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Abstract.

Often in biomedical research the aim of a study is to compare the outcomes of several

treatment arms while adjusting for multiple clinical prognostic factors. In this paper

we focus on computation of the direct adjusted survival curves for different treatment

groups based on an unstratified or a stratified Cox model. The estimators are

constructed by taking the average of the individual predicted survival curves. The

method of direct adjustment controls for possible confounders due to an imbalance

of patient characteristics between treatment groups. This adjustment is especially

useful for non-randomized studies. We have written a SAS Macro to estimate and

compare the direct adjusted survival curves. We illustrate the SAS Macro through

the examples analyzing stem cell transplant data and Ewing’s sarcoma data.
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1 Introduction

The Cox [1] model or log rank test [2] is commonly used in medical studies to compare

the survival of patients on different treatments. In randomized clinical trials comparisons

between treatments are direct and summary survival curves produced by using a Kaplan-

Meier [3] technique are used to represent the survival experience of a patient given a specific

treatment. These unadjusted curves represent the typical patient since randomization assures

that patients are equally mixed between treatment arms with respect to possible confounding

factors which could affect outcome.

When retrospective or non-randomized trials are used to make comparisons between

treatments, the distribution of covariates between the treatment arms is often not the same.

To make comparisons between treatments an adjusted analysis, typically based on the Cox

model, is needed. This analysis gives the relative risk of survival between treatments arms

adjusted for covariates. When the confounding risk factors distributions differs between

treatment arms the summary Kaplan-Meier curves for each treatment arm can be misleading

and not representative of the “average” patient on a given treatment arm.

Several approaches to graphically representing the survival experience of an average pa-

tient on a given treatment in a retrospective trial are possible. When there are only a few

categorical covariates it is possible to provide summary survival curves for each combination

of levels of the covariates. This, however, becomes intractable as the number of covariates

grows or for models with continuous covariates.

Two methods of estimating an average or adjusted survival curve for each treatment

following a Cox regression analysis have been proposed. This curve is hoped to faithfully

represent the survival experience of a typical patient in the population who was given a

particular treatment. For each treatment we first fit the model

λi(t|Z) = λ0i(t) exp
{
βT Z

}
, (1)

where Z is the vector of covariates to be adjusted for and λ0i(t) is the baseline hazard rate

for the ith treatment. The function λ0i(t) can either follow a proportional hazard model for

the treatment effect (γi) with λ0i(t) = λ0(t) exp {γi} or follow a model with distinct rates for

each treatment. Estimates of β are obtained by a standard Cox analysis. Estimates of the

baseline hazard rates are obtained by Breslow’s [4] estimator.

The first method, proposed by Neuberger et al. [5], replaces the covariate Z by the

average value of Z in the entire sample, Z. This adjusted survival curve,

Ŝi(t) = exp

{
−Λ̂0i(t)e

β̂
T

Z
}

, (2)
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where Λ̂0i(t) is the estimated cumulative hazard function, can be computed in SAS using

the BASELINE command. This curve represents the survival experience of a patient with a

prognostic index βT Z equal to the average prognostic index of all patients. This method,

while easy to implement in practice, has several drawbacks. First, the covariate value for the

average patient may be quite meaningless for categorical variables. For example, if one of the

covariates is gender coded as 0 for male and 1 for female, the meaning of patient with a sex

covariate of 0.4 is hard to interpret. Second, as discussed in Thomsen et al. [6] this method

does not account for the sample variability in the prognostic indicator from individual to

individual.

The second method often called the “direct adjusted survival curve” by among others

Chang et al. [7], Makuch [8] and Gail and Byar [9] averages the estimated survival curves

for each patient. That is

Ŝi(t) =
1

n

n∑

l=1

exp

{
−Λ̂0i(t)e

β̂
T

Z l

}
. (3)

This method averages survival curves for each patient in the sample rather than the covariates

and produces a more representative survival curve. Lee et al. [10] and Ghali et al. [11]

provided programs in SAS, STATA, and S-plus for deriving such curves.

Other methods have been proposed to make adjustments when there is a treatment group

present. Nieto and Coresh [12] provided a comparison of these methods. Cole and Hernán

[13] discussed a technique that uses weights from a logistic regression of the covariates on

treatment indicator to make adjustments to the survival estimator. They provided a SAS

macro to implement this method. The macro seems to require only two treatment groups

and does not provide estimates of the precision of the survival estimates.

