diagnosis

of leukemia. Several methods to account for left truncation under the competing risks data

have been proposed for the full cohort data (Zhang et al., 2009; Geskus, 2011; Liu et al.,

2018). One normally assumes that truncation time is independent of event time to handle

delayed entry (Zhang et al., 2009; Geskus, 2011). However, this assumption may be violated

in practice. Developing methods for such left-truncated data is an important future research

problem.

For studies with common diseases or a large number of failures from a cause of interest,

sampling all cases in the original case-cohort design limits its applications (Breslow and

Wellner, 2007). In this case, the generalized case-cohort design in which one can sample only

a fraction of cases for exposure assessment can be used (Cai and Zeng, 2007). Developing a

method to model competing risks data under such design would be a worthy future topic.

In practice, it is important for investigators to calculate the sample size before conducting

the case-cohort design. Seeking simple formulae for sample size and power calculation for

the case-cohort design with competing risks outcomes would be another interesting future

topic.
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Appendix

The following definitions are the explicit forms of ζ1,li(β0, t), ζ
I
2,li(β0, t), ζ

II
2,li(β0, t), q

(2)
li (u, t),

and h(t, z0).

ζ1,li(β0, t) =

∫ t

0

1

s
(0)
l (β0, u)

wCoxli (u)dM1
li(u) + n

−1/2
l

nl∑
i=1

∫ τ

0

q
(2)
li (u, t)dMC

li (u)

+h(t, z0)
TA−1(β0)

L∑
l=1

(η1,li + η2,li),

ζI2,li(β0, t) = h(t, z0)
TA−1(β0)

L∑
l=1

ηI3,li

+{1−∆liI(εli = 1)}
[ ∫ t

0

wCoxli (u)Y 1
li (u)eβ

T
0 Zli

dΛl10(u)

s
(0)
l (β0, u)

−
∫ t

0

q
(2)
li (u, t)dMC

li (u)
]
,

ζII2,li(β0, t) = h(t, z0)
TA−1(β0)

L∑
l=1

ηII3,li

+{1−
∑
k

∆liI(εli = k)}
[ ∫ t

0

wCoxli (u)Y 1
li (u)eβ

T
0 Zli

dΛl10(u)

s
(0)
l (β0, u)

−
∫ t

0

q
(2)
li (u, t)dMC

li (u)
]
,

q
(2)
li (u, t) = − lim

nl→∞

[ 1

nl

nl∑
j=1

∫ t

v=Xlj

1

s
(0)
l (β0, v)

eγ
T
0 Z

C
lj I(u ≤ v)

s
(0)
C,l(γ0, u)

wCoxlj (v)dM1
lj(v)

− 1

nl

L∑
h=1

nh∑
j=1

∫ t

v=Xlj

1

s
(0)
l (β0, v)

hTC(v,Xlj,Z
C
lj )A

−1
C

{
ZC
li − eC,l(γ0, u)

}
wCoxhj (v)dM1

hj(v)
]
,

h(t, z0) = −
∫ t

0

el(β0, u)dΛl10(u).

Supplementary Material

The Supplementary Materials include the proofs for the theorems, asymptotic covariance

matrix of the estimators with covariate-unadjusted weight for a single and multiple case-

cohort studies, the variance formula for F̂l1(t|z0) for a single case-cohort study, technical

details on efficiency gain, additional simulation results, and data analysis results for the

cause-specific hazards model.
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Table 2: Analysis of the CIBMTR study
Full cohort CCI CCII

Variables β̂F SE p-value β̂I SE p-value β̂II SE p-value
Covariate-unadjusted weight

Age 0.485 0.141 0.001 0.437 0.158 0.006 0.454 0.155 0.003
KPS (ref = ≥90%)

<90% 0.515 0.222 0.021 0.527 0.256 0.039 0.540 0.251 0.032
Donor type (ref = HLA)

Haploidentical 0.310 0.254 0.222 0.347 0.292 0.236 0.328 0.277 0.237
Disease subtype (ref = FLH)
Diffuse large B-cell lymphoma -0.383 0.326 0.240 -0.387 0.493 0.432 -0.378 0.479 0.430

Mantle cell lymphoma -0.002 0.313 0.996 0.077 0.494 0.876 0.032 0.472 0.946
Mature T- and NK-cell lymphomas -0.016 0.335 0.962 -0.065 0.535 0.904 0.004 0.522 0.993

Hodgkin 0.014 0.388 0.971 0.128 0.555 0.817 -0.029 0.542 0.957
Covariate-adjusted weight

Age 0.482 0.140 0.001 0.436 0.156 0.005 0.453 0.155 0.003
KPS (ref = ≥90%)

<90% 0.532 0.219 0.015 0.541 0.254 0.033 0.555 0.249 0.026
Donor type (ref = HLA)

Haploidentical 0.310 0.254 0.222 0.346 0.292 0.236 0.328 0.277 0.236
Disease subtype (ref = FLH)
Diffuse large B-cell lymphoma -0.355 0.326 0.276 -0.361 0.493 0.465 -0.352 0.480 0.463

Mantle cell lymphoma -0.018 0.318 0.955 0.088 0.497 0.860 0.037 0.476 0.937
Mature T- and NK-cell lymphomas 0.012 0.343 0.973 -0.025 0.543 0.963 0.042 0.531 0.937

Hodgkin 0.028 0.388 0.943 0.152 0.551 0.782 -0.012 0.542 0.983

CCI , a single case-cohort study; CCII , two case-cohort studies; SE, standard error estimate; KPS, Karnofsky
performance status at transplant; ref, reference group; The reference groups are HLA-identical siblings donor
(HLA) for donor type, ≥90 for KPS , and Follicular lymphoma for Histology (FLH). The coefficients for the
reference groups were set to 0 and therefore they were omitted from the table.

Table 3: Analysis of the ARIC study
Covariate-unadjusted Covariate-adjusted

weight weight

Variables Category β̂I SE p-values β̂I SE p-values

hs-CRP Middle 0.2260 0.1378 0.101 0.2256 0.1378 0.102
(ref =Low) High 0.5397 0.1357 <0.001 0.5395 0.1357 <0.001
Systolic blood pressure 0.2860 0.0616 <0.001 0.2863 0.0616 <0.001
LDL cholesterol 0.3200 0.0499 <0.001 0.3196 0.0499 <0.001
HDL cholesterol -0.3159 0.0715 <0.001 -0.3163 0.0715 <0.001
Diabetes (ref = No) Yes 0.5972 0.1258 <0.001 0.5970 0.1258 <0.001
Smoking status (ref = No) Yes 0.3501 0.1080 0.001 0.3496 0.1080 0.001

SE, standard error estimate; hs-CRP, high-sensitivity C-reactive protein; LDL, low density lipopro-
tein; HDL, high density lipoprotein; Low high-sensitivity C-reactive protein group, group without
diabetes, and non-smoking group are reference groups; ref, reference group. The coefficients for the
reference groups were set to 0 and therefore they were omitted from the table.

