
 05/2017

Cheese Cluster User Guide

Cheese Cluster Design:

gouda.biostat.mcw.edu

Maui Scheduler Torque Resource Manager

/home/user

You

Job Submission Script

SoftwareCPU, Mem, etc.Input Files

Shared
Filesystem

/home
/data

/usr/local

colby.biostat.mcw.edu

cheddar.biostat.mcw.edu

savage.pcor.mcw.edu

kingkong.pcor.mcw.edu

megatron.pcor.mcw.edu

Login/Head
Node

Compute
Nodes

1 login/head node – gouda.biostat.mcw.edu

5 compute nodes – colby.biostat.mcw.edu, cheddar.biostat.mcw.edu, savage.pcor.mcw.edu,

kingkong.pcor.mcw.edu, megatron.pcor.mcw.edu

Cluster Etiquette:

A cluster is a wonderful shared resource that allows users to store files and run jobs

simultaneously. In order to maintain proper function and use, please follow these guidelines:

1. All jobs must be run through the queueing system.

Reason: For the cluster to work properly as a shared resource, all jobs must go through

the queueing system. If you are running jobs outside of the queueing system on compute

nodes, you may cause those nodes to fail, and other users may lose work as a result.

2. Do not start computationally intensive work on the cluster head node.

Reason: The head node runs user logins, manages jobs, and mounts data storage. All

three of those services must work for the cluster to function. If you start intensive

 05/2017

computing on the head node, you may cause some or all of those services to fail or the

node itself to fail, resulting in lost work for you and others.

3. User login is restricted to the cluster head node unless access to a compute node is needed

to debug a failed job.

Reason: Any processing on a compute node that is done outside the queueing system can

cause the node to fail. Simply put, if you’re not supposed to be computing there, you

don’t need to be logged in.

Job Submission & Monitoring

Gouda uses Torque and Maui for management and scheduling. This is a well-documented solution
for high performance computing systems. Below you will find information on common TORQUE/Maui
commands for submitting, monitoring, and diagnosing your jobs, as well as helpful examples for
writing your own job submission scripts.

Common TORQUE Shell Commands

qsub submit a job $ qsub myjob.sh

qstat show status of jobs $ qstat

qdel delete a job $ qdel job_id

qhold place a hold on a job $ qhold job_id

qrls release a hold on a job $ qrls job_id

Common Maui Shell Commands

checkjob display job information $ checkjob job_id

showbf show resource availability $ showbf

showq display queue of active and idle jobs $ showq

showstart show estimated start time of job $ showstart job_id

showstats show usage stats for user $ showstats -u user_id

Monitoring Jobs

qstat -a list all jobs

qstat -u user_id list jobs of user_id

qstat -f list full information of all jobs

qstat -f job_id list full information about job_id

qstat -r list all running jobs

pbsnodes list full information about compute nodes

Batch Processing Jobs

 05/2017

Batch processing is the most common and effective method of submitting work to RCC clusters.

In batch processing the queuing system takes control of the user's submitted job, runs it on the

appropriate compute resource, and returns the output to the user. The queuing system accepts

jobs in the form of submission scripts, which define the parameters of the job, i.e. # of nodes, #

of processors, input files, output files, etc.

Torque Job Scripts

 Example job Script - myTORQUEscript.sh:

#!/bin/bash

#PBS -N myjob # Set job name to myjob

#PBS -m ae # Email status when job completes

#PBS -M your@email.address # Email to this address

#PBS -l nodes=1:ppn=4 # Request 1 node with 4 processors

#PBS -l mem=8gb # Request 8gb memory

#PBS -l walltime=1:00:00 # Request 1hr job time

#PBS -j oe # Join output with error output

#PBS -q queue # Request specific queue

cd $PBS_O_WORKDIR # Change to submission directory

command input_file output_file # Run your command

Submit Job

$ qsub myTORQUEscript.sh # Submit job to TORQUE queuing system

Monitor Job

$ qstat # List all jobs

$ qstat -f job_id # List all information about job_id

Interactive Jobs

While batch processing is best, the TORQUE queuing system also supports interactive workload.

Interactive jobs are best used for iterative workflow requiring user input. Example use includes

interactive tools such as RStudio, MATLAB, or SAS.

 05/2017

Submit Job

[test@gouda ~]$ qsub -I

qsub: waiting for job 92 to start

qsub: job 92 ready

This will result in a new prompt:

[test@megatron ~]$

Notice you are now on the compute node kepler04 and ready to submit your workflow

interactively.

End Job

[test@megatron ~]$ exit

logout

qsub: job 92 completed

Windowed Applications

Some applications that you may run in an interactive job will require X Windows for their GUI
interface. Examples include Matlab, RStudio, etc.

 Submit an interactive job with X Windows enabled:

[test@gouda~]$ qsub -I -X

Interactive Job TORQUE Scripts

 05/2017

You may wish to specify job parameters in a job script for your interactive job.

 Example interactive job script:

#!/bin/bash

#PBS -N myjob # Set job name to myjob

#PBS -l nodes=1:ppn=4 # Request 1 node with 4 processors

#PBS -l mem=8gb # Request 8gb memory

#PBS -l walltime=1:00:00 # Request 1hr job time

#PBS -I # Request Interactive job

cd $PBS_O_WORKDIR # Change to submission directory

Available Queues

Queue Max Walltime Max Cores Comments

small 72 hrs 8 Single-node jobs using up to 8 cores

medium 96 hrs 32 Multi-node jobs up to 32 cores

large 168 hrs 128 Multi-node jobs up to 128 cores

Diagnosing Job Failure

Job failure can occur due to user error, system failure, or other compounding factors. It is often

the most frustrating part of computational work. Please follow these steps if you think your job

has failed:

 What is the job status? Use command qstat -j job_id.