Existing programs to compute the direct adjusted survival curves are of limited utility

since they do not provide estimates of the uncertainty in the estimators such as the standard

errors or confidence intervals. These programs have focused on the case where the treatment

hazards ratio, after adjustment for covariates, are constant. They are not applicable when

the treatment hazards are not proportional. In this case it is best to represent survival with

a Cox model stratified on treatment and use this model for making inference about the direct

adjusted survival for each treatment. These stratified models allow for a representation of

treatments whose efficacy relative to each other changes over time. They are less model

dependent than the more restrictive proportional hazards rate models. In Zhang and Klein

[14] a confidence band for the difference of treatment curves based on a stratified Cox model

using a Monte Carlo approach was presented.
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We have implemented a SAS macro that computes the directed adjusted survival function

for treatment groups based on either an unstratified Cox model or a stratified Cox model.

The macro also produces standard errors of the estimates of survival and standard errors

of the difference in survival between pairs of treatment groups. The standard errors of the

difference can be used to make pointwise comparisons of treatment groups.

In Section 2 we review the estimation techniques for the direct adjusted survival estima-

tors and their standard errors based on a stratified Cox model. The variance estimations for

the direct adjusted survival probabilities and the differences of the direct adjusted survival

probabilities are given in the appendix. We describe the SAS macro and its output in Section

3. In Section 4 we utilize the SAS macro to analyze stem cell transplant data and Ewing’s

sarcoma data. Discussions are given in Section 5.

2 Estimating the Direct Adjusted Survival Curve

Let the observations on subject j of treatment group i be {Tij,Dij,Z ij} for i = 1, . . . ,K

and j = 1, · · · , ni, where Tij is the observed time, Dij = 0 if the subject is censored, Dij = 1

otherwise, and Z ij are the covariates. Gail and Byar [9] derived the variance for the direct

adjusted survival probabilities based on an unstratified Cox proportional hazards model.

Here, we consider a variance estimator for the direct adjusted survival curve based on a

stratified Cox model (1). For time t, the survival probability for a subject given the ith

treatment, with covariate value z, is estimated by Ŝi(t;z) = exp
{
−Λ̂0i(t) exp(β̂

T
z)

}
. The

direct adjusted survival probability for the ith treatment is given by (3) where n =
∑K

i=1 ni.

We estimate β by maximizing the stratified partial log likelihood function. The cumula-

tive baseline hazard function, Λ0i(t), is estimated by Breslow’s [4] estimator. Suppose that

ni/n −→ pi > 0, as n −→ ∞, for i = 1, · · · ,K. Under regularity conditions found in

Andersen and Gill [15], one can derive the large sample variance of Ŝi(t) following standard

martingale theory (see Andersen et al. [16], Corollary VII.2.5). In the Appendix we give the

variance estimator of Ŝi(t), which is denoted by σ̂2
i,i(t). A (1 − α)100% confidence interval

for Si(t) is given by

Ŝi(t) ± zα/2σ̂i,i(t),

where zα/2 is the α/2 upper percentile of a standard normal distribution. It has been shown

that the cloglog transformed and arcsine-square root transformed confidence intervals yield

better coverage than the linear confidence interval for small samples [17]. One may consider

using a transformation method to construct a confidence interval for Si(t). Explicit formulas
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for cloglog transformation and arcsine-square root transformation can be found in Klein and

Moeschberger [2].

In some studies a comparison of the direct adjusted survival probabilities of two treat-

ments at a given time is of interest [9]. For example, the 5-year survival rate is an important

parameter used to evaluate different treatments in a cancer study. Pointwise comparison

of treatment probabilities can be implemented by constructing a confidence interval for the

difference of the two adjusted survival probabilities [9]. In the Appendix we give the vari-

ance estimator for Ŝi(t)− Ŝj(t), which is denoted by σ̂2
i,j(t). Then a (1−α)100% confidence

interval for Si(t)− Sj(t) is given by

[
Ŝi(t)− Ŝj(t)

]
± zα/2σ̂i,j(t).

3 The SAS Macro

We have written a SAS macro to compute the direct adjusted survival curves. The macro

reports Ŝi(t), σ̂i,i(t) for i = 1, · · · ,K and σ̂i,j(t) for 1 ≤ i < j ≤ K.

The macro requires a SAS data set with the following variables: 1) a variable with the

failure time; 2) an indicator variable that indicates if an event has occurred (coded as 1 for

an event and 0 for censoring); 3) a variable that indexes the treatments (coded as 1, . . . ,K);

and 4) variables for all risk factors.

Suppose the macro is saved as a SAS file with the filename ADJSURV.sas. One can save

a copy of the file in the current working directory, and then use the following SAS statement

to load the macro into the current program.

%INCLUDE ’ADJSURV.sas’;

The macro will be invoked by running the following statement.