28



Supplementary Materials

1 Appendix A: Proofs of Theorem 1

We provide the outline of the proofs for the main theorems. The following lemma plays an impor-

tant role in proving theorems.

Lemma 1 Let Bi(t), i = 1, . . . , n be independent and identically distributed real-valued random

process on [0, τ ] and denote random process vector, B(t) = [B1(t), . . . , Bn(t)] with E{Bi(t)} ≡

µB(t), var Bi(0) <∞, and var Bi(τ) <∞. Let χ = [χ1, . . . , χn] be random vector containing ñ

ones and n− ñ zeros with each permutation equally likely. Let χ be independent of B(t). Suppose

that almost all paths of Bi(t) have finite variation. Then n−1/2
∑n

i=1 χi{Bi(t)− µB(t)} converges

weakly in l∞[0, τ ] to a zero-mean Gaussian process, and n−1
∑n

i=1 χi{Bi(t) − µB(t)} converges

in probability to zero uniformly in t.

Lemma 1 is an extension of the proposition from Kulich and Lin (2000) and the detailed proof

can be found in Lemma 2 in Kang and Cai (2010).

1.1 Preliminaries

We study the asymptotics of β̂II . The asymptotics of β̂I can be shown similarly and thus its

proof is omitted. We use the proportional hazards model under case-cohort studies to estimate the

censoring distribution:

λCl (t|ZC
li ) = λCl0(t) exp(γT0 Z

C
li ).

1



Define the following notations for the censoring distribution depending on ZC :

Gl(t|ZC) = exp{−ΛC
0l(t) exp(γT0 Z

C)},ΛC
0l(t) =

∫ t

0

λCl0(u)du,

NC
li (t) = I(Xli ≤ t; ∆li = 0), Y C

li (t) = I(Xli ≥ t),

MC
li (t) = NC

li (t)−
∫ t

0

Y C
li (u) exp{γT0 ZC}dΛC

0l(u),

S
(d)
C,l(γ, t) =

1

nl

nl∑
i=1

πliY
C
li (t)ZC⊗d

li exp{γTZC
li } for d = 0, 1, 2,

s
(d)
C,l(γ, t) = E[S

(d)
C,l(γ, t)] for d = 0, 1, 2,

eC,l(γ, u) =
s
(1)
C,l(γ, t)

s
(0)
C,l(γ, t)

,

where MC
li (t) is a martingale with respect to the censoring filtration. By Kim et al. (2018), we can

estimate Gl(t|ZC) as follows:

G̃l(t|ZC) = exp{−Λ̃C
0l(t) exp(γ̂TZC)},

Λ̃C
0l(t) =

∫ t

0

∑nl

j=1 πlidN
C
li (t)

nlS
(0)
C,l(γ̂, t)

,

where γ̂ is an estimator for γ0.

By Theorem 2 of Kim et al. (2018) and the arguments of Andersen and Gill (1982), G̃l(t|ZC
li )−

2



Gl(t|ZC
li ) can be written as

G̃l(t|ZC
li )−Gl(t|ZC

li )

= −Gl(t|ZC
li )

nl

∫ τ

u=0

nl∑
j=1

eγ
T
0 Z

C
li I(u ≤ t)

s
(0)
C,l(γ0, u)

dMC
lj (u)

− Gl(t|ZC
li )

nl

∫ τ

u=0

hTC(t, 0,ZC
li )A

−1
C

L∑
h=1

nh∑
j=1

{
ZC
hj −

s
(1)
C,h(γ0, u)

s
(0)
C,h(γ0, u)

}
dMC

hj(u)

− Gl(t|ZC
li )

nl

nl∑
j=1

(1− ξlj
α̃l

){1−
K∑
k=1

∆ljI(εli = k)}
∫ τ

u=0

eγ
T
0 Z

C
li I(u ≤ t)

s
(0)
C,l(γ0, u)

dMC
lj (u)

− Gl(t|ZC
li )

nl

L∑
h=1

nh∑
j=1

(1− ξhj
α̃h

){1−
K∑
k=1

∆hjI(εhi = k)}

×
∫ τ

u=0

hTC(t, 0,ZC
li )A

−1
C

{
ZC
hj −

s
(1)
C,h(γ0, u)

s
(0)
C,h(γ0, u)

}
dMC

hj(u) + op(n
−1/2
l ), (1)

where

hC(t, u,ZC) = eγ
TZC

∫ t

v=u

{
ZC −

s
(1)
C,l(γ0, u)

s
(0)
C,l(γ0, u)

}
dΛC

0l(v).

3



Using (1), we can show

G̃l(t|ZC
li )

G̃l(Xli ∧ t|ZC
li )
− Gl(t|ZC

li )

Gl(Xli ∧ t|ZC
li )

= I(Xli < t)
Gl(Xli|ZC

li ){G̃l(t|ZC
li )−Gl(t|ZC

li )} −Gl(t|ZC
li ){G̃l(Xli|ZC

li )−Gl(Xli|ZC
li )}

G̃l(Xli|ZC
li )Gl(Xli|ZC

li )

= −I(Xli < t)
Gl(t|ZC

li )

Gl(Xli|ZC
li )

×
( 1

nl

nl∑
j=1

∫ τ

u=0

eγ
T
0 Z

C
li I(Xli < u ≤ t)

s
(0)
C,l(γ0, u)

dMC
lj (u)

+
1

nl

L∑
h=1

nl∑
j=1

∫ τ

u=0

hTC(t,Xli,Z
C
li )A

−1
C

{
ZC
hj −

s
(1)
C,h(γ0, u)

s
(0)
C,h(γ0, u)

}
dMC

hj(u)

+
1

nl

nl∑
j=1

(
ξlj
α̃l
− 1){1−

K∑
k=1

∆ljI(εli = k)}
∫ τ

u=0

[eγT
0 Z

C
li I(Xli < u ≤ t)

s
(0)
C,l(γ0, u)

]
dMC

lj (u)

+
1

nl

L∑
h=1

nh∑
j=1

(
ξhj
α̃h
− 1){1−

K∑
k=1

∆hjI(εhi = k)}

×
∫ τ

u=0

hTC(t,Xli,Z
C
li )A

−1
C

{
ZC
hj −

s
(1)
C,h(γ0, u)

s
(0)
C,h(γ0, u)

}
dMC

hj(u)
)

+ op(n
−1/2
l ).