 Job status is C. Job has cleared, check logs for job completion or errors.

 Job status is H. Job is held and will not run.

 Does the job violate queue policies? Use command showq.

 Job is eligible. Requested resource may not be available. Job will run when available.

 Job is blocked. Job will not run due to violation of queue policy. Use

command checkjob -v job_id.

 Use tracejob to diagnose job failure.

$ tracejob [-a|s|l|m|q|v|z] [-c count] [-w size] [-p path] [-n <DAYS>] [-

f filter_type] <JOBID>

-p : path to PBS_SERVER_HOME

-w : number of columns of your terminal

-n : number of days in the past to look for job(s) [default 1]

-f : filter out types of log entries, multiple -f's can be specified

error, system, admin, job, job_usage, security, sched, debug, debug2, or

absolute numeric hex equivalent

-z : toggle filtering excessive messages

 05/2017

-c : what message count is considered excessive

-a : don't use accounting log files

-s : don't use server log files

-l : don't use scheduler log files

-m : don't use MOM log files

-q : quiet mode - hide all error messages

-v : verbose mode - show more error messages

$ tracejob -v job_id

Finding More Information

TORQUE/Maui is a popular, widely used solution with lots of available documentation. While

the basics are provided here, specific details of each TORQUE/Maui commands are available

online.

http://docs.adaptivecomputing.com/maui/pdf/mauiadmin.pdf

Software

Using R:

R is traditionally used as an interactive data analysis tool. It works well on a desktop computer

where one user can make use of all resources. In a cluster environment, users are not alone and

must share the available resources. This differnece can someitmes lead to R users running

unwanted jobs in the wrong place, such as the cluster login/head node, which can negatively

affect other cluster users. Therefore, RCC has defined several use cases of the R software

package.

Small Interactive Jobs:

Small interactive jobs include light plotting, simple analysis of small data sets, etc. These jobs

never take more than one core, a few GB of memory, and never last more than a few min. These

small, fast jobs are allowed on the cluster login node, gouda.biostat.mcw.edu. However, use

caution when running these jobs and double-check that they will not use larger resources. Users

that violate this policy will be warned and advised on proper usage.

Multi-core Jobs Using Rscript:

Multi-core jobs should be run on the cluster compute nodes using the Torque queuing system.

There are several options for running these jobs in Torque, including the Rscript command and

the BatchJobs library. Both methods interface R with Torque, however, their use cases are

different. The Rscript command should be used when you have written an R program .r file and

would like to run this script on the cluster. The BatchJobs library should be used when you

http://docs.adaptivecomputing.com/maui/pdf/mauiadmin.pdf

 05/2017

would like to test individual functions in a semi-interactive way and submit this work to the

cluster.

Example Torque submission script:

#!/bin/bash

#PBS -N myRexample # Set job name to myjob

#PBS -l nodes=1:ppn=4 # Request 1 node with 4 processors

#PBS -l mem=8gb # Request 8gb memory

#PBS -l walltime=1:00:00 # Request 1hr job time

#PBS -V # Use submission environment

cd $PBS_O_WORKDIR # Change to submission directory

Rscript Rtest.r # Run R script “Rtest.r”

Submit the job:

$ qsub myRtest.sh # Submit job to Torque

Multi-core Jobs Using BatchJobs:

BatchJobs is an R library that interfaces the R command-line with the cluster's Torque queuing

system.

Load and start R:

$ R

Load R BatchJobs library:

> library(BatchJobs)

Loading required package: BBmisc

Sourcing configuration file:

'/usr/lib64/R/library/BatchJobs/etc/BatchJobs_global_config.R'

BatchJobs configuration:

 cluster functions: Torque

 mail.from:

 mail.to:

 mail.start: none

 mail.done: none

 05/2017

 mail.error: none

 default.resources: nodes=1, cores=1, memory=2gb, walltime=8:00:00

 debug: FALSE

 raise.warnings: FALSE

 staged.queries: TRUE

 max.concurrent.jobs: Inf

 fs.timeout: NA

Define data and function:

> my_data <- (1:10)

> my_func <- function(x) x^2

Define an object to store jobs (creates a directory "batchtest-files"):

> reg <- makeRegistry(id = "batchtest")

Map data and function to jobs in "batchtest" object:

> jobs <- batchMap(reg, my_func, my_data)

Submit jobs to cluster (change nodes, cores, mem, and walltime to fit needs):

> jobsubmit <- submitJobs(reg, resources = list(nodes = 1, cores = 1, mem

= 2gb, walltime = 8:00:00))

Check job results:

> reduceResultsVector(reg, fun = function(job, res) res, progressbar =

FALSE)

Syncing registry ...

Reducing 10 results...

 1 2 3 4 5 6 7 8 9 10

 1 4 9 16 25 36 49 64 81 100

Results files:

 05/2017

batchtest-files/

|-- BatchJobs.db

|-- conf.RData

|-- exports

|-- functions

| `-- c0000e09480f70b05365872c2e90ce8a.RData

|-- jobs

| |-- 01

| | |-- 1-result.RData

| | |-- 1.R

| | `-- 1.out

| |-- 02

| | |-- 2-result.RData

| | |-- 2.R

| | `-- 2.out

| |-- ...

|

|-- pending

|-- registry.RData

`-- resources

 `-- resources_1493676907.RData

Results can be displayed in vector format as shown above. Users may also want to view results

in the output files. Each job registry object that is created starts a new file tree as shown here

with the name registryname-files. Job results are located in numbered directories

within the jobs directory. Output files are named jobnumber.out and are numbered in the order of

submission.

