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ABSTRACT. The case-cohort study design is widely used to reduce cost when
collecting expensive covariates in large cohort studies with survival or competing
risks outcomes. A case-cohort study data set consists of two parts: i) a random
sample; and ii) all cases or failures from a specific cause of interest. Clinicians
often assess covariate effects on competing risks outcomes. The proportional sub-
distribution hazards model of Fine and Gray (1999) directly evaluates the effect
of a covariate on the cumulative incidence function. They studied the asymp-
totic distribution of the estimators under the non-covariate-dependent censoring
assumption for the full cohort study. However, the non-covariate-dependent cen-
soring assumption is often violated in many biomedical studies. In this paper,
we propose a proportional subdistribution hazards model for case-cohort stud-
ies with stratified data with covariate-adjusted censoring weight. We further
propose an efficient estimator when extra information from the other causes is
available under case-cohort studies. The proposed estimators are shown to be
consistent and asymptotically normal. Simulation studies show (i) the proposed
estimator is unbiased when the censoring distribution depends on covariates; and
(ii) the proposed efficient estimator gains estimation efficiency when using extra
information from the other causes. We analyze a bone marrow transplant data

set and a coronary heart disease data set using the proposed method.
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1 Introduction

In large observational studies, collecting exposure information from all subjects over a long
study period may be costly. The majority of cost and effort mainly involve measuring and
assembling expensive exposure information. The case-cohort design is widely used to handle
such difficulties by reducing cost while accomplishing the same goal of large observational
studies (Prentice, 1986).

The extensive work has been done for analyzing case-cohort data with survival outcomes.
For a univariate failure time, a pseudo-likelihood approach was proposed by Prentice (1986)
and Self and Prentice (1988). In order to improve efficiency, Barlow (1994) and Kulich and
Lin (2004) proposed a robust estimator using a time-varying weight and a class of weighted
estimating functions using all available information, respectively. When there are several
diseases of interest, one often studies them using the same subcohort under multiple case-
cohort studies. For such multiple case-cohort studies, Kang and Cai (2009) developed a joint
model with multivariate failure time. However, they did not use extra information from the
other diseases when estimating the effect of risk factors for a disease of interest. Kim et al.
(2013) proposed a more efficient estimation method with a new weight to make full use of
information from the other diseases.

Borgan et al. (2000), Samuelsen et al. (2007), Breslow and Wellner (2007), and Kim
et al. (2018) considered a stratified case-cohort design by selecting the subcohort based
on stratified sampling to increase estimation efficiency. The stratified case-cohort design
assumes the common baseline hazard function for all strata.

The case-cohort design is often used to study competing risks data in which only one
occurrence of failure from one cause can be observed because it hinders the occurrence
of failure from the other causes. The censoring distribution often depends on covariates
under such design. For example, the Atherosclerosis Risk in Communities (ARIC) study
investigated the effect of high-sensitivity C-reactive protein (hs-CRP) on coronary heart
disease (CHD) (Ballantyne et al., 2004). The case-cohort design was used to reduce the cost
of obtaining hs-CRP from the subjects. The subcohort was selected using stratified sampling
based on age, gender, and race. Death prior to CHD was a competing risk for CHD. As shown
in Section 6, several covariates were associated with the censoring distribution based on the
proportional hazards model.

For such competing risks data, a direct evaluation of covariates on the cumulative in-

cidence function of a given cause is often of clinical interest (Saber et al., 2015). There is
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rich literature on such modeling for the full cohort study. Fine and Gray (1999) proposed
a proportional subdistribution hazards model that directly assesses the effect of covariates
on the cumulative incidence function. The proportional subdistribution hazards assumption
often does not hold for certain covariates. Ignoring nonproportional hazards structure in
data analysis could lead to biased parameter estimation. To address such aspect, Zhou et al.
(2011) extended Fine and Gray (1999) to a stratified proportional subdistribution hazards
model by allowing different baseline hazard functions for different strata. However, Fine
and Gray (1999) and Zhou et al. (2011) did not study the asymptotics of the estimators
under the covariate-dependent censoring. Scheike et al. (2008) proposed a direct binomial
modeling based on the inverse probability weighting technique. He et al. (2016) proposed a
proportional subdistribution hazards model with covariate-adjusted censoring weight. They
estimated the censoring probability given covariates based on the proportional hazards model
(Cox, 1972) and the Breslow estimator (Breslow, 1972) and used it for the weight function
in the estimating equation. Mao and Lin (2017) proposed semiparametric transformation
models for the cumulative incidence of competing risks based on the non-parametric max-
imum likelihood estimation. On the other hand, there is limited literature on competing
risks modeling under the case-cohort design. Sorensen and Andersen (2000) studied the
cause-specific hazards model under a single case-cohort study. However, the cause-specific
hazards model method does not explain a direct relationship between the estimated covari-
ate effects and the cumulative incidence of a given cause. In addition, they did not address
the case-cohort design with the nonproportional hazard structure. Pintilie et al. (2010)
considered a pseudo-likelihood approach based on Fine and Gray (1999) to accommodate a
single case-cohort study. However, they assumed covariate-independent censoring and did
not establish the theoretical properties of the estimators. To the best of our knowledge,
there is no methodology that models a direct relationship between covariates and the cu-
mulative incidence and allows covariate-dependent censoring for case-cohort data with the
nonproportional subdistribution hazard structure.

Motivated by Zhou et al. (2011) and He et al. (2016), we propose a stratified subdistri-
bution hazards model under the case-cohort design with stratified sampling so that it can be
used even when the proportional hazards assumption does not hold for some covariates. In
addition, the proposed model allows covariate-dependent censoring. When multiple causes
are of interest, multiple case-cohort studies may be conducted. Under multiple case-cohort

studies, expensive covariate information from the other causes is also available. By incorpo-



rating such extra information into estimation, we propose a more efficient estimator. Sections
2 to 4 include the proposed method, the asymptotic properties of the proposed estimators,
and the estimation of the cumulative incidence function. Simulation studies are conducted
in Section 5. We apply the proposed method for a bone marrow transplant data set and
the Atherosclerosis Risk in Communities study data set in Section 6. A brief conclusion is

provided in Section 7.

2 Model and Estimation

2.1 Model definitions and assumptions

Suppose the full cohort consists of n subjects with K causes of failure € € {1, ..., K}, where
€ denotes a cause of failure. We assume the primary cause of interest is e = 1. Let T', C', and
Z = (Zy,...,7Z,)" be the failure time, the censoring time, and a p x 1 vector of covariates,
respectively, where Z consists of time-dependent external covariates which are not affected
by the causes of failure process (Kalbfleisch and Prentice, 2002). Hereafter we suppress its
dependence on time for simplicity. We assume the (7 €)’s are independent of the C’s given
Z. For right censored data, let X = T'AC and A = I(T' < C) denote the observed time and
the failure indicator, respectively, where I(+) is an indicator function and a A b = min(a, b).
Assume we observe stratified data (Xy;, Ay, A€y, Zy;) for subject @ in stratum [, 7 = 1,... n,
l=1,...,L, and ZZL:I n; = n. The number of strata L is finite. Non-stratified data can be
handled as a special case of stratified data with L = 1. We assume subjects within-strata
are independent and identically distributed and subjects between strata are independent.
The study period is [0, 7]. Our primary interest is evaluating the effect of covariates on the
cumulative incidence function of cause 1, Fy;(t|Z;;), where Fy(t|Zy;) = P(T;; < t,e; = 1|Zy;).

A proportional subdistribution hazards model for cause 1 given Z;; is

Mi(t| Zi) = Ao(t) exp(Bg Zu), (1)

where Ayjo(t) is an unspecified baseline subdistribution hazard function in stratum [ and 3
is a p-dimensional parameter vector of interest (Zhou et al., 2011). Thus, the proposed model
allows different baseline subdistribution hazard functions for different strata and assume all
strata have the same covariate effect B,. A direct relationship between the subdistribution

hazard function and the cumulative incidence function is Fy(t|Zy;) = 1 — exp{—Ay(u|Zy;)},

where Ay (t|Zy;) = fot Au(u|Zy;)du.



In many biomedical studies, the censoring time C' may depend on the covariate vector
Z. In such case, we consider the proportional hazards model for the censoring distribution:
M (ZE) = Xo(t) exp(vd ZE), where Z§ is the covariate which is associated with the cen-
soring distribution and can be a subset of Z;, A\{(t) is an unspecified baseline censoring
hazard function, and - is an unknown parameter vector. Let Y,{'(t) = I(Xy; > t) and
NS(t) = I[(Xy; < t,A; = 0) denote at-risk indicator and counting process for the censoring

time of subject ¢ in stratum [, respectively.

2.2 Estimation under a single case-cohort study

Suppose we randomly select a subcohort with fixed size n; from stratum [ of the full cohort.
Let &;; denote an indicator for the subcohort membership, i.e. &; = 1 if subject 7 in stratum
[ is selected into the subcohort; otherwise 0. Let oy = Pr(§; = 1) = ny/n; denote the
probability of selecting subject 7 in stratum [ for the subcohort. Under the case-cohort design,
expensive covariate information Z;; is available for subcohort members and subjects that have
failures from cause 1 outside the subcohort. Thus, we have records on (X, Ay, A€, §1iy Z1i)
when &; = 1 or Ayl(e; = 1) = 1; and (X, Ay, A€, &i) when &; = 0 and ApI(e; = 1) = 0.
We call this design as a single case-cohort study.

Zhou et al. (2011) extended the subdistribution hazards model of Fine and Gray (1999)
to right-censored stratified competing risks data. They assumed the Cj;’s have a common
censoring distribution G;(t) within stratum [ to study the asymptotics of the estimators.
Denote Gi(t) as the Kaplan-Meier estimator of G(t) in stratum [. Let N}(t) = I(T}; <
t,e; = 1) and Y} (t) = 1 — Ni(t7) denote the underlying counting process and risk process,
respectively. Zhou et al. (2011) proposed the following weighted score equation to estimate
Bo for the full cohort study:

L n

v =YY [ (20 B0} Al waNi(w) =0, )

=1 i=1

where E;(8,1) = §{"(8,0)/5"(8,1), S{”(8,1) = n;* 1, M (Y1 (1) Z 6P for d =
0,1,2, a®° = 1,a®' = a,a®? = aa”, and GFM(t) = 1(Cy; > Ty AN1)Gy(t)/Gy( Xy A t). We
denote the estimator of By obtained by solving (2) as Br. The weighted score equation (2)
is reduced to the estimating equation of Fine and Gray (1999) when L = 1.