4



Therefore, w̃Coxli (t)− wCoxli (t) is asymptotically equivalent to

I(Cli ≥ Tli ∧ t)
{ G̃l(t|ZC

li )

G̃l(Xli ∧ t|ZC
li )
− Gl(t|ZC

li )

Gl(Xli ∧ t|ZC
li )

}
= −I(Cli ≥ Tli ∧ t)I(Xli < t)

Gl(t|ZC
li )

Gl(Xli|ZC
li )

×
( 1

nl

nl∑
j=1

∫ τ

u=0

eγ
T
0 Z

C
li I(Xli < u ≤ t)

s
(0)
C,l(γ0, u)

dMC
lj (u)

+
1

nl

L∑
h=1

nh∑
j=1

∫ τ

u=0

[
hTC(t,Xli,Z

C
li )A

−1
C

{
ZC
lh −

s
(1)
C,h(γ0, u)

s
(0)
C,h(γ0, u)

}]
dMC

hj(u)

+
1

nl

nl∑
j=1

(
ξlj
α̃l
− 1){1−

K∑
k=1

∆ljI(εli = k)}
∫ τ

u=0

eγ
T
0 Z

C
li I(Xli < u ≤ t)

s
(0)
C,l(γ0, u)

dMC
lj (u)

+
1

nl

L∑
h=1

nh∑
j=1

(
ξhj
α̃h
− 1){1−

K∑
k=1

∆hjI(εhi = k)}

×
∫ τ

u=0

hTC(t,Xli,Z
C
li )A

−1
C

{
ZC
hj −

s
(1)
C,h(γ0, u)

s
(0)
C,h(γ0, u)

}
dMC

hj(u)
)

+ op(n
−1/2
l )

≡ Dli(t|ZC
li ) + op(n

−1/2
l ). (2)
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1.2 Consistency of β̂II

We show the consistency of β̂II with right censored data. One can write S(d)
l (β, t)− S̃(d)

l (β, t):

S
(d)
l (β, t)− S̃(d)

l (β, t)

= 1/nl

nl∑
i=1

w̃Coxli (t)(1− ξli
α̃l

){1−
∑
k

∆liI(εli = 1)}Y 1
li (t)Z

⊗d
li e

βTZli

= 1/nl

nl∑
i=1

{w̃Coxli (t)− wCoxli (t)}(1− ξli
α̃l

){1−
∑
k

∆liI(εli = k)}Y 1
li (t)Z

⊗d
li e

βTZli

+ 1/nl

nl∑
i=1

wCoxli (t)(1− ξli
α̃l

){1−
∑
k

∆liI(εli = k)}Y 1
li (t)Z

⊗d
li e

βTZli

= 1/nl

nl∑
i=1

Dli(t|ZC
li )(1−

ξli
α̃l

){1−
∑
k

∆liI(εli = k)}Y 1
li (t)Z

⊗d
li e

βTZli (3)

+ 1/nl

nl∑
i=1

wCoxli (t)(1− ξli
α̃l

){1−
∑
k

∆liI(εli = k)}Y 1
li (t)Z

⊗d
li e

βTZli . (4)

+ op(n
−1/2
l )

Based on Conditions 1 and 2, the total variation ofwCoxli (t){1−
∑

k ∆liI(εli = 1)}Y 1
li (t)Z

⊗d
li e

βTZli

is finite on [0, τ ]. We have 1/nl
∑nl

i=1w
Cox
li (t){1 −

∑
k ∆liI(εli = 1)}Y 1

li (t)Z
⊗d
li e

βTZli con-

verges to E[wCoxli (t){1 −
∑

k ∆l1I(εl1 = k)}Y 1
l1(t)Z

⊗d
l1 e

βTZl1 ] as nl → ∞. Furthermore, by

Conditions 1–7 and (2), Dli(t|ZC
li ) has finite variation in t ∈ [0, τ ] as nl → ∞. Therefore,

Dli(t|ZC
li ){1 −

∑
k ∆liI(εli = k)}Y 1

li (t)Z
⊗d
li e

βTZli has finite variations. Thus, by Lemma 1, (3)

and (4) converges to zero in probability uniformly in t. Thus, ‖S(k)
l (β, t) − S̃(k)

l (β, t)‖ → 0

in probability uniformly in t and n1/2
l {S

(d)
l (β, t) − S̃(d)

l (β, t)} converges weakly to a zero-mean

Gaussian process. Consequently, S̃(d)
l (β, t) andS(d)

l (β, t) converge to the same limit in probability

based on Condition 3.

Since S̃(d)
l (β, t) converges to s(d)l (β, t) = E[S

(d)
l (β, t)] uniformly in t ∈ [0, τ ] and β ∈ B, we

can show−n−1l ∂Ũ/∂β converges in probability uniformly inβ ∈ B toAl(β) = limn→∞−n−1l ∂Ũ/∂β

similarly to Section A.4 of He et al. (2016). From Condition C5, Al(β0) is positive definite for
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l = 1, . . . , L. As in Section 1.3, we can show Ũ (β) converges in probability to zero. Therefore,

by Theorem 2 of Fourtz (1977), β̂II converges in probability to β0.

