
Chapter 1

Linear Mixed Model

Implementation

The LMM implementation is available as C source code. It depends on the standard

C libraries CHOLMOD (Davis, 2008) and GSL (Galassi et al., 2009). It can be found

at http://www.mcw.edu/biostatistics/Research/Software

1.1 Data Preparation

A program has been provided for typical data preparation: onetime.c . It depends

on two header files. The first gsl cholmod.h defines two C preprocessor (cpp) macros

that allow GSL to read and write to CHOLMOD matrices present in memory. MAT(A,

B) is used for matrices and VEC(A, B) is used for vectors. They both take two

parameters.

A: A pointer to an already existing matrix created by CHOLMOD.

B: The name of a GSL object to create. No new memory will be al-

located since A already has memory allocated to it. Therefore, you

will not need to “free” the memory associated with B; that will be

taken care of when you “free” A instead. The new B object will need

1



CHAPTER 1. LINEAR MIXED MODEL IMPLEMENTATION 2

Table 1.1: The definitions of the values found in onetime.h .

Variable Definition

p the dimension of the fixed parameters β

q1 the number of primary clusters (hospitals)

q2 the number of secondary clusters (surgeons)

q the number of total clusters

N the number of subjects (patients)

to be operated on as a memory location. For example, if the second

parameter is X, then you will need to access &X .

It is important to note that CHOLMOD has a column-major definition of dense

matrices: adjacent memory locations represent two adjacent cells in a column. GSL

has a row-major definition of dense matrices: adjacent memory locations represent

two adjacent cells in a row. These differing definitions are easily handled; a column-

major matrix is the same as the transpose of a row-major matrix.

The second header file is onetime.h . You need to create this header file based

on your data. For example, for the XS Scenario, the file looks like Figure 1.1.

const int p=4, q1=5, q2=25, q=q1+q2, N=2500;

Figure 1.1: An example of onetime.h based on the XS Scenario.

See Table 1.1 for the definition of the variable names in onetime.h.

The program will read and write several input files in the Matrix Market format

(Boisvert et al., 1996); see Table 1.2.

After compiling onetime.c into onetime.out (or whatever you are calling your

executable), then running onetime.out will produce the output files and it will print

y′y on standard output (stdout).



CHAPTER 1. LINEAR MIXED MODEL IMPLEMENTATION 3

Table 1.2: List of input/output files for onetime.c and their definitions.

Filename: content definition

Y.mtx the input file for the outcome vector y

uX.mtx the input file for the “uncentered” covariates X

X.mtx the output file for the “centered” covariates X

XtX.mtx the output file for X ′X where X has been “centered”

XtY.mtx the output file for X ′y where X has been “centered”

uZ.mtx the input file for the “unordered” Z

ZtZ.mtx the output file for Z̃ ′Z̃

ZtX.mtx the output file for Z̃ ′X where X has been “centered”

ZtY.mtx the output file for Z̃ ′y

P.mtx the output file for the permutation P

u1mask.mtx An output file for a vector of 1s and 0s. The 1s represent the locations

of re-ordered hospitals in ũ; the 0s, re-ordered surgeons.

D1.mtx A similar definition to u1mask.mtx . It is the hospital portion of D̃

with the surgeon portion zeroed out.

D2.mtx A similar definition to D1.mtx . It is the surgeon portion of D̃ with

the hospital portion zeroed out.



CHAPTER 1. LINEAR MIXED MODEL IMPLEMENTATION 4

1.2 Conjugate Priors

The version of the program created for conjugate priors is Normal.c . It depends on

two header files. The first gsl cholmod.h has already been discussed. The second

header file is Normal.h . You need to create this header file based on your data, your

prior parameters and your initial values. For example, for the XS Scenario, the file

looks like Figure 1.2.

const int p=4, q1=5, q2=25, q=q1+q2, N=2500, M=20000;

const double a1=(q1+0.1)/2., b1=0.1,

a2=(q2+0.1)/2., b2=0.1,

ae=(N+0.1)/2., be=0.1,

am=0., bm=0.001,

yty=43137.609891;

double mu=0., taue=1., tau1=1., tau2=1.;

gsl_vector *beta=gsl_vector_calloc(p); // initialized to zeros

Figure 1.2: An example of Normal.h based on the XS Scenario.