%ADJSURV(inputdata, time, event, group, covlist, model, outdata);

where

inputdata the input SAS data set name;

time the failure time variable;

event the event indicator variable;

group the treatment indicator variable;

covlist list of all covariates (risk factors);

model the option for model selection, which takes the value:

1 for a stratified Cox model and
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2 for an unstratified Cox model;

outdata the SAS output data set name;

The results of the macro are saved in the SAS output data set “outdata” and printed in

the output window. The output data set consists of the time variable, the direct adjusted

survivals (surv1, · · · , survK) and their estimated standard errors (se1, · · · , seK) and the

estimated standard errors of the differences between any two direct adjusted survivals (se12,

· · · , se(K-1)K).

4 Examples

4.1 Example 1

In this example we show that our proposed SAS macro can analyze the survival data from

more than two treatment groups and can handle relative large data sets efficiently. Besien et

al. [18] conducted a study to compare three types of stem cell transplantation (unpurged au-

tologous, purged autologous and allogeneic) for treating follicular lymphoma patients. The

study cohort consisted of 904 patients: 597 patients received unpurged autologous trans-

plants, 131 patients received purged autologous transplants, and 176 patients received al-

logeneic transplants. One goal of the study was to assess the effect of type of transplant

on overall mortality after adjusting for all significant risk factors. The significant risk fac-

tors were disease stage pre-transplantation (early versus advanced disease), chemosensitivity

(sensitive, resistant and untreated/unknown), serum lactate dehydrogenase (LDH) (normal,

abnormal and unknown), Karnofsky performance score (90%-100% versus ≤80%), interval

from diagnosis to transplantation (less than 1 year, 1-2 year and more than 2 year), age (≤40

versus >40 years old), year (1990-1993, 1994-1996 and 1997-1998).

We created the following variables: Time=time to death in months; event=1 if dead,

0 otherwise; group=1 if unpurged autologous transplant, group=2 if purged autologous

transplant and group=3 if allogeneic transplant; stage=1 if advanced disease; chemo1=1

if resistent chemosensitivity; chemo2=1 if untreated chemosensitivity; LDH1=1 if abnormal

LDH; LDH2=1 if unknown LDH; kscore=1 if karnofsky performance score ≤ 80; DX2T1=1

if 1-2 year interval from diagnosis to transplant; DX2T2=1 if > 2 year interval; age=1 if age

> 40; year1=1 if year of transplant 1994-1996; and year2=1 if year of transplant ≥ 1997.

These variables were saved in the SAS data set “transplant”.

The macro was saved in the file “ADJSURV.sas” and this file was in the working directory.

The macro was invoked by the statements
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%INCLUDE ’ADJSURV.sas’;

%ADJSURV(transplant,time,event,group, stage chemo1 chemo2 LDH1 LDH2 kscore DX2T1

DX2T2 age year1 year2, 1, out);

This provided an output data set with the adjusted survival estimates based on the

stratified Cox model. To obtain the estimates for the unstratified Cox model we replaced

“1” by “2” in the second to the last argument of the macro. Both the unstratified Cox model

and the stratified Cox model estimates took approximately 28 seconds of CPU time on a

SUN BLADE 2500 workstation with 1.28 GHZ processor and 2GB of RAM. The unadjusted

Kaplan-Meier curves are shown in Figure 1. Figure 3 and 5 show the direct adjusted survival

curves based on the unstratified and stratified Cox model, respectively. The stratified Cox

model is more appropriate since the crude survival curves in Figure 1 show nonproportional

hazards between transplant groups. For the purpose of comparison, the adjusted survival

curves (2) for a patient with mean values of the covariates are also provided (Figure 2 and

4). It should be noted that this is a hypothetical patient and it is difficult to interpret the

survival probabilities for such a patient.

[Insert Figure 1-5 here]

For both models the data set “out” was produced. This data set included 10 variables.

Part of the output based on the stratified Cox model is list below:

Obs time surv1 se1 surv2 se2 surv3 se3 se12 se13 se23

· · · · · ·
265 55.2 0.565 0.022 0.691 0.041 0.520 0.041 0.046 0.047 0.059

266 57.2 0.561 0.023 0.691 0.041 0.520 0.041 0.046 0.047 0.059

267 59.1 0.561 0.023 0.677 0.043 0.520 0.041 0.048 0.047 0.060

268 59.6 0.556 0.023 0.677 0.043 0.520 0.041 0.048 0.047 0.060

269 60.0 0.551 0.023 0.677 0.043 0.520 0.041 0.048 0.047 0.060

· · · · · ·

From this output we can obtain the 5 year (60 month) survival for the three treatments.