1.3 Asymptotic normality of β̂II

Next, we show the asymptotic normality of β̂II . One can write n−1/2Ũ(β) as

n−1/2Ũ(β) = n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, u)}w̃Coxli (u)dN1
li(u)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, u)}w̃Coxli (u)dM1
li(t) (5)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, u)}w̃Coxli (u)Y 1
li (t)e

βTZlidΛ1l0(t). (6)

We can decompose (5) into two parts such that

n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, t)}w̃Coxli (t)dM1
li(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, t)}wCoxli (t)dM1
li(t)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{w̃Coxli (t)− wCoxli (t)}{Zli − Ẽl(β, u)}dM1
li(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli −El(β, t)}wCoxli (t)dM1
li(t) (7)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{El(β, t)− Ẽl(β, t)}wCoxli (t)dM1
li(t) (8)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{w̃Coxli (t)− wCoxli (t)}{Zli −El(β, t)}dM1
li(t) (9)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{w̃Coxli (t)− wCoxli (t)}{El(β, t)− Ẽl(β, t)}dM1
li(t). (10)
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First, we show (8) and (10) converge to zero in probability as n goes to∞. We know ‖S(k)
l (β, t)−

S̃
(k)
l (β, t)‖ → 0 in probability uniformly in t. Thus, due to Conditions 3 and 4, S̃(1)(β, t)/S̃(0)(β, t)

converges to el(β, t) in probability uniformly in t. Using (3) and (4), El(β, t) − Ẽl(β, t) can be

written as

El(β, t)− Ẽl(β, t) (11)

=
S

(1)
l (β, t)

S
(0)
l (β, t)

− S̃
(1)
l (β, t)

S̃
(0)
l (β, t)

=

[
S

(1)
l (β, t)− S(0)

l (β, t)
S̃

(1)
l (β, t)

S̃
(0)
l (β, t)

]
1

S
(0)
l (β, t)

=

[
{S(1)

l (β, t)− S̃(1)
l (β, t)} − {S(0)

l (β, t)− S̃(0)
l (β, t)}S̃

(1)
l (β, t)

S̃
(0)
l (β, t)

]
1

S
(0)
l (β, t)

=
[
{S(1)

l (β, t)− S̃(1)
l (β, t)} − {S(0)

l (β, t)− S̃(0)
l (β, t)}el(β, t)

] 1

S
(0)
l (β, t)

+ op(1)

=
∑
i

(
1− ξli

α̃l

){
1−

∑
k

∆iI(εli = k)
}
Qli(β, t)

1

S
(0)
l (β, t)

+ op(1), (12)

where Qli(β, t) = wCoxli (t)Y 1
li (t){Zli − el(β, t)}eβ

TZli . Then, it can be shown that (8) converges

to 0 in probability uniformly in t using Lemma 1 and (12).

In addition to Lemma 1, we have El(β, t) and Ẽl(β, t) converges to the same limit el(β, t),

where el(β, t) = s
(1)
l (β, t)/s

(0)
l (β, t) and s(k)l (β, t) = E[S

(k)
l (β, t)] by Conditions 2–4. Thus,

similarly to (8)→ 0, we can show (10) converges to zero in probability uniformly in t.
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The second part of Ũ(β), (6) can be written as

n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, t)}w̃Coxli (t)Y 1
li (t)e

βTZlidΛ1l0(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli −El(β, t) +El(β, t)− Ẽl(β, t)}w̃Coxli (t)Y 1
li (t)e

βTZlidΛ1l0(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli −El(β, t)}w̃Coxli (t)Y 1
li (t)e

βTZlidΛ1l0(t) (13)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{El(β, t)− Ẽl(β, t)}w̃Coxli (t)Y 1
li (t)e

βTZlidΛ1l0(t). (14)

(13) is 0. Using (12) and the similar arguments to (3) → 0 in probability by Lemma 1, we can

write (14) as

n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{El(β, t)− Ẽl(β, t)}w̃Coxli (t)Y 1
li (t)e

βTZlidΛ1l0(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{El(β, t)− Ẽl(β, t)}{w̃Coxli (t)− wCoxli (t)}Y 1
li (t)e

βTZlidΛ1l0(t)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{El(β, t)− Ẽl(β, t)}wCoxli (t)Y 1
li (t)e

βTZlidΛ1l0(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

[(
1− ξli

α̃

){
1−

∑
k

∆liI(εli = 1)
}
Qli(β, t)

]
dΛ1l0(t) + op(1). (15)

From (2), (9) is asymptotically equivalent to

n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{w̃Coxli (t)− wCoxli (t)}{Zli − el(β, t)}dM1
li(t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

q
(1)
li (t)dMC

li (t)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

(
ξli
α̃l
− 1){1−

K∑
k=1

∆liI(εli = k)}q(1)li (t)dMC
li (t) + op(1),
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where

q
(1)
li (u) = − lim

nl→∞

[ 1

nl

nl∑
j=1

∫ τ

t=Xlj

{
Zlj − el(β0, t)

}
wCoxlj (t)

eγ
T
0 Z

C
lj I(u ≤ t)

s
(0)
C,l(γ0, u)

dM1
lj(t)

+
1

nl

L∑
h=1

nh∑
j=1

∫ τ

t=Xlj

{
Zlj − el(β0, t)

}
wCoxlj (t)hTC(t,Xlj,Z

C
lj )A

−1
C

{
ZC
li − eC,l(γ0, u)

}
dM1

hj(t)
]
.

Combining all results for (7),(9), and (15), we have

n−1/2Ũ(β) = n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − Ẽl(β, t)}w̃Coxli (t)dN1
i (t)

= n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

{Zli − el(β, t)}wCoxli (t)dM1
li(t)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

q
(1)
li (t)dMC

li (t)

+ n−1/2
L∑
l=1

nl∑
i=1

∫ τ

0

(
1− ξli

α̃l

){
1−

K∑
k=1

∆liI(εli = k)
}

×
{
Qli(β, t)dΛl10(t)− q(1)li (t)dMC

li (t)
}

+ op(1)

= n−1/2
L∑
l=1

nl∑
i=1

{
η1,li + η2,li +

(
1− ξli

α̃l

)
ηII3,li

}
+ op(1)

=
L∑
l=1

(
n

nl
nl)
−1/2

nl∑
i=1

{
η1,li + η2,li +

(
1− ξli

α̃l

)
ηII3,li

}
+ op(1),

where η1,li, η2,li, and ηII3,li are i.i.d zero-mean variables in stratum l. By central limit theo-

rem, n−1/2
∑L

l=1

∑nl

i=1(η1,li + η2,li) converges to weakly to a zero-mean normal vector with co-

variance
∑L

l=1 qlE(η1,li + η2,li)
⊗2. It follows from Hájek (1960)’s central limit theorem for fi-

nite sampling, Conditions 1, 6, 7 that n−1/2l

∑nl

i=1(1 − ξli/α̃l)η
II
3,li converges to weakly a zero-

mean normal vector with covariance (1 − α∗l )/α
∗
lE[ηII3,li]