See Table 1.3 for the definition of the variable names in Normal.h.

The program will read several input files in the Matrix Market format (Boisvert

et al., 1996); see Table 1.4.

After compiling Normal.c into Normal.out (or whatever you are calling your

executable), then running Normal.out produces an R source file Normal.R containing

the Gibbs samples for β, µ, τ1, τ2 and τε (in that order). Normal.R is the default

name for the output unless you pass a file name as an argument such as Normal.out

example.R



CHAPTER 1. LINEAR MIXED MODEL IMPLEMENTATION 5

Table 1.3: The definitions of the values found in Normal.h .

Variable Definition

p the dimension of the fixed parameters β

q1 the number of primary clusters (hospitals)

q2 the number of secondary clusters (surgeons)

q the number of total clusters

N the number of subjects (patients)

M the number of Gibbs samples to perform

a1 the 1st posterior parameter to the Gamma distribution for τ1

b1 the 2nd prior parameter to the Gamma distribution for τ1

a2 the 1st posterior parameter to the Gamma distribution for τ2

b2 the 2nd prior parameter to the Gamma distribution for τ2

ae the 1st posterior parameter to the Gamma distribution for τε

be the 2nd prior parameter to the Gamma distribution for τε

am the prior mean for µ

bm the prior precision for µ

yty y′y

mu the initial value of µ

taue the initial value of τε

tau1 the initial value of τ1

tau2 the initial value of τ2

beta the initial value of β



CHAPTER 1. LINEAR MIXED MODEL IMPLEMENTATION 6

Table 1.4: List of input files for Normal.c and their definitions.

Filename: content definition

C.mtx the prior precision of β

Cc.mtx the prior mean of β

XtX.mtx X ′X where X has been “centered”

XtY.mtx X ′Y where X has been “centered”

ZtZ.mtx Z̃ ′Z̃

ZtX.mtx Z̃ ′X where X has been “centered”

ZtY.mtx Z̃ ′Y

u1mask.mtx A vector of 1s and 0s. The 1s represent the locations of re-ordered

hospitals in ũ; the 0s, re-ordered surgeons.

D1.mtx A similar definition to u1mask.mtx . It is the hospital portion of D̃

with the surgeon portion zeroed out.

D2.mtx A similar definition to D1.mtx . It is the surgeon portion of D̃ with

the hospital portion zeroed out.



CHAPTER 1. LINEAR MIXED MODEL IMPLEMENTATION 7

1.3 Noninformative Prior

The Noninformative prior version of the program, Normal-Uniform.c, is very similar

to the conjugate prior version. The header file is now named Normal-Uniform.h .

The definition of the parameters is the same except for those associated with τ1 and

τ2: a1, b1, a2 and b2. For example, for the XS Scenario, the file looks like Figure 1.3.

const int p=4, q1=5, q2=25, q=q1+q2, N=2500, M=20000;

const double a1=(q1-1)/2., b1=0.01,

a2=(q2-1)/2., b2=0.01,

ae=(N+0.1)/2., be=0.1,

am=0., bm=0.001,

yty=43137.609891;

double mu=0., taue=1., tau1=1., tau2=1.;

gsl_vector *beta=gsl_vector_calloc(p); // initialized to zeros

Figure 1.3: An example of Normal-Uniform.h based on the XS Scenario.

After compiling Normal-Uniform.c into Normal-Uniform.out (or whatever you

are calling your executable), then running Normal-Uniform.out produces an R source

file Normal-Uniform.R containing the Gibbs samples for β, µ, τ1, τ2 and τε (in that

order). Normal-Uniform.R is the default name for the output unless you pass a file

name as an argument such as Normal-Uniform.out example.R



Chapter 2

Logistic Mixed Model

Implementation

The Logistic Mixed Model implementation is available as C source code. It depends

on the standard C libraries CHOLMOD (Davis, 2008) and GSL (Galassi et al., 2009).