Under a single case-cohort design, covariate information is not available for subjects



without failure from cause 1 and outside the subcohort. Thus, we use an inverse probability
weighting scheme to account for it. We propose the following weight function for a single

case-cohort study with competing risks data:
pii = Ayl (e = 1) + {1 — Ayl (e, = 1) }&ua;

where oy = > 00 &i{l — Apl(e; = 1)}/ >0 {1 — Ayl(e; = 1)} is an estimator of the true
subcohort selection probability a; in stratum [, that is, the proportion of sampled subjects
that do not have failure from cause 1 in stratum [. We have p; = 1 for subjects who
experienced a failure from cause 1 regardless of their subcohort membership and p; = Z)Zl_l
for subjects without a failure from cause 1 in the subcohort. This type of weight function
was used for survival outcomes under a single case-cohort study (Kalbfleisch and Lawless,
1988).

When the censoring distribution depends on covariates, as in He et al. (2016) we propose
to use covariate-adjusted weight function w$°*(t) = I(Cy; > Ty A t)Gi(H25) /G (X A tz5).
Following He et al. (2016), we assume the C};’s in stratum [ follow the proportional hazards
model: G(t|z5) = P(Cy > t|Z5 = 25) = exp{—A§(t)exp(r{25)}. Because a single
case-cohort study consists of the subcohort and all cases with cause 1, not all censored
observations have expensive covariate information. In other words, when we treat censoring
as an event, expensive covariate information is available for a subset of subjects with censoring
and subjects without censoring. Therefore, to estimate censoring survival probabilities given
covariates, we propose to use a weighted estimating equation approach for generalized case-
cohort data that allows a fraction of cases (Kim et al., 2018). Thus, we can estimate the
censoring survival probability G;(t|z5) by él(t|zl€) = exp{—/A\l%(t) exp(7725)}, where 5
is the estimator of =y obtained by the proportional hazards model for generalized case-
cohort data (Kim et al., 2018) and A% (t) = fot S pudNE (u)/ Z;:l piY)S (u) exp{7T 2}
is a weighted Breslow-Aalen-type estimator for the cumulative baseline censoring hazard

AG(8) = [i AG(u)du. We denote @7 (t) = I(Ci; > Tis A )Gi(t]25)/Gi( X A t|25).
Using weight function p;; and covariate-adjusted censoring weighting w(°%(t), we pro-
pose the following pseudo-log-likelihood score equation for a single case-cohort study with

competing risks data under model (1):

o =3% / (Zi — By(B.w)} 057 (w) AN} () = O, (3)

=1 =1



where Bi(8,t) = §{(8,)/5,”(8,1) and §”(8,1) = n;" Y7L, o (1) Y1 (1) 257 P 2
for d =0, 1,2. Denote 3; as the solution to equation (3).
To estimate the baseline cumulative subdistribution hazard ]\\{ZO(BI,t), we propose a

Breslow-Aalen-type estimator as follows:

t /\Co:v 1
1lO ﬁb Z/ wlz lez( ) (4)

For covariate-independent censoring, we can estimate regression coefficients and the baseline

cumulative subdistribution hazard function by replacing @05°*(u) with @5 (u) in (3) and

(4).

2.3 Efficient estimation under multiple case-cohort studies

When there are multiple causes of interest, several case-cohort studies can be conducted
by using the same subcohort (Langholz and Thomas, 1990; Wacholder et al., 1991). Under
multiple case-cohort studies, covariate information is available for the following two groups
of subjects: (i) a randomly selected subcohort from the full cohort; (ii) all cases from any
causes outside the subcohort. Thus, the information available under multiple-case cohort
studies is (X, A, A€, &y Zy) when & = 1 or Apl(ey; = k) =1 for k=1,...,K; and
(X, Au, A€, &) when §; = 0 and Ayl(e; =k)=0fork=1,... K.

Under multiple case-cohort studies, Kim et al. (2013) proposed an efficient estimation
approach for multivariate survival outcomes by using the collected information on subjects
who have other diseases outside the subcohort. By incorporating the extra information
into estimation, they showed their method improved estimation efficiency compared to the
method ignoring the extra information. Motivated by Kim et al. (2013), we propose the
following efficient weight function 7; for multiple case-cohort studies with competing risks
data:

K K
Ty = Z Apl(a; =k) +{1 - Z Ayl (e = k>}fliafl’
k=1 k=1

=y it &i{l — Zszl Ayl(e; =k)}/ >0 {1 — Zszl AyI(e; = k)} is the proportion of
sampled subjects who do not have cases from any causes in stratum [. Thus, we have m; = 1
when AyI(e = k) = 1 for some k and m; = a; ' when &; = 1 and AyI(e; = k) = 0 for all



k=1,...,Kandl=1,..., L. The weight function m; takes cases from the other causes into
consideration so that our proposed estimator can use the extra information on cases from
the other causes k = 2,..., K. Thus, we propose the following pseudo-log-likelihood score

equation for model (1):

ZZ/ {Z; — E\(8, w) } " (u)dN(u) = 0, (5)

=1 =1

where Ey(8,t) = §(8,)/5”(8,1), §V(8,) = n ' 1L, miGet (1) Vi () Z71eP" % for
d=0,1,2. For wGo*(t) = I(Cy; > Th/\t)él(ﬂzg)/Gl(Xlz/\t|zh) Gl(t|zl€) can be obtained us-
ing Kim et al. (2018) for multiple case-cohort studies and A fo M madNE (u)/ Z; 1 Tl
Y% (u) exp{7T 25} similarly to Section 2.2. Let B denote the solution to equation (5).

For multiple case-cohort studies, we propose the following Breslow-Aalen-type estimator

for the baseline cumulative hazard function:

t "’Cox 1
A wlz lez )
B =03 [ ©)
nl Z /6117 )

For covariate-independent censoring, we can estimate regression coefficients and the baseline

cumulative subdistribution hazard function by replacing w5°*(u) with @5 (u) in (5) and

(6).

3 Asymptotic properties

3.1 Asymptotic properties of proposed estimators

In this section, we study the asymptotic properties of the proposed estimators ,@1 and
Bi1. Define MLt ) N (1) fo Y, (u)dAy(u) and the martingale for the censoring pro-
cess My (t) = Nj; (t fo Vi (u)dAf (w).

We make the followmg assumptions:

C1 For alll, [ Au(t)dt < oo and P{Y;}(¢) =1} > 0 and [ A{,(t)dt < co and P{Y,{(t) =
1} >0forte0,7],i=1,...,n.

C2 [Z;;(0)] —|—fOT |dZ;(t)| < D, <ool=1,...,Li=1,....,n,j=1,...,p, almost surely

and D, is a constant.



C3 For d = 0,1,2, there exists a nelghborhood B of ﬁo such that 31 (ﬁ t) are con-
tinuous functions and supc( - ges HS '(B,t) — sl (ﬁ )| & 0 where sl NB,t) =
E[Sl(d)(,@,t)] and there exists a neighborhood R of «y such that s(c)l('y,t) are con-

tinuous functions and sup;ep - yer ||S(Cflg('y, t) — 301(7, t)]| & 0, where Scz('?’v t) =
— n d
L Y2 and s)v,6) = BISE(9,0)]

C4 For all B € B where B is a neighborhood of By, t € [0,7], and | € {1,...,L}, we
have sV (3,t) = 0s\”(8,1)/08, and s\ (8,t) = 0%s\”(B,1)/0B0BT, where s\ (8, 1),
d=0,1,2 are continuous functions of 8 € B uniformly in ¢ € [0, 7] and are bounded
on Bx[0,7]. s l ) is bounded away from zero on B x [0,7]. For all v € R where R is a
neighborhood of 7y, t € [0,7], and [ € {1,..., L}, we have s(é)l('y,t) = 83(697)1(7,75)/87,

and sg)l('y,t) = 82sg)l(7,t)/0787T, where sg)l('y,t), d = 0,1,2 are continuous func-

tions of 4 € R uniformly in ¢ € [0, 7] and are bounded on R x [0, 7]. S(C)l is bounded

away from zero on R x [0, 7].

C5 The matrix A;(By) = [, v 60, 31 (60, t)Auo(t)dt is positive definite for [ = 1,..., L,

where vy(8,1) = s2(8,1) /5" (8. 1) — e)(B,1)%* with e,(8,1) = s\"(8,1)/s” (8, 1);
The matrix Ac,(v0) = [ ve(Yo, t)sé?l (70, t)AG(t)dt is positive definite for | = 1, ..., L,

0
where vey(7,1) = 89 (7, 1) /sSh (v, 1) —ecu(, 1) 2 with ecu(v, 1) = 8837, £) /50y (7, 1)

C6 lim,, o 7;/ny = o, where « is a positive constant for [ =1,..., L.
C7 lim,_, n;/n = q, where ¢ is a positive constant for [ = 1,..., L.