⊗2. Using (i) E[n
−1/2
l

∑nl

i=1 η1,li] = 0

and E[n
−1/2
l

∑nl

i=1(1 − ξli/α̃l)η
II
3,li] = 0 in stratum l; and (ii) (1 − ξli/α̃l)’s are independent

of history of NC
li (t), Y C

li (t), N1
li(t), Y

1
li (t), and Zil(t) for all i, l, and t ∈ [0, τ ], we can show

10



Cov(n
−1/2
l

∑nl

i=1 η1,li, n
−1/2
l

∑nl

i=1(1−ξli/α̃l)ηII3,li) = 0 andCov(n
−1/2
l

∑nl

i=1 η2,li, n
−1/2
l

∑nl

i=1(1−

ξli/α̃l)η
II
3,li) = 0. Since n−1/2l

∑nl

i=1 η1,li, n
−1/2
l

∑nl

i=1 η2,li, and n−1/2l

∑nl

i=1(1 − ξli/α̃l)η
II
3,li are

asymptotically normal, n−1/2l

∑nl

i=1 η1,li and n−1/2l

∑nl

i=1 η2,li are independent of n−1/2l

∑nl

i=1(1 −

ξli/α̃l)η
II
3,li.

Combining all results, n−1/2Ũ(β) converges weakly to zero-mean normal vector with covari-

ance matrix ΣII(β0), where

ΣII(β0) =
L∑
l=1

ql

{
E(η1,l1 + η2,l1)

⊗2 +
1− α∗l
α∗l

E(ηII3,l1)
⊗2
}
,

η1,li =

∫ τ

0

{Zli − el(β0, t)}wCoxli (t)dM1
li(t),

η2,li =

∫ τ

0

q
(1)
li (t)dMC

li (t),

ηII3,li =

∫ τ

0

{1−
K∑
k=1

∆liI(εli = k)}wCoxli (t)Y 1
li (t){Zli − el(β0, t)}dΛl10(t)

−
∫ τ

0

{1−
K∑
k=1

∆liI(εli = k)}q(1)li (t)dMC
li (t),

q
(1)
li (u) = − lim

nl→∞

[ 1

nl

nl∑
j=1

∫ τ

t=Xlj

{
Zlj − el(β0, t)

}
wCoxlj (t)

eγ
T
0 Z

C
lj I(u ≤ t)

s
(0)
C,l(γ0, u)

dM1
lj(t)

+
1

nl

L∑
h=1

nh∑
j=1

∫ τ

t=Xlj

{
Zlj − el(β0, t)

}
wCoxlj (t)hTC(t,Xlj,Z

C
lj )A

−1
C

{
ZC
li − eC,l(γ0, u)

}
dM1

hj(t)
]
.

By Condition 5, the consistency of β̂II , and Taylor expansion of Ũ (β̂II) around β0, n−1/2(β̂II −

β0) is asymptotically normally distributed with mean zero and with covariance matrix

A(β0)
−1ΣII(β0)A(β0)

−1, whereA(β0) =
∑L

l=1 qlAl(β0).

Similarly, we can establish the asymptotic of Û(βI) and β̂I .
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2 Appendix B: Proof of Theorem 2

In this section, we study the asymptotic distribution of n1/2
l {Λ̂II

1l0(t) − Λ1l0(t)}. The asymptotics

of Λ̂I
1l0(t) can be similarly shown and thus its proof is omitted.

We can decompose n1/2
l {Λ̂II

1l0(t)− Λ1l0(t)} into four parts as follows:

n
1/2
l {Λ̂

II
1l0(t)− Λ1l0(t)}

= n
−1/2
l

nl∑
i=1

∫ t

0

w̃Coxli (u)dN1
li(u)

S̃
(0)
l (β̂II , u)

− Λ1l0(t)

= n
−1/2
l

nl∑
i=1

∫ t

0

{
1

S̃
(0)
l (β̂II , u)

− 1

S̃
(0)
l (β0, u)

}
w̃Coxli (u)dM1

li(u) (16)

+ n
−1/2
l

nl∑
i=1

∫ t

0

1

S̃
(0)
l (β0, u)

w̃Coxli (u)dM1
li(u) (17)

+ n
−1/2
l

∫ t

0

{
1

S̃
(0)
l (β̂II , u)

− 1

S̃
(0)
l (β0, u)

}
S
(0)
l (β0, u)dΛl10(u) (18)

+ n
−1/2
l

∫ t

0

S
(0)
l (β0, u)− S̃(0)

l (β0, u)

S̃
(0)
l (β0, u)

dΛl10(u). (19)

By Taylor expansion, we have

1

S̃
(0)
l (β̂II , u)

− 1

S̃
(0)
l (β0, u)

= − S̃
(1)
l (β∗, u)

S̃
(0)
l (β∗, u)2

(β̂II − β0), (20)

where β∗ is on the line segment between β̂II and β0. Plugging (20) into (16), we have

n
−1/2
l

nl∑
i=1

∫ t

0

{
− S̃

(1)
l (β∗, u)

S̃
(0)
l (β∗, u)2

(β̂II − β0)

}
w̃Coxli (u)dM1

li(u).

We know β∗ converges to β0 in probability and β̂II is a consistent estimator for β0. Since

S̃
(0)
l (β∗, u) and S̃

(1)
l (β∗, u) are of bounded variation and S̃

(0)
l (β∗, u) is bounded away from 0,

and S̃(1)
l (β∗, u)/S̃

(0)
l (β∗, u)2 is of bounded variation and can be written as sum of two monotone
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functions in t. Thus, (16) converges to zero in probability uniformly in t. (17) can be written as:

n
−1/2
l

nl∑
i=1

∫ t

0

1

S̃
(0)
l (β0, u)

{w̃Coxli (u)− wCoxli (u) + wCoxli (u)}dM1
li(u)

= n
−1/2
l

nl∑
i=1

∫ t

0

1

S̃
(0)
l (β0, u)

wCoxli (u)dM1
li(u)

+ n
−1/2
l

nl∑
i=1

∫ t

0

1

S̃
(0)
l (β0, u)

{w̃Coxli (u)− wCoxli (u)}dM1
li(u).