These are shown in Table 1 for both models, for the unadjusted Kaplan-Meier estimator

and for the adjusted survival curve (2) available by using the baseline statement in PROC

PHREG.

[Insert Table 1 here]
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Using the output in “out” we can compute 95% confidence intervals for the difference in

adjusted survival or tests of the hypothesis of equal survival between groups at a fixed time

print. These tests and confidence intervals are also available for the unadjusted Kaplan-

Meier statistic. For the adjustment using (2) in SAS PROC PHREG the information needed

for these computations is not available. Table 2 provides these estimates and tests for the

transplant data.

[Insert Table 2 here]

4.2 Example 2

This example data set has been analyzed by Makuch [8], Nieto and Coresh [12], as well as

Cole and Hernán [13]. Among the 76 patients with Ewing’s sarcoma, 29 received the early

standard treatment regimens (S1, S2, S3), 47 received a recent and aggressive regimen (S4).

An important risk factor, the lactic acid dehydrogenase (LDH) level, was recorded for each

patient. The survival curves with various approaches are given in Figure 6-10. Figure 6

shows the Kaplan-Meier curves. The adjusted survival curves based on an unstratified Cox

model using mean value of covariate and using direct adjustment are given in Figure 7 and 8,

respectively. Since two survival curves are crossing (Figure 6), the proportionality assump-

tion may not hold. It indicates that the stratified Cox model may be more appropriate. The

corresponding adjusted survival curves based a stratified Cox model are shown in Figure 9

and 10, which are very close to the curves produced by Cole and Hernán using the inverse

probability weights. Table 3 and Table 4 show the results at the 500 days since initiation

of therapy. The crude survival probabilities at 500 days suggest that the recent aggressive

treatment has a higher survival probability. After adjusting for the LDH level, the estimated

difference in survival at 500 day since initiation of therapy based on a stratified Cox model is

-0.06 (95% CI: (-0.24, 0.12); p = 0.51), which indicates that there is no statistical difference

in 500-day survival between two treatment groups.

[Insert Figure 6-10 here]

[Insert Table 3 and 4 here]
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5 Discussions

We have presented a SAS macro to compute the direct adjusted survival curves and the

variances based on a stratified or unstratified Cox model. These curves, as discussed in

Thomsen et al. [6], provide more realistic estimates of the “average” survival probability for

a treatment by presenting the average survival curve if each patient in the sample had received

a given treatment. The average survival curve presented here is equal to EZ{Ŝ(t|Z)},
where the expectation is taken over the empirical distribution of Z based on the complete

sample. In practice one could take this expectation over different distribution for Z to

obtain the average survival function for a hypothetical population with this distribution of

the covariates.

The macro provides estimates of the standard errors of the difference in survival curves

at all time points. These can be used to make comparisons on survival between different

treatment arms at a fixed time point. One could use these estimates to construct pointwise

confidence intervals for the difference in adjusted survival but we strongly recommend a

confidence band that accounts for multiple testing in looking at a range of time points. The

technique for constructing a confidence band for the difference in adjusted survival can be

found in Zhang and Klein [14].

The macro can be found on our website at

“http://www.biostat.mcw.edu/software/SoftMenu.html”.
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APPENDIX

Let Nij(u) = I{Tij ≤ u,Dij = 1}, N i =
∑

j Nij, and Yij(u) = I{Tij ≥ u}. For

convenience we introduce some notations:

G
(m)
k (β, t) =

1

nk

nk∑

l=1

Ykl(t)Z
⊗m
kl eβ

T
Zkl,

Ek(β, t) = G
(1)
k (β, t)/G

(0)
k (β, t),

V k(β, t) = G
(2)
k (β, t)/G

(0)
k (β, t) −Ek(β, t)⊗2,

for k = 1, · · · ,K, and m = 0, 1, 2, where for a column vector a, a⊗0 = 1, a⊗1 = a, and

a⊗2 = aaT . Following standard martingale theory (Andersen et al. [16], Corollary VII.2.5)

the variance of Ŝi(t) can be estimated by

σ̂2
i,i(t)=

1

n2

K∑

k1=1

nk1∑

l1=1

K∑

k2=1

nk2∑

l2=1

Ŝi(t;Zk1l1)Ŝi(t;Zk2l2)

∫ t

0

exp
{
β̂

T
(Zk1l1+Zk2l2)

} dN i(u)
(
niG

(0)
i (β̂, u)

)2

+
1

n3

[
K∑

k1=1

nk1∑

l1=1

(
Ŝi(t;Zk1l1)ĥi(t;Zk1l1)

)T
] (

Σ̂
−1

)[
K∑

k2=1

nk2∑

l2=1

(
Ŝi(t;Zk2l2)ĥi(t;Zk2l2)

