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Educational Objectives 
• Gain an introductory level understanding of what is 

Bayesian statistics 
 

• Learn essential concepts of Bayesian statistics such as 
conditional probability; prior, posterior and predictive 
distributions; credible intervals 

 
• Identify situations in medical research where Bayesian 

statistics can be particularly useful 
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Evaluation Forms 
Your opinion matters! 

Help us plan future meetings, by completing and submitting 
your evaluation forms. 

 
Thank you. 
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Outline

I Interpretation and calibration of probability

I Conditional probability and Bayes Theorem

I Prior, posterior and predictive distributions

I Credible (or posterior probability) intervals

I Testing hypotheses

I When particularly to use Bayesian methods



Probability – Interpretation and
Calibration

I Traditional view: inherent property of process;
long-run relative frequency

I A drug’s success in a large population
I Outcomes of games of chance for a casino

I Bayesian view: degree of uncertainty; inherently
subjective, depending on available information

I Chance of snow tomorrow
I Prediction of outcome for an individual patient

In both viewpoints, conditional probability is an
essential concept



Conditional Probability

I Twenty percent of adults smoke: P (S) = 0.20

I Forty five percent of smokers are women:
P (W |S) = 0.45

I Eighteen percent of women smoke:
P (S|W ) = 0.18

I An overwhelming majority of race car drivers
are men, yet only a small fraction of men are
race car drivers.

I It is crucial to keep target and conditioning
events clear and straight



Conditional Probability

The conditioning event focuses attention on a
subset of possibilities

P (S|W ) = P (S and W )
P (W ) , P (W ) > 0

P (S and W ) = P (W )P (S|W ) = P (S)P (W |S)
Women smokers make up (0.20)(0.45) = 0.09 of
the population of adults

0.09 = P (W )(0.18) gives P (W ) = 0.09/0.18 = 0.5

Then P (M) = 0.5, P (M and S) = 0.11 and
P (S|M) = 0.11/0.5 = 0.22,
P (M |S) = 1− 0.45 = 0.55



Reversing Target and Conditioning
Events: Bayes Theorem

Suppose we know the probability of a symptom S
under each of a set M1,M2, . . . ,Mk of mutually
exclusive and exhaustive medical conditions.

I These medical conditions are deemed to have
probabilities P (M1), . . . , P (Mk) adding to 1.

I A patient shows symptom S. Given this
information, how do we update the
probabilities of the medical conditions?

P (Mi|S) ∝ P (Mi)P (S|Mi), i = 1, . . . , k

Posterior ∝ Prior × Likelihood



Bayes Theorem for Statistical
Inference: a Simple Illustration

A snippet from Dr. Jeff Whittle’s hypertension
study of members of veteran’s organizations such as
the VFW and the American Legion:

A random sample of 404 vets showed that 184 had
uncontrolled hypertension

How does Bayes Theorem help here?

The unkown quantity of interest is the uncontrolled
HTN percentage in the entire population of
veterans. Call this θ (expressed as a fraction).



Representing Knowledge: Prior and
Posterior Distributions

Knowledge about any unknown is described by a
probability distribution

State of knowledge before data collection is called
the Prior (data-excluded knowledge distribution)

State of knowledge conditional on data is called the
Posterior (data-informed knowledge distribution)



Prior and Posterior: Vet HTN
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Posterior (Credible) Interval: Vet
HTN
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Predictive Distribution: Vet HTN

20 30 40 50 60 70

0.00

0.02

0.04

0.06

0.08

number with uncontrolled hypertension in future sample of size 100

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty



Comments on Prediction

• Predictive distribution can address a single
individual or a group. For example, a physician’s
patient panel.

• It includes the data-informed uncertainty in the
knowledge of the population parameter as well as
the patient-to-patient or group-to-group variation.

• Traditionally, prediction has been under-utilized in
medical studies. This may be partially due to
conceptual issues with traditional methods.

• Prediction is natural and straightforward from the
Bayesian viewpoint.



More Freedom in Asking Questions

Once the data-informed posterior distribution for
the unknown parameter(s) is obtained, it is generally
easy to describe the posterior distributions of any
other quantities that derive from the parameter(s).

For example, data on heights of two age-groups of
children can result in posteriors for µ1, σ1, µ2, σ2.
From this we can get posteriors for µ1 − µ2, σ1/σ2,
σ1− σ2 or even the difference in the two coefficients
of variation σ1

µ1
− σ2

µ2
.



Posterior for Means: Vet HTN
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Difference in Quantiles: Vet HTN
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Difference in Quantiles: Vet HTN
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Accumulating Knowledge

A few years from now, suppose Dr. Whittle
conducts another study of the vets.

• Should he begin again with the flat prior, acting
as if no knowledge about θ gained from Study I
applies to Study II?

• Should he use the posterior from Study I as the
prior in Study II?

• Study II prior somewhere between the above two?

Bayesian statistics enables such use of gained
knowledge and aims to add to it with new data.