Since S̃(0)
l (β, u) converges to s(0)l (β, u) by (2), Conditions 3 and 4, (17) is asymptotically equiva-

lent to

n
−1/2
l

nl∑
i=1

∫ t

0

1

s
(0)
l (β0, u)

wCoxli (u)dM1
li(u)

+ n
−1/2
l

nl∑
i=1

∫ τ

0

[
q
(2)
li (u, t) + (

ξli
α̃
− 1){1−

K∑
k=1

∆li(εli = k)}q(2)li (u, t)
]
dMC

li (u),

where

q
(2)
li (u, t) = − lim

nl→∞

[ 1

nl

nl∑
j=1

∫ t

v=Xlj

1

s
(0)
l (β0, v)

eγ
T
0 Z

C
lj I(u ≤ v)

s
(0)
C,l(γ0, u)

wCoxlj (v)dM1
lj(v)

− 1

nl

L∑
h=1

nh∑
j=1

∫ t

v=Xlj

1

s
(0)
l (β0, v)

hTC(v,Xlj,Z
C
lj )A

−1
C

{
ZC
li − eC,l(γ0, u)

}
wCoxhj (v)dM1

hj(v)
]
.

Since β∗ converges to β0 in probability uniformly and Conditions 3 and 4, S̃(0)
l (β∗, t) and

S
(0)
l (β0, t) converges to s

(0)
l (β0, t) in probability uniformly in t. By Condition 1, dΛl10(u) is

bounded. Using these results of consistency for β̂II and uniform convergence of S̃(0)
l (β, t) and

plugging n−1/2(β̂II −β0) = A−1(β0)n
−1/2∑L

l=1

∑nl

i=1{η1,li +η2,li + (1− ξli/α̃l)η3,li} into (18),

13



we can show (18) becomes

n
−1/2
l

∫ t

0

[
− S̃

(1)
l (β0, u)

S̃
(0)
l (β0, u)2

(β̂II − β0)

]
S
(0)
l (β0, u)dΛl10(u)

= n
−1/2
l h(t, z0)

T (β̂II − β0) + op(1)

= h(t, z0)
TA−1(β0)n

−1/2
l

L∑
l=1

nl∑
i=1

{
η1,li + η2,li +

(
1− ξli

α̃l

)
η3,li

}
+ op(1),

where h(t, z0) = −
∫ t
0
el(β0, u)dΛl10(u).

Since S̃
(0)
l (β0, u) converges to s

(0)
l (β0, u) in probability uniformly in u and s

(0)
l (β0, u) is

bounded away from 0, then we have S̃(0)
l (β0, u)−1 converges to s

(0)
l (β0, u)−1. Using the simi-

lar arguments to (3)→ 0 in probability by Lemma 1, we can show (19) becomes

n
−1/2
l

∫ t

0

S
(0)
l (β0, u)− S̃(0)

l (β0, u)

S̃
(0)
l (β0, u)

dΛl10(u)

= n
−1/2
l

∫ t

0

1

s
(0)
l (β0, u)

[ nl∑
i=1

wCoxli (t)
(

1− ξli
α̃l

)
{1−

∑
k

∆liI(εli = k)}Y 1
li (t)e

βT
0 Zli

]
dΛl10(u) + op(1).

14



Combining all the results, we have

n
1/2
l {Λ̂

II
1l0(t)− Λ1l0(t)}

= n
−1/2
l

nl∑
i=1

[ ∫ t

0

1

s
(0)
l (β0, u)

wCoxli (u)dM1
li(u) + n

−1/2
l

nl∑
i=1

∫ τ

0

q
(2)
li (u, t)dMC

li (u)

+ h(t, z0)
TA−1(β0)

L∑
l=1

(η1,li + η2,li)
]

+ n
−1/2
l

nl∑
i=1

(
1− ξli

α̃l

)[
h(t, z0)

TA−1(β0)
L∑
l=1

ηII3,li)

+

∫ t

0

wCoxli (u){1−
∑
k

∆liI(εli = k)}Y 1
li (u)eβ

T
0 Zli

dΛl10(u)

s
(0)
l (β0, u)

− {1−
∑
k

∆liI(εli = k)}
∫ t

0

q
(2)
li (u, t)dMC

li (u)
]

+ op(1)

= n
−1/2
l

nl∑
i=1

ζ1,li(β0, t) + n
−1/2
l

nl∑
i=1

(
1− ξli

α̃l

)
ζII2,li(β0, t) + op(1),

where

ζ1,li(β0, t) =

∫ t

0

1

s
(0)
l (β0, u)

wCoxli (u)dM1
li(u) + n

−1/2
l

nl∑
i=1

∫ τ

0

q
(2)
li (u, t)dMC

li (u)

+ h(t, z0)
TA−1(β0)

L∑
l=1

(η1,li + η2,li),

ζII2,li(β0, t) = h(t, z0)
TA−1(β0)

L∑
l=1

ηII3,li

+ {1−
∑
k

∆liI(εli = k)}
[ ∫ t

0

wCoxli (u)Y 1
li (u)eβ

T
0 Zli

dΛl10(u)

s
(0)
l (β0, u)

−
∫ t

0

q
(2)
li (u, t)dMC

li (u)
]
.

Following He et al. (2016),H(1)(t) = n
−1/2
l

∑nl

i=1 ζ1,li(β0, t) converges weakly to the Gaussian

processH(1)(t) on [0, τ ] whose mean is zero and covariance functions betweenH(1)(t) andH(1)(s)

is E{ζ1,li(β0, t)ζ1,li(β0, s)} for t, s ∈ [0, τ ].

15



Next we show the weak convergence of H(2) = n
−1/2
l

∑nl

i=1(1 − ξli/α̃l)ζ2,li(β0, t) to a zero-

mean Gaussian process. We have s(0)l (β0, u) is bounded away from 0 andh(t, z0), {1−
∑

k ∆liI(εli =

k)}, wCoxli (t)Y 1
li (t)e

βT
0 Zli , dΛl10(u) are bounded variations;A(β) is positive definite based on Con-

ditions 1 to 5. Hence, it follows from Lemma 1 that the finite dimensional distribution of H(2)(t)

is asymptotically same as that ofH(2)(t) for any finite number of time points. Combining these re-

sults,H(2)(t) converges weakly to the Gaussian processH(2)(t) whose mean is zero and covariance

functions betweenH(2)(t) andH(2)(s) is (1− α∗)/α∗E{ζII2,li(β0, t)ζ
II
2,li(β0, s)} for t, s ∈ [0, τ ].