)]
,

where

Σ̂ =
1

n

K∑

k=1

∫ ∞

0

V k(β̂, t)dNk(t)

ĥi(t;Z) =

∫ t

0

eβ̂
T

Z
[
Z − Ei(β̂, u)

] dN i(u)

niG
(0)
i (β̂, u)

.
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Similarly, the variance of Ŝi(t)− Ŝj(t) can be estimated by

σ̂2
i,j(t)=

1

n2

K∑

k1=1

nk1∑

l1=1

K∑

k2=1

nk2∑

l2=1

Ŝi(t;Zk1l1)Ŝi(t;Zk2l2)

∫ t

0

exp
{
β̂

T
(Zk1l1+Zk2l2)

} dN i(u)
(
niG

(0)
i (β̂, u)

)2

+
1

n2

K∑

k1=1

nk1∑

l1=1

K∑

k2=1

nk2∑

l2=1

Ŝj(t;Zk1l1)Ŝj(t;Zk2l2)

∫ t

0

exp
{

β̂
T
(Zk1l1+Zk2l2)

} dN j(u)(
njG

(0)
j (β̂, u)

)2

+
1

n3

[
K∑

k1=1

nk1∑

l1=1

(
Ŝj(t;Zk1l1)ĥj(t;Zk1l1) − Ŝi(t;Zk1l1)ĥi(t;Zk1l1)

)T
] (

Σ̂
−1

)

×
[

K∑

k2=1

nk2∑

l2=1

(
Ŝj(t;Zk2l2)ĥj(t;Zk2l2) − Ŝi(t;Zk2l2)ĥi(t;Zk2l2)

)]
.
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Figure 1. Kaplan−Meier curves 
  by type of transplantation
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Figure 2. Adjusted survival curves based on 
an unstratified Cox model using baseline statement
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Figure 3. Direct adjusted survival curves 
based on an unstratified Cox model
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Figure 4. Adjusted survival curves based on 
a stratified Cox model using baseline statement
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Figure 5. Direct adjusted survival curves 
based on a stratified Cox model
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Figure 6. Kaplan−Meier curves 
  by type of transplantation
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Figure 7. Adjusted survival curves based on 
an unstratified Cox model using baseline statement
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Figure 8. Direct adjusted survival curves 
based on an unstratified Cox model
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Figure 9. Adjusted survival curves based on 
a stratified Cox model using baseline statement
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Figure 10. Direct adjusted survival curves 
based on a stratified Cox model

S1−S3
S4
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Table 1. Estimate of survival and standard error at 5 years post transplant.

Direct Adjusted Via Baseline Command

Type of Transplant Kaplan-Meier Stratified Unstratified Stratified Unstratified

Unpurged Autologous 0.55 (0.03) 0.55 (0.02) 0.57 (0.02) 0.57 (0.03) 0.59 (0.02)

Purged Autologous 0.62 (0.05) 0.68 (0.04) 0.67 (0.04) 0.70 (0.05) 0.70 (0.04)

Allogeneic 0.52 (0.04) 0.52 (0.04) 0.42 (0.04) 0.53 (0.05) 0.41 (0.05)

Table 2. Estimated difference in survival at 5 years post transplant.

Kaplan-Meier Stratified Unstratified

Difference Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P

Unpurged − Purged -0.07 (-0.18, 0.03) 0.18 -0.13 (-0.22, -0.03) <0.01 -0.10 (-0.18, -0.02) 0.02

Unpurged − Allogeneic 0.03 (-0.06, 0.13) 0.49 0.03 (-0.06, 0.12) 0.51 0.16 (0.08, 0.24) < 0.01

Purge − Allogeneic 0.11 (-0.02, 0.23) 0.09 0.16 (0.04, 0.27) < 0.01 0.26 (0.15, 0.37) < 0.01

Table 3. Estimate of survival and standard error at 500 days from initiation of therapy.

Direct Adjusted Via Baseline Command

Type of Transplant Kaplan-Meier Stratified Unstratified Stratified Unstratified

S1-S3 0.45 (0.09) 0.61 (0.06) 0.65 (0.06) 0.67 (0.08) 0.71 (0.08)

S4 0.74 (0.06) 0.67 (0.06) 0.62 (0.05) 0.74 (0.07) 0.70 (0.06)

Table 4. Estimated difference in survival at 500 days from initiation of therapy.

Kaplan-Meier Stratified Unstratified

Difference Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P

S1-S3 − S4 -0.30 (-0.52, -0.08) < .01 -0.06 (-0.24, 0.12) 0.51 0.02 (-0.12, 0.17) 0.73
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