We have the following theorem on BI and BI I
Theorem 1. Under assumptions C1 — C7, for w = 1,11, Bw converges in probability

to By and n1/2(3w — Bo) converges in distribution to a zero-mean normal distribution with



covariance matriz A(By) '3 (Bo) A(By) ", where

L L
0) = > aAi(Bo), =" (Bo) = > a(V}" + V"),
=1 =1
1—af

V' = E{(mun +mn)®}, V= E{(n5n)*"},

M = / (2 — e, )} Wl (E)AMA(E), 7oy = / a) (t)dME (),

0

M = / (1 (e = D [0 (0% (0){Zs — ex(Bo. )} dAuo(t) — @ (M),

l

nih = / =Y Al = B [ OV {2~ edBo. ) dAnolt) — ail (M (1)]

k sc) (o, u)
hC’(ta u, ZC) = eﬂYTZC/ {ZC - (C(;’)l—}dAg(U)a
501(70, u)

o Zi; [(u <t)
W) = — 1 § ( 7 — Cor (¢ 6 dM
q;; ( ) nll_fgo i /ng{ 1j 61 507 }w Sg)l(%’ ) z]( )

+ ZZ/ {Z); — e(Bo. t) ywi, ™ (Y hE(t, Xy, Z5) A 2 — ecu(vo, u) JdM, (¢ }

hl]l Xij

Ac = Z QZA(J,J(’YO)-

=1

The matrix 3*(3,) for w = I, IT consists of two parts. The first part V;° is the contribution
from the full cohort and the second part V;" is due to sampling the subcohort. When we
select all subjects for the subcohort (i.e. af = 1), the second variance term vanishes. The
asymptotics of the estimators with @5 (u) can be shown similarly to Theorem 1 and thus

KM () for a

its proof is omitted. The asymptotic covariance matrices of the estimators with w
single and multiple case-cohort studies are provided in the Appendix C of the Supplementary
Materials.

Remark. We considered the same strata for event from cause 1 and censoring times for
mathematical simplicity in Theorem 1. This avoids the abuse of complicated notations and

subscripts. However, one can show the asymptotic results of Theorem 1 even when strata are
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different between the model for cause 1 and the model for censoring using similar arguments
to the proof of Theorem 1 after redefining all notations that allow different strata between
the model for cause 1 and the model for censoring. When strata for event from cause 1
and censoring times are different, one can do the following to obtain parameter estimates
and their standard errors: i) fit the stratified proportional hazards model for censoring us-
ing strata for censoring and estimate a censoring survival probability for each subject based

on the fitted model; i) plug the estimated censoring survival probability corresponding to

subject i in stratum 1 to estimate wS°(t), where | = 1,..., L are strata for the model for
cause 1; iii) estimate B using the estimated wG°*(t); ) similarly to estimating wg°*(t),

estimate M (t), ql(il)(u), Mt Mai, and M3y by plugging the estimated B and wS°*(t) into the

expressions in Theorem 1; and v) obtain the standard error using the asymptotic formula
of Theorem 1. In short, one can fit the stratified proportional hazards model using strata
for censoring, estimate all censoring-related terms for each subject, and plug them into the
asymptotic formula of Theorem 1. We conducted a simulation study with different strata
between the model for cause 1 and the model for censoring in the Appendixz F of the Supple-
mentary Materials. Table 3 of the Appendiz F of the Supplementary Materials shows little
bias and empirical coverage rates close to 95%.
We have the following theorem on the cumulative hazard function:

Theorem 2. Under assumptions C1 - C7, K"flo(t; zo) is a consistent estimator for Ayo(t; zo)
fort €[0,7] and nll/Q{//izl"m(t; zo) — Auo(t; 20)} converges weakly to the Gaussian process with
mean zero and the following covariance matriz between H™(t) and H™(s) for w = 1,11,

where

L O e (Bo, 1) (Bos )},

*
o7

E{C1,11(Bo, )¢111(Bo, 8)} +

fort,s € [0,7]. The explicit forms of (1 (8o, t) and (5°;(Bo, ) are provided in the Appendix.
The details of the proofs for Theorem 1 and Theorem 2 are provided in the Appendix A and
B of the Supplementary Materials, respectively.

3.2 Efficiency gain

We compare the asymptotic variances of B[ and [/3\11 and evaluate asymptotic efficiency

gain in this section. Theorem 1 shows the sandwich covariance matrices of 3; and 3;;
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depend on the first derivative of the weighted estimating function, A(Bp), and the asymp-
totic variance of the weighted estimating functions, 3/(3y) and X4(8;). Since A;(By) =
N fvl(ﬁo,t)sl(o)(,@o,t))\lo(t)dt is independent of the weight functions, the difference in the
asymptotic variances of B; and B;; comes from X!(3;) and X1(3;). By Theorem 1, the
difference between 3'(8) and X''(8y) is due to the difference between E{(nj5,)*?} and
E{(ni1,)?2}. Define EG — (1 — af)/af[B{(m)?*} — E{(ni})®*}]. As explained in the
Appendix D of the Supplementary Materials, the asymptotic efficiency gain gets bigger as
(1 —a)/a;B{> 8, Anl(ey = k)} becomes larger. Thus, the asymptotic efficiency gain
is positively associated with smaller subcohort selection probability and larger other cause
rates. More specifically, for fixed a*, more extra information collected on subjects with the
other causes leads to efficiency gain. When event rates from the other causes are fixed, a
smaller subcohort selection probability induces a larger ratio of case to control. As a result,

it increases efficiency gain.

4 Predicting Cumulative incidence

In this section, we estimate the cumulative incidence at time ¢ for an individual with co-
variate vector Z = z; under the case-cohort design. We can estimate the cumulative sub-
distribution hazard by A (t; z) = [ exp{ B zo}dAL,(u) under a single case-cohort study
and A (t; z) fo exp{ﬁnzo}d/\”o( ) under multiple case-cohort studies. By Theorem 2,
1/2{/\110(25, z0) — A1o(t; 29) } converges weakly to a Gaussian process on [0, 7] for w = I, I1.
The cumulative incidence function for a single case-cohort study (w = I) and multiple

case-cohort studies (w = I1) can be estimated as follows:
A~ t A A~ ~~
Fu(tlzg) =1— exp{ — / exp(ﬂgzo)d/\’l‘]lo(,@w,u)}.
0

For multiple case-cohort studies, by the functional delta method, nll/ *[Fi(t|z0) — Fiu (t]20)]

converges weakly to a Gaussian process with mean zero and asymptotic variance, which can
~ 2 —~ 2
be consistently estimated by nl{l — Fll(t|z0)} > {WF’li(t]zo)} , where
WFlz(t|Z0) = exp{ﬁnzo}[/\uo( ) (Br) U (Brr)zo + H(t; 20)],

L a5 ®2
ny ,311 Sz (/Bffat) a0) 3 AT
:BH - = = S (/Bllvt>dA (t)7
Z n ﬁ 1t Sl(o) (511, t) ] l 10

12



H(t; z0) = n, ' Z{gl,li(ﬁllv t)+ (1 - §li/al)<21,lzi</§11, t)}
i=1

The asymptotics of ﬁll(t|z0) for a single case-cohort study can be similarly established.
Its detailed variance formula can be found and in the Appendix E of the Supplementary

Materials.

5 Simulation

We conducted a simulation study to evaluate the performance of the proposed estimators
B\I and BH for two case-cohort studies with stratified sampling. We considered two causes.
The cumulative incidence function for cause 1 and cause 2 given Zj; in stratum [ had the

following form:

Fll(t‘Zli) = 1- {1 —q+ qe—wzt”l }exp(ﬁZu) 7
Fo(tlZ;) = {1- q}exl’(ﬁzli) {1 _ e*texp(OZli)} 7

where F;(t|Z;;) is a Weibull mixture with mass 1 — ¢ at oo when Z;; = 0 and uses the pro-
portional subdistribution hazards model to obtain the subdistribution for nonzero covariate
values. Two parameters ¢; and k; allow to generate stratified data.

We considered two strata with (11,1)7 = (1,1)7 and (k1, k2)” = (1,2)7. One covariate
Z was considered. Covariate Zy; in stratum 1 and Zy; in stratum 2 were generated from
the Bernoulli distribution with Pr(Z;; = 1) = 0.4 and Pr(Zy;; = 1) = 0.6, respectively.
We set (8o, 00)T to (1, —1)T. We generated censoring time from the following two scenarios:
S1) the uniform distribution; and S2) the proportional hazards model with the constant
baseline hazard rate, v = 2.53, and ZF = Z;;. We set the failure rate for cause 1 to 20%. We
considered 20% and 40% of failure rates for cause 2. The sample size of the full cohort in each
stratum was set to 1000. Two subcohort sizes were examined: 100 (a3 = ay = 0.1) and 200
(o = ag = 0.2) in each stratum. For each configuration, 2000 iterations were conducted. For
each simulation study, we compared the performance of using covariate-unadjusted weight
and covariate-adjusted weight.

Table 1 reports the average bias of the estimates B  and B 11, the average of the estimated

standard error (SE), empirical standard deviation (SD), average of standardized bias (STB)
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defined as E{|| B— Bol|/SE}, the empirical coverage rate (%) with the nominal 95% confi-
dence interval for various simulation settings. The simulation results show all estimators are
approximately unbiased when the censoring time does not depend on covariates (scenario
S1). The average of the estimated standard errors for both proposed estimators B\I and
E 11 are close to their empirical standard deviations, which indicates the proposed estimated
standard errors provide a consistent estimate of the true variability of 3 7 and 3 11 regardless
of censoring weights.

When the censoring time depends on covariates (scenario S2), the covariate-unadjusted
estimators are significantly biased while the covariate-adjusted estimators are approximately
unbiased for both B ; and B 11- Moreover, the empirical coverage rates for the majority of the
covariate-unadjusted estimators are not close to 95%. As the censoring rate becomes smaller
and the subcohort selection probability gets larger, the average of estimated standard error
is decreased. The empirical coverage rates for the covariate-adjusted estimators are between
94% and 96%. Because the censoring time depends on binary covariates, one can nonpara-
metrically estimate the censoring survival function separately for each level of the covariate
as suggested in Fine and Gray (1999). The results with this nonparametric covariate-level-
specific weight are similar to those with the covariate-adjusted weight in Table 1. These
results are provided in Table 2 of the Appendix F of the Supplementary Materials.

In both scenarios S1 and S2, all sample relative efficiency (SRE) values, defined as the
empirical standard deviation for B 1 divided by that for 31 1, are larger than 1. This indicates
E 11 using extra information on covariates collected from subjects with failure from cause 2 is
more efficient than //8\1 ignoring such extra covariate information. The efficiency gain ranges
between 14% and 91%. The efficiency gain is larger as subcohort sizes get smaller and failure
rates for cause 2 become larger as discussed in Section 3.2.