Choice of Prior

• Context dependent; available knowledge about
setting needs careful quantification.

• Elicitation of more easily interpretable quantities
related to the statistical parameter.

• Use of historical data.

• Expert opinion.

• Information pooling.

• Low-information priors; “no knowledge”; reference
priors; objective priors.



Testing Hypotheses

Bayes Theorem provides a straightforward recipe for
testing hypotheses such as

H0 : θ < 0.5 versus H1 : θ ≥ 0.5

We need these ingredients:

I Prior probability P (H0) (P (H1) = 1− P (H1))

I Prior distributions for θ under each hypotheses

I Observed data

We can then calculate posterior probability
P (H0|data)



Testing Hypotheses: Vet HTN

For illustration, take prior for θ to be
U(0, 0.5) under H0 and U(0.5, 1) under H1.

Data: 184 with uncontrolled HTN among 404 vets

With P (H0) = 0.5,
P (H0|data) = 0.96 and P (H1|data) = 0.04

With P (H0) = 0.25,
P (H0|data) = 0.89 and P (H1|data) = 0.11

Simple, direct interpretation; but depends on P (H0)



Testing Hypotheses: Bayes Factor

We can remove the influence of P (H0) on the
answer by using odds in place of probabilities

Prior odds for H0 are P (H0)/P (H1)

Posterior odds for H0 are P (H0|data)/P (H1|data)
Ratio of Posterior to Prior odds is free of P (H0)

This is called Bayes Factor,
BF01, in favor of H0 against H1

BF in favor of H1 is BF10 = 1/BF01

Note the symmetry of the two hypotheses



Bayes Factor Interpretation

For Vet HTN data, BF in favor of θ < 0.5 = 26.2

Multiply your prior odds by BF
to get your posterior odds

BF is viewed as weight of evidence in data

Jeffreys’s guidelines
BF01 Evidence for H0 against H1

1 to 3.2 Not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong
> 100 Decisive



When to use Bayesian Methods:
Some Practical Advice

One or more of the following:

I Some focus on prediction

I Important information external to data at hand

I Combining information sources

I Modeling of complex data

I Adaptive clinical trials



Combining Information Sources

I Brophy et al. Beta-blockers in congestive heart failure. Annals of
Internal Medicine, 134(7):550-560; 2001.

I Babapulle et al. A hierarchical Bayesian meta-analysis of
randomised clinical trials of drug-eluting stents. The Lancet,
364(9434):583-591; 2004.

I Orr, R. The Impact of Prophylactic Axillary Node Dissection on
Breast Cancer Survival: A Bayesian Meta-Analysis. Annals of
Surgical Oncology, 6(1):109-116; 1999.

I Salpeter et al. Bayesian Meta-analysis of Hormone Therapy and
Mortality in Younger Postmenopausal Women. The Americal
Journal of Medicine, 122(11):1016-1022; 2009.

I Nate Silver



Complex Data Modeling
I Flores et al. A Systems Biology Approach Reveals Common

Metastatic Pathway in Osteosarcoma. BMC Systems Biology,
6:50; 2012.

I Guo et al. Bayesian Estimation of Genomic Copy Number with
Single Nucleotide Polymorphism Genotyping Arrays. BMC
Research Notes, 3:350; 2010.

I Popovic et al. Transforming growth factor beta signaling in
hypertensive remodeling of porcine aorta. American Journal of
Physiology: Heart and Circulatory Physiology, 297:2044-2053;
2009.

I Rosner G and Müller P. Bayesian population pharmacokinetics and
pharmacodynamic analyses using mixture models. Journal of
Pharmacokinetics and Biopharmaceutics, 25(2):209-233; 1997.

I Trevino et al. Analysis of normal-tumour tissue interaction in
tumours: Prediction of prostate cancer features from the molecular
profile of adjacent normal cells. PLoS One, 6(3):e16492; 2011.

I Yang et al. Increased Proliferative Cells in the Medullary Thick
Ascending Limb of the Loop of Henle in the Dahl Salt-Sensitive
Rat. Hypertension, 61(1):208-215; 2013.



Bayesian Adaptive Clinical Trials

I Berry, DA. Adaptive clinical trials in oncology. Nat Rev Clin
Oncol.; 2012.

I Ibrahim el al. Bayesian methods in clinical trials: a Bayesian
analysis of ECOG trials E1684 and E1690. BMC
Med.Res.Methodology, 12:183; 2012.

I Biswas, S et al. Bayesian clinical trials at the University of Texas
M. D. Anderson Cancer Center. Clin Trials 6(3):205-16; 2009.

I Skrivanek et al. Application of Adaptive Design Methodology in
Development of a Long-Acting Glucagon-Like Peptide-1 Analog
(Dulaglutide): Statistical Design and Simulations. Journal of
Diabetes Science and Technology, 6(6):1305-1318; 2012.

I Bayesian Adaptive Methods for Clinical Trials by Berry, Carlin, Lee
& Müller

I Bayesian Methods and Ethics in a Clinical Trial Design by Kadane
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