It can be found at http://www.mcw.edu/biostatistics/Research/Software

Although, there are fewer one-time calculations for the Logistic Mixed Model, you

can still use the data preparation program previously discussed: onetime.c . The

only difference is that you need to copy the file V.mtx to the non-existent file Y.mtx

and the program will perform the necessary operations.

2.1 Conjugate Priors

The Logistic Mixed Model program, Logistic.c, is very similar to the LMM version.

The header file is Logistic.h . The header file is nearly identical to Normal.h;

the exceptions are that the parameters ae, be, yty and taue are unnecessary. For

example, for the XS Scenario the file looks like Figure 2.1.

The program will read several input files in the Matrix Market format (Boisvert

et al., 1996); see Table 2.1.

8



CHAPTER 2. LOGISTIC MIXED MODEL IMPLEMENTATION 9

const int p=4, q1=5, q2=25, q=q1+q2, N=2500, M=20000;

const double a1=(q1+0.1)/2., b1=0.1,

a2=(q2+0.1)/2., b2=0.1,

am=0., bm=0.001;

double mu=0., tau1=1., tau2=1.;

gsl_vector *beta=gsl_vector_calloc(p); // initialized to zeros

Figure 2.1: An example of Logistic.h based on the XS Scenario.

Table 2.1: List of input files for Logistic.c and their definitions.

Filename: content definition

C.mtx the prior precision of β

Cc.mtx the prior mean of β

X.mtx X which has been “centered”

V.mtx V which is the dichotomous outcome

Z.mtx Z̃

ZtZ.mtx Z̃ ′Z̃

u1mask.mtx A vector of 1s and 0s. The 1s represent the locations of re-ordered

hospitals in ũ; the 0s, re-ordered surgeons.

D1.mtx A similar definition to u1mask.mtx . It is the hospital portion of D̃

with the surgeon portion zeroed out.

D2.mtx A similar definition to D1.mtx . It is the surgeon portion of D̃ with

the hospital portion zeroed out.



CHAPTER 2. LOGISTIC MIXED MODEL IMPLEMENTATION 10

After compiling Logistic.c into Logistic.out (or whatever you are calling your

executable), then running Logistic.out produces an R source file Logistic.R con-

taining the Gibbs samples for β, µ, τ1 and τ2 (in that order). Logistic.R is the

default name for the output unless you pass a file name as an argument such as

Logistic.out example.R

2.2 Noninformative Prior

The Noninformative prior version of the program, Logistic-Uniform.c, is very simi-

lar to the conjugate prior version. The header file is now named Logistic-Uniform.h

. The definition of the parameters is the same except for those associated with τ1 and

τ2: a1, b1, a2 and b2. For example, for the XS Scenario, the file looks like Figure 2.2.

const int p=4, q1=5, q2=25, q=q1+q2, N=2500, M=20000;

const double a1=(q1-1.)/2., b1=0.25,

a2=(q2-1.)/2., b2=0.25,

am=0., bm=0.1;

double mu=0., tau1=1., tau2=1.;

gsl_vector *beta=gsl_vector_calloc(p); // initialized to zeros

Figure 2.2: An example of Logistic-Uniform.h based on the XS Scenario.

After compiling Logistic-Uniform.c into Logistic-Uniform.out (or whatever

you are calling your executable), then running Logistic-Uniform.out produces an

R source file Logistic-Uniform.R containing the Gibbs samples for β, µ, τ1 and τ2

(in that order). Logistic-Uniform.R is the default name for the output unless you

pass a file name as an argument such as Logistic-Uniform.out example.R



Bibliography

Boisvert, R., R. Pozo, and K. Remington (1996). The Matrix Market exchange

formats: initial design. Technical Report NISTIR 5935, National Institute of Stan-

dards and Technology. [http://math.nist.gov/MatrixMarket].

Davis, T. (2008). User guide for CHOLMOD: a sparse Cholesky factor-

ization and modification package. Department of Computer and Infor-

mation Science and Engineering, University of Florida, Gainesville, FL.

[http://www.cise.ufl.edu/research/sparse/cholmod].

Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi

(2009). GNU Scientific Library Reference Manual (3rd ed.). Network Theory Ltd.

[http://www.gnu.org/software/gsl].

11