We also conducted a simulation study for non-stratified case-cohort data. The results
were similar to Table 1 and are provided in Table 1 of the Appendix F of the Supplementary
Materials. To examine the robustness of using the proportional hazards model for censoring,
we conducted a small simulation study, where we generated censoring times from an addi-
tive hazards model, but used the proportional hazards model to model censoring. Detailed
simulation settings can be found in the Appendix F of the Supplementary Materials. As in
Table 4 of the Appendix F of the Supplementary Materials, the proposed method showed
robustness against model misspecification including approximately unbiased estimates and

empirical coverage rates close to 95%. A similar robust result against model misspecification
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for censoring was observed in He et al. (2016) for the full cohort study.

6 Data analysis

We applied the proposed methods to a real bone marrow transplant study data set and the
Atherosclerosis Risk in Communities study data set (Ghosh et al., 2016; Ballantyne et al.,
2004). The former data set had two competing risks outcomes: relapse/progression and non-
relapse mortality. Because the bone marrow transplant data set was not case-cohort data, we
used it to generate non-stratified case-cohort data consisting of the subcohort and all failures
from relapse and non-relapse mortality. We used these data to compare the performance of
BI and BH-

The Atherosclerosis Risk in Communities study conducted a single case-cohort study
with stratified sampling for two competing risks: coronary heart disease (CHD) and death
prior to CHD. This case-cohort data set consisted of the subcohort and all cases with CHD.
The subcohort included subjects who experienced death prior to CHD. Thus, we estimated
B] only for this data set.

6.1 Example 1: Non-stratified data under two case-cohort studies

We applied the proposed methods to a bone marrow transplant study data set collected by
the Center for International Blood and Marrow Transplant Research (Ghosh et al., 2016).
After excluding missing covariates, the full cohort consisted of 902 patients aged 18 years or
older with Hodgkin lymphoma and aggressive non-Hodgkin lymphoma undergoing their first
reduced-intensity or nonmyeloablative conditioning allogeneic hematopoietic cell transplanta-
tion between 2008 and 2013. Non-relapse mortality was an outcome of interest. Non-relapse
mortality is defined as death without evidence of lymphoma relapse or progression. Thus,
relapse or progression is a competing risk for non-relapse mortality. The number of subjects
who had non-relapse mortality, relapse/progression, and censoring in the full cohort were
114 (13%), 344 (38%), and 444 (49%), respectively.

To compare the performance of B 7 and ,@ 11 for case-cohort studies, we generated a data set
for two case-cohort studies for non-relapse mortality and relapse/progression. The shared
subcohort was selected from the full cohort using simple random sampling with selection

probability 0.4. The subcohort size was 361 including 170 failure-free patients, 44 patients

15



with non-relapse mortality, and 147 patients with relapse or progression. Thus, the data
set consisted of the shared subcohort and all cases with relapse/progression and non-relapse
mortality. To obtain ,@1, we used the shared subcohort and all patients who experienced
non-relapse mortality only. For obtaining ﬁ[ 1, we used the shared subcohort and all patients
who experienced non-relapse mortality or relapse/progression.

The covariates of interest were donor type (haploidentical donors vs. haplotype-identical
siblings donors), standardized patient’s age, Karnofsky performance status (KPS) at trans-
plant (> 90% vs. < 90%), and histology (Follicular lymphoma, Diffuse large B-cell lym-
phoma, Mantle cell lymphoma, Mature T- and NK-cell lymphomas, and Hodgkin lym-
phoma). We checked the subdistribution proportional hazards assumption by testing whether
the coefficient of logt x Z is equal to zero for each variable and all p-values were greater
than 0.16. We also examined whether the censoring distribution depends on covariates using
the proportional hazards model. KPS and histology were significantly associated with the
censoring distribution with p-values 0.0302 and 0.018, respectively. We obtained ﬁ ; and ,3 1
for non-stratified data with covariate-unadjusted and covariate-adjusted weights. We also
obtained BF by fitting the subdistribution hazards models of Fine and Gray (1999) with
covariate-unadjusted weight and He et al. (2016) with covariate-adjusted weight for the full
cohort.

Table 2 presents the regression parameter estimates, their estimated standard errors, and
their p-values. In general, the parameter estimates for BI 1 are closer to the full-cohort-based
parameter estimates B\F than those for BI. All standard errors of B\U are smaller than
those of ,@I. Age and KPS with covariate-adjusted weight were statistically significant at the
significant level 0.05 in both BI and ,@H, which is consistent with the result from the full
cohort data analysis based on He et al. (2016), that is, ﬁp with covariate-adjusted weight.
Compared to younger patients and patients with KPS > 90%, older patients and patients
with KPS < 90% experienced more non-relapse mortality, respectively.

We also fitted the cause-specific hazards models with the full cohort, the single case-
cohort data set with pj;, and the two case-cohort data set with m; (Kim et al., 2013). Their
results are provided in the Appendix G of the Supplementary Materials. The magnitude of
the parameter estimates from the cause-specific hazards models is similar to that in Table
2. However, the interpretations of the estimates from these two models are different. For
example, consider the parameter estimate for KPS < 90% based on B\U with covariate-

adjusted weight. The parameter estimate from the cause-specific hazards model is 0.749.
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Thus, at any time after bone marrow transplant, patients with KPS < 90% had a hazard
of death before relapse or progression exp(0.749) ~ 2.11 times higher than those with KPS
> 90% after adjusting for the other covariates, among patients who were disease-free, that
is, had not experienced death or relapse or progression, at that time. On the other hand,
the hazard ratio from the subdistribution hazards model is exp(0.555) ~ 1.74. Thus, the
cumulative incidence of death before relapse or progression was higher in patients with KPS
< 90% when compared with patients with KPS > 90%. However, the hazard ratio 1.74 is
not straightforward to interpret because it is the mortality ratio before relapse or progression
among patients who are alive or have been relapsed or progressed before. For more details
on the interpretation of the subdistribution hazards ratio, see Austin and Fine (2017).
Figure 1 shows the predicted cumulative incidence curves using Bp, EI, and BH with
covariate-adjusted weight for KPS < 90% when age is 50 years old, donor type is HLA-
identical siblings donor, and disease subtype is Follicular lymphoma for Histology. The
predicted cumulative incidence curves with the two case-cohort estimators ,31 and BH are
close to that with the full cohort estimator BF Especially, compared to the curve using the
estimate with the traditional case-cohort weight BI, the curve using the estimate with the

efficient weight ,@1 1 is closer to that based on the full cohort estimate ,@F.

6.2 Example 2: Stratified data under case-cohort studies

The Atherosclerosis Risk in Communities study is a longitudinal and large cohort study
consisting of 15,792 men and women aged from 45 to 64 years at baseline. After a baseline
examination during 1987-1989, subjects in this study were prospectively followed for the
development of an incident coronary heart disease (CHD) and death though 1998 (Ballantyne
et al., 2004). An event due to CHD is defined as definite or probable myocardial infarction,
electrocardiographic evidence of silent myocardial infarction, definite coronary heart disease
death, or coronary revascularization procedure. Death prior to CHD was a competing risk
for CHD.

The primary interest of this study was evaluating the effect of high-sensitivity C-reactive
protein (hs-CRP) on CHD (Ballantyne et al., 2004). To reduce cost and preserve the blood
sample, a single case-cohort study was implemented. The values of hs-CRP were available
on all subjects with CHD and the subcohort members. The subcohort was obtained based
on stratified sampling with age groups (> 55 or < 55 years), race (Caucasian or African

American), and gender as strata. We excluded the subjects who missed their second visit
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Figure 1: Predicted Cumulative incidence of non-relapse mortality for Karnofsky perfor-
mance status groups

in 1990-1992, did not have information on CHD history, were under-represented minorities
other than blacks, or had no valid follow-up time. There were 12,193 subjects in the full
cohort consisting of 639 (5.3%) CHD cases, 965 (7.9%) deaths prior to CHD, and 10,589
(86.8%) event-free subjects. In this analysis, the total number of assayed blood sample with
hs-CRP was 1409 including 818 subcohort members and 591 subjects with CHD outside
the subcohort. The subcohort consisted of 48 subjects who experienced CHD, 176 subjects
who died prior to CHD, 594 subjects who experienced neither CHD nor deaths. Tertiles of
hs-CRP were classified into low (< 1.0mg/L), middle (1.0—3.0mg/L), and high (> 3.0mg/L)
hs-CRP groups. The following covariates were adjusted in the analysis: smoking status,
diabetes, standardized systolic blood pressure, and standardized high density lipoprotein
and low density lipoprotein cholesterol. We tested the subdistribution proportional hazards
assumption and whether the censoring distribution was covariate-dependent similarly to
Section 6.1. All p-values from testing the subdistribution proportional assumptions were
greater than 0.08. The censoring distribution depended on all covariates listed above (all
p-values were less than 0.01).

Table 3 reports the regression parameter estimates and their estimated standard er-
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rors from fitting the stratified subdistribution hazards model by solving (3). The results
show the high hs-CRP group was significantly associated with increased risks of CHD com-
pared with the low hs-CRP group after adjusting for smoking status, diabetes, systolic
blood pressure, and high density lipoprotein and low density lipoprotein cholesterol. We
also obtained covariate-unadjusted estimators and the results are very similar to those for
covariate-adjusted estimators. Since the regression coefficients for the censoring distribution
were from —0.0587 to 0.114 and were small in terms of magnitude, they had little impact
on difference between covariate-unadjusted and covariate-adjusted estimates. Although we
did not report additional simulation results in the article, we also observed the difference in
covariate-unadjusted and covariate-adjusted estimates and their standard errors were small
when the magnitude of the parameters for the censoring distribution was small.

The results for the cause-specific hazard models are provided in the Appendix G of the
Supplementary Materials. The magnitude of the parameter estimates is similar to that of
Table 3. The estimates for the two models can be interpreted similarly to Section 6.1.

Figure 2 shows the predicted cumulative incidence curves using B\ ; with covariate-adjusted
weight for the three hs-CRP groups when low and high density lipoproteins are averages,
patients do not have diabetes and do not smoke in stratum with white female who are older
than 55. It shows the high (low) hs-CRP group experienced the highest (lowest) CHD.