We can show Cov{n−1/2l

∑nl

i=1 ζ1,li(β0, t), n
−1/2
l

∑nl

i=1(1 − ξli/α̃l)ζ
II
2,li(β0, t)} = 0 similarly

to the proof of independence of η1,li and (1 − ξli/αli)η3,li. Therefore, n−1/2l

∑nl

i=1 ζ1,li(β0, t) and

n
−1/2
l

∑nl

i=1(1 − ξli/α̃l)ζ2,li(β0, t) are independent. Thus, H(t; z0) = H(1)(t; z0) + H(2)(t; z0)

converges weakly to Gaussian processH(t) betweenH(t) andH(s) is E{ζ1,li(β0, t)ζ1,li(β0, s)}+

(1− α∗)/α∗E{ζ2,li(β0, t)ζ2,li(β0, s)} for t, s ∈ [0, τ ]. This completes the proof of Theorem 2.
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3 Appendix C: Asymptotic covariance matrix of the estimators

for case-cohort studies with ŵKM
l (t)

Let β̄I and β̄II be the estimators with ŵKMl (t) for a single and multiple case-cohort studies. Sim-

ilarly to the proof of Theorem 1, we can show for w = I, II , n−1/2(β̄w − β0) is asymptotically

normally distributed with mean zero and with covariance matrix Ā(β0)
−1Σ̄w(β0)Ā(β0)

−1, where

Ā(β0)
−1Σ̄w(β0)A(β0)

−1, where

Ā(β0) =
L∑
l=1

qlĀl(β0), Σ̄
w(β0) =

L∑
l=1

ql(V̄
0
l + V̄ w

l ),

V̄ 0
l = E{(η̄1,l1 + η̄2,l1)

⊗2}, V̄ w
l =

1− α∗l
α∗l

E{(η̄w3,l1)⊗2},

η̄1,li =

∫ τ

0

{Zli − ēl(β0, t)} ŵKMl (t)dM1
li(t), η̄2,li =

∫ τ

0

bl(t)

cl(t)
dMC

li (t),

η̄I3,li =

∫ τ

0

{1−∆liI(εli = 1)}ŵKMli (t)Y 1
li (t){Zli − ēl(β0, t)}dΛl10(t),

η̄II3,li =

∫ τ

0

{
1−

K∑
k=1

∆liI(εli = k)
}
ŵKMli (t)Y 1

li (t){Zli − ēl(β0, t)}dΛl10(t),

Āl(β0) =

∫ τ

0

v̄l(β0, t)s̄
(0)
l (β0, t)λl0(t)dt,

v̄l(β, t) = s̄
(2)
l (β, t)/s̄

(0)
l (β, t)− ēl(β, t)⊗2,

ēl(β, t) = s̄
(1)
l (β, t)/s̄

(0)
l (β, t),

s̄
(d)
l (β, t) = E[n−1l

nl∑
i=1

ŵKMl (t)Y 1
li (t)Z

⊗d
li e

βTZli ], d = 0, 1, 2,

bl(u) = lim
nl→∞

1

nl

nl∑
i=1

∫ τ

0

{Zli − ēl(β0, t)} ŵKMli (t)dM1
li(t)I(t ≥ u > Xli),

cl(u) = lim
nl→∞

1

nl

nl∑
i=1

I(Xli ≥ u).

The detailed proof can be obtained from the authors upon request.
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4 Appendix D: Technical Details of Efficiency Gain

We have

EG =
1− α∗l
α∗l

E(ηI3,l1)
⊗2 − 1− α∗l

α∗l
E(ηII3,l1)

⊗2

=
1− α∗l
α∗l

[
E{1−∆liI(εli = k)}2 − E{1−

K∑
k=1

∆liI(εli = k)}2
]

× E

[∫ τ

0

wCoxli (t)Y 1
li (t){Zli − el(β0, t)}dΛl10(t)−

∫ τ

0

q
(1)
li (t)dMC

li (t)

]⊗2

The matrixE[
∫ τ
0
wCoxli (t)Y 1

li (t){Zli−el(β0, t)}dΛl10(t)−
∫ τ
0
q
(1)
li (t)dMC

li (t)]⊗2 is positive definite

because of Conditions 1 and 2. Therefore, the asymptotic efficiency gain (EG) is associated with

(1−α∗l )/α∗l E{
∑K

k=2 ∆l1I(εl1 = k)} which is always positive when α∗l > 0. Asymptotic efficiency

gain is associated with smaller subcohort size and larger other causes rates.

5 Appendix E: Variance estimator for the cumulative incidence

function for a single case-cohort study

For a single case-cohort studies, by the functional delta method, n1/2
l [F̂l1(t|z0) − Fl1(t|z0)] con-

verges weakly to a Gaussian process with mean zero and asymptotic variance, which can be esti-

mated by nl
{

1− F̂l1(t|z0)
}2∑

i

{
ŴF,li(t|z0)

}2

, where

ŴF,li(t|z0) = exp{β̂TI z0}[Λ̂I
l10(t)Â(β̂I)

−1Û(β̂I)z0 + Ĥ(t; z0)],

Â(β̂I) =
L∑
l=1

nl
n

∫ τ

0

[Ŝ(2)
l (β̂I , t)

Ŝ
(0)
l (β̂I , t)

− Ŝ
(1)
l (β̂I , t)

Ŝ
(0)
l (β̂I , t)

⊗2]
Ŝ
(0)
l (β̂I , t)dΛ̂I

l0(t),

Ĥ(t; z0) = n
−1/2
l

nl∑
i=1

{ζ1,li(β̂I , t) + (1− ξli/αl)ζI2,li(β̂I , t)}.
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6 Appendix F: Additional simulation results

We conducted simulation study for non-stratified case-cohort data. We set values for ψ1 and γ1 to

1, which results in a special case of a Weibull mixture distribution. One covariate Z1i was gen-

erated from the Bernoulli distribution with Pr(Z1i = 1) = 0.5. Table 1 reports the average bias

of the estimates β̂I , and β̂II , the average of the estimated standard error (SE), empirical standard

deviation (SD), average of standardized bias (STB) defined as E{‖β̂ − β0‖/SE}, the empirical

coverage rate (%) with the nominal 95% confidence interval for various simulation settings. The

results are similar to Table 1 of the main paper: when the censoring distribution depends on co-

variates, the parameter estimates with the covariate-adjusted weight are approximately unbiased

while those with the covariate-unadjusted weight are biased; the estimated standard errors of the

covariate-adjusted estimators are close to the empirical standard deviations; The empirical cov-

erage rates for the covariate-adjusted estimators are between 94% and 96%. All sample relative

efficiencies of the covariate-adjusted estimators are greater than 1. This suggests β̂II using covari-

ate information on failures from cause 2 is more efficient than β̂I . The range of efficiency gain is

from 12% to 86%.