7 Discussion

We proposed a stratified subdistribution hazards model for case-cohort data with a pos-
sible covariate-dependent censoring distribution. The proposed method can be used via
stratification when the proportional subdistribution hazards assumption is not valid. For
multiple case-cohort studies, we proposed an efficient estimator by considering information
on subjects who experienced a failure from causes other than cause of interest. Although
the interpretation of the parameter estimates from the subdistribution hazards model is not
straightforward, it directly estimates the effect of the covariates on the cumulative incidence
function of cause of interest.

In this paper, we considered the stratified subdistribution hazards model, which allows
different baseline hazards for different strata. We can modify the proposed model for the
stratified case-cohort design under which the common baseline hazard is assumed for all

strata. Under the stratified case-cohort design, a subdistribution hazard model is \; (t|Z;;) =
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Figure 2: Predicted Cumulative incidence of Coronary heart disease for CRP groups

Ao(t) exp(B°Zy;), and the weighted score equation with covariate-adjusted weight is

-y [ 5 TN =0

=1 =1

where S7(8,t) = n=t OF | ST mrawlor (t) Y, (1) Z5%P" % for d = 0,1. One can use 7}, =
pi; and W58 (t) = WS °*(t) for a single case-cohort study, and 7}, = m; and W% (t) = w % (t)
for multiple case-cohort studies. The weight functions p;; and m; under the stratified case-
cohort design still remain the same as that for the stratified subdistribution hazards model.
Under the stratified case-cohort design, the effect of sampling strata, e.g. a surrogate of an
exposure of main interest, can be adjusted by using stratified sampling for the subcohort to
improve estimation efficiency.

The proposed method uses the stratified proportional hazards model for the censoring
distribution. Although the limited simulation study we conducted suggested the robustness
of the proposed method against model misspecification for censoring, when the stratified
proportional hazards model is inappropriate for fitting the censoring outcome, one can use

different methods such as the accelerated failure time model or the additive hazards model.
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In this case, the proposed method can be easily modified for different models for censoring so
that it can be used when the asymptotic variance of the estimator is established. Studying the
asymptotic properties of the parameter estimator when using different models for censoring
is an important future research topic. Another interesting topic is examining the robustness
of using the proportional hazards model for the censoring distribution when the proportional
hazards model is inappropriate. Exploring this aspect requires extensive simulation studies
under the accelerated failure time model or the additive model for censoring with various
sample sizes.

Under our simulation settings, the performance of the model with covariate-adjusted
censoring weight was better than or at least equivalent to that with covariate-unadjusted
censoring weight whether the censoring distribution depended on certain covariates or not.
However, when the number of covariates is large, fitting the proportional hazards model
for censoring could lead to inefficient parameter estimation. In such cases, one may select
significant covariates for the censoring distribution first and then use the covariate-adjusted
censoring weight with the selected covariates. Investigating estimation efficiency gain from
variable selection for the censoring distribution would be an interesting study.

For our bone marrow transplant data example, all patients got transplant. Thus, they
are left truncated by the waiting time to transplant if we start clock at time of diagnosis
of leukemia. Several methods to account for left truncation under the competing risks data
have been proposed for the full cohort data (Zhang et al., 2009; Geskus, 2011; Liu et al.,
2018). One normally assumes that truncation time is independent of event time to handle
delayed entry (Zhang et al., 2009; Geskus, 2011). However, this assumption may be violated
in practice. Developing methods for such left-truncated data is an important future research
problem.

For studies with common diseases or a large number of failures from a cause of interest,
sampling all cases in the original case-cohort design limits its applications (Breslow and
Wellner, 2007). In this case, the generalized case-cohort design in which one can sample only
a fraction of cases for exposure assessment can be used (Cai and Zeng, 2007). Developing a
method to model competing risks data under such design would be a worthy future topic.

In practice, it is important for investigators to calculate the sample size before conducting
the case-cohort design. Seeking simple formulae for sample size and power calculation for
the case-cohort design with competing risks outcomes would be another interesting future

topic.
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Appendix

The following definitions are the explicit forms of ¢y 1(Bo,t), ¢3(Bo, 1), (37 (Bo, 1), qll (u, t),
and h(t, zo).
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Supplementary Material

The Supplementary Materials include the proofs for the theorems, asymptotic covariance
matrix of the estimators with covariate-unadjusted weight for a single and multiple case-
cohort studies, the variance formula for El(t|z0) for a single case-cohort study, technical
details on efficiency gain, additional simulation results, and data analysis results for the

cause-specific hazards model.
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Table 2: Analysis of the CIBMTR study

Full cohort CCr CCry
Variables BF SE  p-value ,@1 SE  p-value BH SE  p-value
Covariate-unadjusted weight
Age 0.485 0.141 0.001 0.437 0.158 0.006 0.454 0.155 0.003
KPS (ref = >90%)
<90% 0.515 0.222 0.021 0.527 0.256 0.039 0.540 0.251 0.032
Donor type (ref = HLA)

Haploidentical 0.310 0.254 0.222 0.347 0.292 0.236 0.328 0.277 0.237

Disease subtype (ref = FLH)
Diffuse large B-cell lymphoma  -0.383 0.326 0.240 -0.387 0.493 0.432 -0.378 0.479 0.430

Mantle cell lymphoma -0.002 0.313 0.996 0.077 0.494 0.876 0.032 0.472 0.946
Mature T- and NK-cell lymphomas -0.016 0.335 0.962 -0.065 0.535 0.904 0.004 0.522 0.993
Hodgkin 0.014 0.388 0.971 0.128 0.555 0.817 -0.029 0.542 0.957
Covariate-adjusted weight

Age 0.482 0.140 0.001 0.436 0.156 0.005 0.453 0.155 0.003

KPS (ref = >90%)
<90% 0.532 0.219 0.015 0.541 0.254 0.033 0.555 0.249 0.026

Donor type (ref = HLA)

Haploidentical 0.310 0.254 0.222 0.346 0.292 0.236 0.328 0.277 0.236

Disease subtype (ref = FLH)
Diffuse large B-cell lymphoma  -0.355 0.326 0.276 -0.361 0.493 0.465 -0.352 0.480 0.463

Mantle cell lymphoma -0.018 0.318 0.955 0.088 0.497 0.860 0.037 0.476 0.937
Mature T- and NK-cell lymphomas 0.012 0.343 0.973 -0.025 0.543 0.963 0.042 0.531 0.937
Hodgkin 0.028 0.388 0.943 0.152 0.551 0.782 -0.012 0.542 0.983

CCY, asingle case-cohort study; C'Cyy, two case-cohort studies; SE, standard error estimate; KPS, Karnofsky
performance status at transplant; ref, reference group; The reference groups are HLA-identical siblings donor
(HLA) for donor type, >90 for KPS ;| and Follicular lymphoma for Histology (FLH). The coefficients for the
reference groups were set to 0 and therefore they were omitted from the table.

Table 3: Analysis of the ARIC study

Covariate-unadjusted Covariate-adjusted
weight weight
Variables Category Br SE p-values Br SE p-values
hs-CRP Middle 0.2260 0.1378  0.101 0.2256 0.1378  0.102
(ref =Low) High 0.5397 0.1357 <0.001 0.5395 0.1357 <0.001
Systolic blood pressure 0.2860 0.0616 <0.001 0.2863 0.0616 <0.001
LDL cholesterol 0.3200 0.0499 <0.001 0.3196 0.0499 <0.001
HDL cholesterol -0.3159 0.0715 <0.001 -0.3163 0.0715 <0.001
Diabetes (ref = No) Yes 0.5972 0.1258 <0.001 0.5970 0.1258 <0.001
Smoking status (ref = No) Yes 0.3501 0.1080  0.001 0.3496 0.1080  0.001

SE, standard error estimate; hs-CRP, high-sensitivity C-reactive protein; LDL, low density lipopro-
tein; HDL, high density lipoprotein; Low high-sensitivity C-reactive protein group, group without
diabetes, and non-smoking group are reference groups; ref, reference group. The coefficients for the
reference groups were set to 0 and therefore they were omitted from the table.
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Supplementary Materials

1 Appendix A: Proofs of Theorem 1

We provide the outline of the proofs for the main theorems. The following lemma plays an impor-

tant role in proving theorems.

Lemma 1 Let B;(t), i = 1,...,n be independent and identically distributed real-valued random
process on |0, 7] and denote random process vector, B(t) = [By(t), ..., Bn(t)] with E{B;(t)} =
wp(t), var B;(0) < oo, and var B;(1) < oo. Let x = [x1, - - - , Xn] be random vector containing n
ones and n — 1 zeros with each permutation equally likely. Let x be independent of B(t). Suppose
that almost all paths of B;(t) have finite variation. Then n™Y/2 3" x;{Bi(t) — ug(t)} converges
weakly in 1[0, 7] to a zero-mean Gaussian process, and n= ' > | xi{B;i(t) — up(t)} converges

in probability to zero uniformly in t.

Lemma 1 is an extension of the proposition from Kulich and Lin (2000) and the detailed proof

can be found in Lemma 2 in Kang and Cai (2010).

1.1 Preliminaries

We study the asymptotics of ,@H. The asymptotics of ,@I can be shown similarly and thus its
proof is omitted. We use the proportional hazards model under case-cohort studies to estimate the

censoring distribution:

A (HZE) = Mo (t) exp(g Zi7).

1



Define the following notations for the censoring distribution depending on Z¢':

t
Gi(1ZC) = expl-AS(t) exp(r! Z€)}, AS(H) = / AG (w)du,
0
NE@) = I(Xu <t;A;=0),Y,5() = I(Xy > t),
t
ME(t) = NY(t) - / Y€ () exp{d Z°dAS (u),
1 &
Seivt) = — > mYi (025 exp{v" Z{} for d=10,1,2,
=1
sg{)l('y,t) = Esgfg(fy,t)] for d=0,1,2,
s0)(7.1)
(

!
0 b
s (7,1

where M (t) is a martingale with respect to the censoring filtration. By Kim et al. (2018), we can

estimate G, (t| Z¢) as follows:

Gi(t|1Z9) = exp{—AG(t) exp(¥"Z29)},
~ _ /Z lelez()
nlS

cl (7 1)

Y

where 4 is an estimator for .

By Theorem 2 of Kim et al. (2018) and the arguments of Andersen and Gill (1982), G (t|1Z5)—



G,(t|Z5) can be written as

Gi(t|25) — Gu(t| Z5))
_Gy(t1Z)) /T 2L e 25 T(u < t)
u=0

0
i =0 =1 3(0)1(70, u)

sz?(u)

Gi(t|Z;;) T( h70> u)
- = / 5,0, Z8) Ag ZZ{Z}U —C( b (u

u= h=1 j=1 80h707)

Gi(t|1Zf) = fl; e 2 | (u<t
- —t= 1 {1— Al] Gh—k‘}/
L ]Z:; Z 3()1 Yo, U
z¢ =
S VIR I L)
h=1 j=1

()(’70, )}

T _ Sch
X / hi(t,0,28) A 7 - 0
u=0

— dME () + 0,(n; ?),
Ch 05

where

(1)

! sca (Yo, u)
ho(tu, 26) = 7" / {z°- <Co>l—}dA82(v).
v=u SCZ<")/0,



Using (1), we can show

Gi(tlzg) Gtz
Gi(Xu Nt ZS) GI(Xu N ZF)
G Xu|ZO{GI(t1 Z5) — Gi(t)1 Z)} — Gi(t| Z5){Gi(Xu| Z5) — Gi(Xu| Z5)}

= I(Xyu <t)

éz(XlAZg)Gl(XMZg)
Gi(t|Zf)
Gl(Xh\ZlC)

e 26 T Xh <u<t)
< (5 Z / AM{ (u)

SCl Yo, U )

= —I(Xu<1)

(1)
+ ZZ/ hi(t Xh,zg)Agl{zth %}d%ﬁ( )

D=1 j=1 SCh’YOa)

& e’Vo LT Xl<u<t
+ n_lz(é%_ {1_ZAU el,—k}/ l )]dMl(]j(u)

301 Yo, U )
+ E ZZ fh] —1{1 - ZAth(Ehz‘ =k)}
k=1

h=1 j=1

T _ SC (707u>
<[ e X 2040255 = G TS M) + oyl ).



Therefore, W% (t) — wf°(t) is asymptotically equivalent to

Gl(t]Zlc) Gz(ﬂzzc')
> Ty At Z Z
(Clz l’l/\ ){Gl(Xlz/\t|ZC) Gl(Xll/\t‘Zl?)}
Gi(t1Z)

(G 2 Tu N)I(X < ) e Ty
[ i £

670 ll Xh <u< t)
§ : / dMf (u)
nl =0

301 Yo, u)

(1)

ZZ/ hT t Xlz,Zh)Agl{Zli M}]d]w]g(u)

=1 j=1 50h('707 u)

1 fl' 670 “I Xlz<u<t)
E;(&—Z— {1—ZA,] eh—k}/ dM (u)

SC’l Yo, U )
L n
Lysén {1—ZA (et = )}
T T C S(C,)h<707 u) C -1/2
RE(L Xii, Z8) AN 25, = G- A () + o(n %)
u=0 son (Yo, u)
Du(t1Z) + 0p(n; %), 2



1.2  Consistency of B 7

We show the consistency of 3;; with right censored data. One can write Sl(d) (B,t) — §l(d) (8,1):

;Y (8.0) - S\9(8,1)
= 1/m choz )1 - &Z {1 - ZA“ e = 1)}Y,; (t )ZﬁdeﬁTZ“

= 1/@{@5% — et >}<1—@{1—2Ah (e = B}V (1) 2597

+ 1/nl2wc‘” 1—@ {1-2Al, (e = k) }Y;L(t) Z3eB" 21

= 1/m Z Du(tlZ;7)(1 5“ RAthe Z Nl (e = k) YV () 25" 2 3)
+ 1/”[ ZwCox 1 glz {1 . Z Alz Elz _ k?)}}/hl( )Zl(?dBBTZ”- (4)
e

Based on Conditions 1 and 2, the total variation of w(** (t){1-3", Aul(e; = 1)}Y,E(t) Z24eP" %1
is finite on [0,7]. We have 1/m; 31, w$(){1 — 32, Aul(e = 1)}Y,}(t)Z2%P" 25 con-
verges to E[wS ({1 — 2, Anl(en = k)}Y,(t)ZZ%P" %1] as n; — oc. Furthermore, by
Conditions 1-7 and (2), Dy;(t|Zf) has finite variation in ¢ € [0,7] as n; — oo. Therefore,
Dy(t|ZE){1 = 32, Aul (e = k)}YH(t) ZZ%P" Zi has finite variations. Thus, by Lemma 1, (3)
and (4) converges to zero in probability uniformly in ¢. Thus, HSl(k) (8,t) — §l(k) (B, )| — 0
in probability uniformly in ¢ and nl/ 2{ S ( t) — §l(d) (B,t)} converges weakly to a zero-mean
Gaussian process. Consequently, S z( (8,t) and S, (@) (8, t) converge to the same limit in probability
based on Condition 3.

Since S )(8,t) converges to Sz )(B,t) = E[S l(d) (B,t)] uniformly in ¢ € [0, 7] and B € B, we
can show —nl’lﬁU /03 converges in probability uniformly in 3 € Bto A;(8) = lim,_,o, —n, loU aele

similarly to Section A.4 of He et al. (2016). From Condition C5, A;(3,) is positive definite for



[ =1,...,L. Asin Section 1.3, we can show U (B3) converges in probability to zero. Therefore,

by Theorem 2 of Fourtz (1977), ,@ 77 converges in probability to 3.

1.3 Asymptotic normality of B I

Next, we show the asymptotic normality of B\ ;1. One can write n~ "/ 2(7(6) as

wPTE) = 0SS [ (2= B i)

=1 i=1
L n T -

= p/? ZZ/ {2 — El(ﬁ,u)}ﬁg"“(u)dMlli(t) )
=1 =1 0
L mny T - T

+ 23N [ (20 - B s @y 0 S dhu(t).  ©
=1 i=1 “0

We can decompose (5) into two parts such that

w30 [12e- Binat i)

=1 =1

= Y [ 42 BBy avi

=1 =1

+ nl/? Z Z /OT{fElCZ-“(t) —w () Zy — El(ﬂ u) }d M (t)

=1 =1

L mn T
e e

=1 =1

+ nWZi /OT{Elw,t) — Ei(B,)}wf" (t)dMy(t) ®)

=1 =1

+ 2y Z /0 (@5 (1) — e ()} 2 — Bu(B, 1)} AM(1) ®)

=1 =1

+ n_1/2 Z Z AT{wgox(t) - wgox(t)}{El<18a t) - El(ﬁv t)}dMllz(t) (10)

=1 =1



First, we show (8) and (10) converge to zero in probability as n goes to co. We know || Sl(k) (B,t)—
S™(8,1)|| — 0in probability uniformly in ¢. Thus, due to Conditions 3 and 4, S (83, ¢)/5© (83, t)
converges to €;(3, t) in probability uniformly in ¢. Using (3) and (4), E,(8,t) — E;(83,t) can be

written as

E(B8.1) — Ei(B,1) (11)
_ 8V 8B
- 5By 508
i g
— S(l) - S 0) Sl (/87 t) 1
i l (/37 t) l (ﬁ; t Sl(o) (187 t) SZ(O) (18’ t)
i =8
_ |rgWig - 50 1595 ) 5O 5By __1
_{ l (Ba t) l (Bv t)} { l (67 t) l (:37 t)} Sl(o) (6, t) Sl(()) (,@, t)
- N ~ 1
= [1518,0) - 57(8,0} - {5”(8,1) - 5" (B, D)}eu(8, )] oy oW
_ SN N A (e — | L
_ Z (1 - dl){l ; Al (e = k)}Qh(ﬁ,t) 5950 +o,(1), (12)

where Qy;(8,t) = wSo(t)Y,}(t){ Z; — e)(B,t)}eP Zii. Then, it can be shown that (8) converges
to 0 in probability uniformly in ¢ using Lemma 1 and (12).

In addition to Lemma 1, we have E;(3,t) and E;(3, t) converges to the same limit e;(3,t),
where e,(3,1) = s\"(8,t)/5”(8,t) and s (3,t) = E[S"(8,1)] by Conditions 2-4. Thus,

similarly to (8) — 0, we can show (10) converges to zero in probability uniformly in ¢.



The second part of U(83), (6) can be written as

S [ 7 BB OO Hae)

=1 i=1

- ryy | 42— B0+ Bt~ BB} (i (0 dua

=1 =1

= “”ZZ / {Zis — Bi(B, )}, (1) Y, (£)e® P d Ao (t) (13)
=1 =1

+ _I/QZZ/ {Ei(B,1) El(,@ )y (L)Y (t )eﬁTZ“dAuo(t)- (14)
=1 =1

(13) is 0. Using (12) and the similar arguments to (3) — 0 in probability by Lemma 1, we can

write (14) as

23S [ (BB - B80T 0 Hanne)

=1 =1

= *WZZ / {E\(B,1) — Bi(B, )}, (1) — wi* (£)}Y;} (1)e® ZdAyo 1)

=1 =1

+ ‘1/222 / (Ei(B,1) — Ei(B, 1) w0l (4)Y, (£)e? ZidA o (t)

=1 =1

- —1/222/ [1_@ 1= 3 At (e = 1) }Qu(B 1)

=1 =1

dAllO( ) + Op(l). (15)

From (2), (9) is asymptotically equivalent to

n=1/2 Z Z/ {@5°7(t) — wi" () H Zu — ei(B, 1) }dM,(t)

=1 i=1
= _1/222/ qlz dMlz
=1 =1
3y [ {1—ZAZZ Tew = B} OAME®D +o,(1).
=1 =1



where

Ow) = - 1 z SN (L
q; (u) = _nllgloo nlz _ lj{ 1 — ei(Bo,t) }w (CO)Z(’)’O, ) lj()
L
]' OCE
+ TZZ/t . {2 — e(Bo, 1) JwS (RE(t, Xy, Z5)AGM ZE — ecy(yo,uw) fdM (¢ }
h=1 j= =

Combining all results for (7),(9), and (15), we have

TE) = Y | (2 Bap.pageanio

=1 i=1

_ ey | 12— ey i)