We also conducted simulations with censoring probabilities to nonparametrically estimate the

censoring survival function separately for each level of the covariate. Table 2 shows the simulation

results with covariate-level-specific Kaplan-Meier-estimate-based weight for both unstratified and

stratified models when the censoring time depends on covariates (scenario S2). The results are

very similar to those with covariate-adjusted weight we proposed.

We conducted simulations when strata for the censoring distribution were different from those

for the competing risks model. We considered stratified proportional subdistribution hazards model

and two strata with (ψ1, ψ2) = (1, 1) and (κ1, κ2) = (1, 2). One covariate Z was generated from

the Bernoulli distribution with Pr(Z1i = 1) = 0.4 in stratum 1 and Pr(Z1i = 1) = 0.6 in stratum

2. We set (β0, θ0) to (1,−1). We considered strata variables for censoring distribution, which
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are independent of and different from those for the competing risks model. More specifically, the

censoring time was generated from the stratified proportional hazards model with three different

constant baseline hazard (0.11, 0.13, 0.15), γ = 2.5, and ZC
li = Zli. In other words, the competing

risks model had two strata while the censoring outcome model had three strata. The sample size

of the full cohort was set to 1800 and two subcohort sizes were examined: 540 (α1 = α2 = 0.3)

and 900 (α1 = α2 = 0.5). For each configuration, 2000 iterations were conducted. We estimated

the parameter for the censoring distribution and all censoring-related terms by fitting the stratified

proportional hazards model with three strata. Then, we plugged them into the asymptotic variance

formula in Theorem 1 to obtain the standard error for β̂. Table 3 reports the average bias of the

estimates β̂I and β̂II , the average of the estimated standard error (SE), empirical standard deviation

(SD), the empirical coverage rate (%) with the nominal 95% confidence interval (CR). The results

show all estimates are approximately unbiased and the average of the estimated standard errors for

both proposed estimators are close to their empirical standard deviations. All empirical coverage

rates are close to 95%.

Table 3: Simulation results
α bias SD SE CR SRE

0.3 β̂I 0.001 0.146 0.141 0.94 1.00
β̂II 0.001 0.126 0.126 0.95 1.36

0.5 β̂I 0.000 0.129 0.126 0.95 1.00
β̂II 0.000 0.119 0.119 0.95 1.16

SE, the average of the estimates of standard error; SD, sample standard deviation; CR, the
empirical coverage rate of the nominal 95% confidence intervals; SRE, sample relative efficiency.

To examine the robustness of the proposed method against misspecified models for censoring,

we conducted simulations when the censoring distribution follows an additive hazards model. The

stratified additive hazards model for Cli given ZC
li was

λAli(t|ZC
li ) = λA0l(t) + µ0Z

C
li ,
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where λA0l(t) is a baseline hazard function for stratum l and µ0 is an unknown regression param-

eter. We considered the stratified proportional subdistribution hazards model and two strata with

(ψ1, ψ2) = (1, 1) and (κ1, κ2) = (1, 2). One covariate Z was generated from the Bernoulli dis-

tribution with Pr(Z1i = 1) = 0.4 in stratum 1 and Pr(Z1i = 1) = 0.6 in stratum 2. We set

(β0, θ0) to (1,−1). The censoring time was generated from the stratified additive hazards model

with two different constant baseline hazard (λA01, λ
A
02) = (0.5, 1), µ0 = 0.3, and ZC

li = Zli. We

set the failure rate for cause 1, cause 2, and censoring to (20%, 30%, 50%). The sample size of

the full cohort was set to 1000 and two subcohort sizes were examined: 200 (α1 = α2 = 0.2)

and 400 (α1 = α2 = 0.4). For each configuration, 2000 iterations were conducted. We estimated

the parameter for the censoring distribution and all censoring-related terms by fitting the stratified

proportional hazards model with two strata. Then, we plugged them into the asymptotic variance

formula of Theorem 1 to obtain the standard error for β̂. Table 4 reports the average bias of the

estimates β̂I and β̂II , the average of the estimated standard error (SE), empirical standard deviation

(SD), the empirical coverage rate (%) with the nominal 95% confidence interval (CR). The results

show all estimates are approximately unbiased and the average of the estimated standard errors for

both proposed estimators are close to their empirical standard deviations. All empirical coverage

rates are close to 95%. This small simulation study suggests the robustness of the proposed method

against model misspecification for censoring.

Table 4: Simulation results for censoring time based on additive hazards model
α bias SD SE CR SRE

0.2 β̂I 0.010 0.224 0.213 0.94 1.00
β̂II 0.012 0.184 0.181 0.95 1.49

0.4 β̂I 0.004 0.185 0.179 0.94 1.00
β̂II 0.005 0.169 0.165 0.94 1.20

SE, the average of the estimates of standard error; SD, empirical standard deviation; CR, the
empirical coverage rate of the nominal 95% confidence intervals; SRE, sample relative efficiency.
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7 Appendix G: Data analysis result for cause-specific hazard

model

We fitted the cause-specific hazard models for the two example data: the bone marrow transplant

data and the ARIC study data (Prentice et al., 1978). Table 5 reports the regression parameter

estimates, their standard errors, and their p-values for the full cohort, a single case-cohort, and two

case-cohort studies for the bone marrow transplant study. Table 6 presents the regression parameter

estimates, their standard errors, and their p-values for the ARIC data.
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Table 6: Analysis of the ARIC study fitting cause-specific model
Variables Category β̂ SE p-values
high-sensitivity C-reactive protein Middle 0.254 0.174 0.145
(ref = Low) High 0.503 0.171 0.003
Systolic blood pressure 0.267 0.074 0.001
LDL cholesterol 0.257 0.065 < .001
HDL cholesterol -0.406 0.093 < .001
Diabetes (ref = No) 0.651 0.169 < .001
Smoking status (ref = No) 0.380 0.156 0.015

SE, standard error estimate; LDL, low density lipoprotein; HDL, high density lipoprotein; Low
high-sensitivity C-reactive protein group, group without diabetes, and non-smoking group are
reference groups; ref, reference group. The coefficients for the reference groups were set to 0 and
therefore they were omitted from the table.
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