=1 i=1
+ _1/2 Z Z / qlz dMlz )
=1 =1
71/2 glz =~ .
+ ZZ/ 1—— 1—2Alil(eh_k)}
=1 =1 k=1

X

{Qu(B.0dAo(1) - g <t>dM$<t>} +0,(1)
nol/? XL: i {?71,11‘ + M2 + (1 - @)nﬁz} + 0p(1)

=1 =1

ny

= Z(%”l)_lﬂ Z {771,” + Mo + (1 S )173 h} + 0,(1),

=1 i=1

where 7 4, 12, and 77:% are i.i.d zero-mean variables in stratum [. By central limit theo-
rem, n~ /2 Zl Lo (Mg + moyui) converges to weakly to a zero-mean normal vector with co-

©2_ Tt follows from Hdjek (1960)’s central limit theorem for fi-

variance Zz:l @E (Mg + M)
nite sampling, Conditions 1, 6, 7 that n 71/ 2 >t (1 — &i/an)nil; converges to weakly a zero-
mean normal vector with covariance (1 — o)/ E[n3},]**. Using (i) E[n, 12 Yorimul =0

and E[n, 2™ (1 — &i/ar)nsy;] = 0 in stratum [; and (i) (1 — &;/@)’s are independent
of history of NS (t),Y,¢(t), NL(t),Y;}(t), and Z;(t) for all i,l, and t € [0,7], we can show

10



Cov(ny 2 05 s,y 2 0 (1€ f@n)mil,) = 0 and Cov(ng /2 320 o i my /2 300 (1—
&i/du)nil;) = 0. Since n, -1z S s -1z S Moy, and n, ~1/2 St (1 — &ifau)ni; are
asymptotically normal, 7, 12 ot miygi and ny 1/2 > Moy are independent of n, -1/ (1 -
fﬁ/dl)"?é,lh-
Combining all results, n=1/ 2ﬁ(,@) converges weakly to zero-mean normal vector with covari-
ance matrix X'7(3,), where
L "

1 -«
En(ﬁo) = Z Ql{E(”h,u + ”72,11)®2 + TZE(TIP{,{O@Z},
=1 !

- / (Zi — ex(Bo. 1)}l (1) dML(2),
M2y = /qh ()de( )7

i = / {1—ZAzz (e = k) Jwf™ (Y2 (8){Zis — ex(Bo, 1)} dAno (1)
- [ {1—2%1@-=k>}q§§><t>dMﬁ<t>,

(1) — _ Com ( —) 1
q;; ( ) = n%l—{noo mz —x,, {Zl] (] ﬁ07 }w Cl(707 ) dMlj(t)

L np
1
+ —Z / {Z); — ei(Bo, t) fwi, ™ () RE(t, Xy, Z5) A Z — eca(vo, u) JdM,(t ]

bh=1 j=1 /=Xy

By Condition 5, the consistency of B 11, and Taylor expansion of ﬁ(BI ;) around By, n~/ 2(BH —

Bo) is asymptotically normally distributed with mean zero and with covariance matrix

A(Bo) "= (Bo) A(Bo) ", where A(By) = Zlel @ A(Bo).

Similarly, we can establish the asymptotic of ﬁ(ﬁ ) and Br.
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2 Appendix B: Proof of Theorem 2

In this section, we study the asymptotic distribution of ”z/ {Auo( ) — Ay(t)}. The asymptotics

of A{ 10(t) can be similarly shown and thus its proof is omitted.

We can decompose nl/ 2{A1zo( t) — Ayjo(t) } into four parts as follows:

2 (A () — Auo(t)}

_ nl1/2i/t wlcz;ox(u)lei(u> . Auo(t)
i=1 70 Sl(O) (Bir,u
—I/Qi/t{ 1 1 } ~C’0$( )dMl( )
- ~ -~ li u ;U
l i=1 70 Sz( )(5117’“) Sl(O) (Bo, u)

—1/2 1 B 1 o R
+ ]ﬁ {:5§m(ﬁij,u) 330’030,10 } S (Bo, w)dApo(uw)

_ tS(O) , U — 5 , U
+ n, 1/2/ l (/BON(Og l (/30 )dAHO(u).
0 (B()» u)
By Taylor expansion, we have
1 1 B,
= ( %) (Bir — Bo).

§l(0)<3117u) - gl(0)</807u) SJ’l(O)(/B 9 )

where 3* is on the line segment between ,23\ 17 and 3. Plugging (20) into (16), we have

—WZ / { —))wn—ﬁo)}@l?“( )dMj(w).

We know 3* converges to 3y in probability and (3;; is a consistent estimator for 3.

(16)

7

(18)

19)

(20)

Since

51(0) (B*,u) and 51(1)(6*, u) are of bounded variation and 51(0) (B*,u) is bounded away from O,

and §z(1)<:6*= u)/ §l(0) (B*,u)? is of bounded variation and can be written as sum of two monotone

12



functions in ¢. Thus, (16) converges to zero in probability uniformly in ¢. (17) can be written as:
_1 2 ~Cox or oxr
S [ s ﬂo T 1) — () + 0§ ()} )

- -”22 / W (u) M ()

ﬁo,

1/ ? 05:°% () — ws " (u) Y M (u).
> [ g 0 st

Since S ([3 u) converges to 31 (6 u) by (2), Conditions 3 and 4, (17) is asymptotically equiva-

lent to
Wy [ o
0 /607
5 K
_ li
”22 / qf? )+ (5 = DL = D7 Aulen = B)}ay (u. )| M (),
k=1
where
1SN [t 1 625 T (4 <
a;’ (u,t) = — lim [_Z/ ) - ©) CEL) wi; (V) d My (v)
e Ly =1 v:le Sl (ﬁ(hv) SC,I(’YO’U)

! .- pr C -1 Cox
B ;ZZ/ (0)<BO’U>hC(U’le’le>AC {ZI'L ecy 707 }U) th] )

Since B* converges to 3y in probability uniformly and Conditions 3 and 4, §l(0) (B*,t) and
Sl(o) (Bo,t) converges to 31 (ﬁo, t) in probability uniformly in ¢t. By Condition 1, dA;o(u) is
bounded. Using these results of consistency for BI 7 and uniform convergence of §l(0) (B3,t) and

plugging n_l/g(ﬁn —Bo) = A7 Y(By)n /2 Zlf;l Yot A+ Mo+ (1 —&i/d)ns } into (18),

13



we can show (18) becomes
(ﬁm )

t
—1/2

" /0 S(O (/807 )

= nflﬂh(t, z0)" (,311 — 50) + Op(l)

= h(t, z)" A7 1/2 ZZ {?71 i+ Mo + (1 - @>773 lz} +0p(1),

=1 =1

2L 0T (), — ﬁ@] S (8o, u)dA 0 (w)

where h(t, zg) = — fo ei(Bo, w)dApo(u).

Since Sl (ﬁo,u) converges to 31 ([30, u) in probability uniformly in u and 31 (Bo, w) is

-1

bounded away from 0, then we have Sz (ﬁg,u)_1 converges to Sz (ﬁo, u)~". Using the simi-

lar arguments to (3) — 0 in probability by Lemma 1, we can show (19) becomes
_ t g0 , U _ 5 LU
n, 1/2/ l (/80~(02 l (/80 >dA110(u)
0 S (Bo, w)

o 1/2/otﬁ[zwﬁ”<>(1—@){1—ZAM (e = YY) 2| Ao (u) + 0, (1).

14



Combining all the results, we have

A (8) — Auo(t)}

ny

_ t 1
el waiﬂ% u)dM(u ”22 | e navg
l

i=1 607 )
+ h(t Zo TA Zn1l1+n2lz:|
=1
n; § L
5 (e
+ n 1 h(t,z)" A~ ;
l ZZ:; i (t, o) 12;7731

Z; dAllO (U)
© (/807 ’LL)

- 0wt =h) [ 0ag ] + 0

t
4 / wfor () {1 — 3 Aul (e = k)}Y;! (u)e
0 k

— _1/226 1i(Bo, 1) _1/22 (1 B %) 24180, ) + 0y (1)

=1

where

¢ 1
Cii(Bo,t) = /OW wi;** (u)d M (u I/QZ/ ai (u, t)dM§ (u)

L
+ h(t,z)" A7 (Bo) Z("?l,li + M2,i),
L
2lz(/60v ) = h(ta ZO)TA_l(BO)Zn?{,IZi

_ Tler — G M&dMM) 0 M
=D A 0} [ wf i e s - [ Pt nani ).

Following He et al. (2016), HV(t) = nl_l/2 >, Cii(Bo, t) converges weakly to the Gaussian

process () (t) on [0, 7] whose mean is zero and covariance functions between () (¢) and H" ()

is E{gl,li(ﬁ[b t)Cl,li(/BOa S)} for t, S & [0, 7'].
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Next we show the weak convergence of H® = n, /2 S (1 — &,;/6,)Coui(Bo, t) to a zero-
mean Gaussian process. We have 51(0) (Bo, w) is bounded away from O and h(t, zo), {1->, Aul (e =
k)}, wSo (£)Y;}(t)ePd Zui, dA;10(u) are bounded variations; A((3) is positive definite based on Con-
ditions 1 to 5. Hence, it follows from Lemma 1 that the finite dimensional distribution of H(®(t)
is asymptotically same as that of #(?)(¢) for any finite number of time points. Combining these re-
sults, H®(t) converges weakly to the Gaussian process H? () whose mean is zero and covariance
functions between 7 (¢) and H® (s) is (1 — a*) /o E{(2:(Bo, 1) (3 (Bo, s)} for t, s € [0, 7).

We can show Cov{n; "> S, ¢14i(Bo, 1),y /> 31 (1 — & /) 37i(Bo, 1)} = 0 similarly
to the proof of independence of 7, ;; and (1 — &;/ay;)n3 ;. Therefore, n[l/ 2 Yoty G Bo, t) and
ny P ST (1 — €4/dn)Coui(Bo, t) are independent. Thus, H(t; z) = HW(t; z0) + H®(t; zo)
converges weakly to Gaussian process H (t) between H(¢) and H(s) is E{C1.1i(Bo, t)C1.1i(Bo, s) } +
(1 —o*)/a*E{C.i(Bo,t)C2,4i(Bo, )} for t, s € [0, 7]. This completes the proof of Theorem 2.
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3 Appendix C: Asymptotic covariance matrix of the estimators
for case-cohort studies with ;" ()

Let (3; and f3;; be the estimators with @ (t) for a single and multiple case-cohort studies. Sim-
ilarly to the proof of Theorem 1, we can show for w = I, 11, n='/?(3, — f3,) is asymptotically

normally distributed with mean zero and with covariance matrix A(Sy) *X%(8y)A(By) !, where

A(Bo) 1% (Bo) A(Boy) ", where

L
0) = Z @ Ai(Bo), B Z a(V2+ V"),
=1

_ 1 of
VP = E{(mn +m2n)®*}, V¥ = l

E{(ﬁ;u)m}a

l

ma = [ 2= a0 0} a0, ma = [ HAME)

Mg = /0 {1 = Aul(en = 1)y ™ ()Y (0{ Zu — e(Bo, t) }d Ao (1),
wh= [ {1- >~ Aullas = A OV 0~ Ao D) ()

A(By) = / Two, 15 (Bo, )Mol
0
a(B.t) = 57(8.4)/5"(8,) — &8, )%,
&(B,t) = 55”(6, t>/5§°> (1),
57(8, Zw OV () Z3%" %], d=0,1,2,
b = fim S > [ 1= at 0b et Qa1 > u> X,

) 1
cu) = n%gnoo o~ ZZ:;I(XM > u).

The detailed proof can be obtained from the authors upon request.
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4 Appendix D: Technical Details of Efficiency Gain

We have
1—af 1—af
EG = lE(’?3l1) 82— " ZE(TIQIM)@Z
oy o
11—« K
= — LIE{L = Aul(en = k)Y — BE{1 = > Aul(e; = k)}2]
! k=1

2

< E [ / WY (D Zi — (B, 1) }dAnolt) — / g (amS(e >} )

The matrix E[ [ wf; ()Y, (t){ Zi — e:(Bo, t) ydAno(t) — [y g (t)dME (1)]%2 is positive definite

because of Conditions 1 and 2. Therefore, the asymptotic efficiency gain (EG) is associated with
(1—af) /o E{> r, Aul(en = k)} which is always positive when a; > 0. Asymptotic efficiency

gain is associated with smaller subcohort size and larger other causes rates.

S5 Appendix E: Variance estimator for the cumulative incidence
function for a single case-cohort study

For a single case-cohort studies, by the functional delta method, nll/ [Fi(t|zo0) — Fi(t|z0)] con-

verges weakly to a Gaussian process with mean zero and asymptotic variance, which can be esti-

. 2 _ 2
mated by nl{l — Fll(t|zo)} > {Wp,h-(ﬂzo)} , Where

Weai(t|zo) = eXp{B?zo}[K{w< > A(Br) U (Br)zo + H(t; o)),

~ o~ 7 §(1) ~ r ®2 o -
A Zm/ o “l<0>£f,t§ [ERERI

H t: zo) Z{Cl li 51, (1- fli/al)cg,li(abt)}‘
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6 Appendix F: Additional simulation results

We conducted simulation study for non-stratified case-cohort data. We set values for ¢, and v; to
1, which results in a special case of a Weibull mixture distribution. One covariate Z;; was gen-
erated from the Bernoulli distribution with Pr(Z;; = 1) = 0.5. Table 1 reports the average bias
of the estimates B 7, and B 11, the average of the estimated standard error (SE), empirical standard
deviation (SD), average of standardized bias (STB) defined as F {HB — Bol|/SE}, the empirical
coverage rate (%) with the nominal 95% confidence interval for various simulation settings. The
results are similar to Table 1 of the main paper: when the censoring distribution depends on co-
variates, the parameter estimates with the covariate-adjusted weight are approximately unbiased
while those with the covariate-unadjusted weight are biased; the estimated standard errors of the
covariate-adjusted estimators are close to the empirical standard deviations; The empirical cov-
erage rates for the covariate-adjusted estimators are between 94% and 96%. All sample relative
efficiencies of the covariate-adjusted estimators are greater than 1. This suggests B 77 using covari-
ate information on failures from cause 2 is more efficient than ﬁ ;. The range of efficiency gain is
from 12% to 86%.

We also conducted simulations with censoring probabilities to nonparametrically estimate the
censoring survival function separately for each level of the covariate. Table 2 shows the simulation
results with covariate-level-specific Kaplan-Meier-estimate-based weight for both unstratified and
stratified models when the censoring time depends on covariates (scenario S2). The results are
very similar to those with covariate-adjusted weight we proposed.

We conducted simulations when strata for the censoring distribution were different from those
for the competing risks model. We considered stratified proportional subdistribution hazards model
and two strata with (11, 19) = (1,1) and (K1, k2) = (1,2). One covariate Z was generated from
the Bernoulli distribution with Pr(Zy; = 1) = 0.4 in stratum 1 and Pr(Z;; = 1) = 0.6 in stratum

2. We set (5o, 6p) to (1,—1). We considered strata variables for censoring distribution, which
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are independent of and different from those for the competing risks model. More specifically, the
censoring time was generated from the stratified proportional hazards model with three different
constant baseline hazard (0.11,0.13,0.15), v = 2.5, and Z5 = Z;;. In other words, the competing
risks model had two strata while the censoring outcome model had three strata. The sample size
of the full cohort was set to 1800 and two subcohort sizes were examined: 540 (o; = a9 = 0.3)
and 900 (o; = ay = 0.5). For each configuration, 2000 iterations were conducted. We estimated
the parameter for the censoring distribution and all censoring-related terms by fitting the stratified
proportional hazards model with three strata. Then, we plugged them into the asymptotic variance
formula in Theorem 1 to obtain the standard error for B . Table 3 reports the average bias of the
estimates B  and E 11, the average of the estimated standard error (SE), empirical standard deviation
(SD), the empirical coverage rate (%) with the nominal 95% confidence interval (CR). The results
show all estimates are approximately unbiased and the average of the estimated standard errors for
both proposed estimators are close to their empirical standard deviations. All empirical coverage

rates are close to 95%.

Table 3: Simulation results
«Q bias SD SE CR SRE

03 5, 0001 0146 0.141 094 1.00
By 0001 0.126 0126 095 136
05 5 0000 0.129 0.126 095 1.00
By 0000 0119 0.119 095 1.16

SE, the average of the estimates of standard error; SD, sample standard deviation; CR, the
empirical coverage rate of the nominal 95% confidence intervals; SRE, sample relative efficiency.

To examine the robustness of the proposed method against misspecified models for censoring,
we conducted simulations when the censoring distribution follows an additive hazards model. The

stratified additive hazards model for Cj; given Zl? was

i (t1Z55) = Noi(t) + noZ;,
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where \jj(t) is a baseline hazard function for stratum [ and /i is an unknown regression param-
eter. We considered the stratified proportional subdistribution hazards model and two strata with
(¥1,12) = (1,1) and (K1, Kk2) = (1,2). One covariate Z was generated from the Bernoulli dis-
tribution with Pr(Z;; = 1) = 0.4 in stratum 1 and Pr(Z; = 1) = 0.6 in stratum 2. We set
(Bo, 0o) to (1, —1). The censoring time was generated from the stratified additive hazards model
with two different constant baseline hazard (N, A\oy) = (0.5,1), o = 0.3, and Z5 = Z;;. We
set the failure rate for cause 1, cause 2, and censoring to (20%, 30%, 50%). The sample size of
the full cohort was set to 1000 and two subcohort sizes were examined: 200 (a; = as = 0.2)
and 400 (o; = ay = 0.4). For each configuration, 2000 iterations were conducted. We estimated
the parameter for the censoring distribution and all censoring-related terms by fitting the stratified
proportional hazards model with two strata. Then, we plugged them into the asymptotic variance
formula of Theorem 1 to obtain the standard error for B . Table 4 reports the average bias of the
estimates B\  and B 11, the average of the estimated standard error (SE), empirical standard deviation
(SD), the empirical coverage rate (%) with the nominal 95% confidence interval (CR). The results
show all estimates are approximately unbiased and the average of the estimated standard errors for
both proposed estimators are close to their empirical standard deviations. All empirical coverage
rates are close to 95%. This small simulation study suggests the robustness of the proposed method
against model misspecification for censoring.

Table 4: Simulation results for censoring time based on additive hazards model
o bias SD SE CR SRE

02 5, 0010 0224 0213 094 1.00
By 0012 0.184 0.181 095 1.49
04 [B; 0004 0.185 0.179 094 1.00
By 0005 0.169 0.165 094 1.20

SE, the average of the estimates of standard error; SD, empirical standard deviation; CR, the
empirical coverage rate of the nominal 95% confidence intervals; SRE, sample relative efficiency.
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7 Appendix G: Data analysis result for cause-specific hazard
model

We fitted the cause-specific hazard models for the two example data: the bone marrow transplant
data and the ARIC study data (Prentice et al., 1978). Table 5 reports the regression parameter
estimates, their standard errors, and their p-values for the full cohort, a single case-cohort, and two
case-cohort studies for the bone marrow transplant study. Table 6 presents the regression parameter

estimates, their standard errors, and their p-values for the ARIC data.
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Table 6: Analysis of the ARIC study fitting cause-specific model

Variables Category B SE  p-values
high-sensitivity C-reactive protein Middle 0.254 0.174 0.145
(ref = Low) High 0.503 0.171 0.003
Systolic blood pressure 0.267 0.074 0.001
LDL cholesterol 0.257 0.065 < .001
HDL cholesterol -0.406 0.093 < .001
Diabetes (ref = No) 0.651 0.169 < .001
Smoking status (ref = No) 0.380 0.156 0.015

SE, standard error estimate; LDL, low density lipoprotein; HDL, high density lipoprotein; Low
high-sensitivity C-reactive protein group, group without diabetes, and non-smoking group are
reference groups; ref, reference group. The coefficients for the reference groups were set to 0 and
therefore they were omitted from the table.
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