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Abstract 
 Recently, in a series of papers, a method based on pseudo-values has been 
proposed for direct regression modeling of the survival function, the restricted mean and 
cumulative incidence function with right censored data.  The models, once the pseudo-
values have been computed, can be fit using standard generalized estimating equation 
software.  Here we present SAS macros and R functions to compute these pseudo-values.  
We illustrate the use of these routines and show how to obtain regression estimates for a 
study of bone marrow transplant patients.  
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1. Introduction 
 
 In many applications investigators are interested in regression modeling of 

covariates on a survival outcome.  The outcome may be the time to some event or the 

time until a competing risk event has occurred.  Most applications use a Cox regression 

[1] model for the data.  This approach models the hazard rate of the time to an event or in 

the case of competing risk data the crude hazard rate of the event in the presence of all 

the other risks [2].  Statistical procedures for the Cox model are available in most 

statistical packages [3]. 

 Recently [4-8], we have developed a flexible technique to directly model survival 

quantities based on right censored data.  The technique allows direct regression modeling 

of the survival function [9], the restricted mean survival time [5] and the cumulative 

incidence function for competing risks data [4,6,7,8].  The approach uses the pseudo 

values based on the difference between the complete sample and the leave-one-out 

estimators of relevant survival quantities.  These pseudo-values are used in a generalized 

estimating equation (GEE) to model the effects of covariates on the outcome of interest.   

 To apply the methodology one needs to compute the pseudo-values for each 

observation.  This needs to be performed only once.  Once the pseudo values are obtained 

they can be used in a standard GEE program to obtain regression estimates. 

 In this report we present three SAS macros and three R functions to compute the 

pseudo-values for right censored data.  The SAS macro and R function “pseudosurv” 

compute pseudo-values for modeling the survival function based on the Kaplan-Meier 

estimator.  The SAS macro and R function “pseudomean” provide pseudo-values for the 
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restricted mean survival function.  The SAS macro and R function “pseudoci” provide 

pseudo-values for the cumulative incidence function for competing risks data.   

 In Section 2 we present a summary of the statistical background for these 

regression models.  In Section 3 we present our functions and macros.  In section 4 we 

present an example of the macros and functions.  Section 5 concludes with some closing 

remarks. 

2. Methods 

In this Section we present a general approach to censored data regression based 

on pseudo values [4].  This approach has been applied to regression models for the 

cumulative incidence functions in competing risks [4,6,7,8]; for state occupation 

probabilities in general multi-state models [4,8]; for the restricted mean [5] and to the 

survival function [9].  In its most general form let X1, …,Xn be independent and 

identically distributed.  The Xi’s may be random variables, vectors or processes.  Let 

θ=E[f(Xi)] for some f() which may be multivariate.  Let θ̂  be an unbiased (or 

approximately unbiased) estimator of θ.   

Now suppose we have covariates Z1, . . . , Zn which are an iid sample and define 

the conditional expectation of f(Xi) given Zi by 

θi  = E[f(Xi)|Zi]. 

The ith pseudo-observation is defined as 

mˆ ˆ ( 1) ,i
i n nθ θ θ −= ⋅ − −  

where miθ −  is the “leave-one-out” estimator for θ  based on Xj, j ≠ i.  

The regression model for θ corresponds to a specification of the relationship 

between θι and Zi which is provided by a generalized linear model 
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 ( ) T
i ig θ = β Z   (1) 

with g(.) a link function.  Typically we add a column Zi0 to Zi to allow for an intercept β0.  

When θ = (θ(τ1), . . . , θ(τM)) we add to Zi  indicators of the time points, τj, j=1,…,M to 

allow for different intercepts at each time.  Deterministic time dependent covariates 

measured at each of the τj's are also possible.  Estimates of the β’s are based on the 

unbiased estimating equations 
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Here Vi is a working covariance matrix.  A sandwich estimator is used to estimate the 
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The estimators of β can be shown to be asymptotically normal by results of Liang and 

Zeger [10].  One can show that the sandwich estimator converges in probability to the 

true variance. 

Once the pseudo-values have been computed estimators of β can be obtained by 

using standard software for Generalized Estimating Equations (GEE) such as Proc 

Genmod in SAS or the function “geese” in R.  In the next sections we present R and SAS 

routines to compute the pseudo-values in the three situations.  First, we present a routine 

for use when the event of interest is the survival function.  Here we need pseudo-values 

for S(τj)=P[T > τj] at a grid of time points τ1 < … <τM.  When M=1 this allows for a 
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regression model for the survival (or failure) probability at a single point in time.  When 

M>1 then inference is to an entire survival curve.  Our experience [5,6] suggests that five 

to ten time points equally spaced on the event scale works well in most cases.  For this 

parameter the pseudo-values are based on the Kaplan-Meier estimator [10], ˆ( )S i defined 

by 

 ˆ( )
j

j j

t t j

Y d
S t

Y≤

−
= ∏ , (4) 

where t1<…<tD  are the distinct event times, Yj the number at risk and dj the number of 

events at time tj..  Note that when there is no censoring the pseudo-value at τ reduces to 

the indicator that the observation is greater than τ. 

The second set of routines computes pseudo-values for the restricted mean 

lifetime [5].  Note that for survival data the mean time to event is the area under the 

survival curve: 

 
0

( )S u duμ
∞

= ∫  (5) 

 

For right censored data, and in particular when the largest on study time is censored, the 

estimated survival curve does not drop to zero and the estimator of μ obtained by 

plugging in the Kaplan-Meier estimator into (5) does not work well.  An alternative to μ 

is, for τ>0, the restricted mean defined as the area under the survival curve up to time 

τ [2].  This quantity is equal to E[min(T,τ)] and is estimated by the area under the 

Kaplan-Meier curve up to time τ.  That is  

 
0

ˆˆ ( )S u du
τ

τμ = ∫ . 
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 The final set of functions deal with regression models for the cumulative 

incidence function [6,7,8], Ck(t), k=1,2.  For two competing risks with crude hazard rates, 

h1(t) and h2(t) the cumulative incidence function is given by 

 [ ]1 20
0

( ) ( ) exp ( ) ( ) ,k=1,2
u

t

k kC t h u h v h v dv du
⎧ ⎫⎪ ⎪= − +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫  

If t1<…<tD  are the distinct times where one of the events occurs, Yj the number at risk, 

d1j (d2j) the number of type 1 (type 2) events at time tj then the estimate of the cumulative 

incidence is  

1 2( )ˆ ( ) , k=1,2
j i j

jk i i i
k

t t t tj i

d Y d dC t
Y Y≤ ≤

⎡ ⎤ ⎡ ⎤− +
= ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∏ . 

 

3. The Functions 

 We first present the routines for finding pseudo-values for the survival function.  

The SAS macro is pseudosurv(indata, time, dead, howmany, datatau, outdata).  The 

arguments are  

 Indata --- an input data set 
 Time --- the name of the variable which contains the on study times 
 Dead --- the death or event indicator (1 event, 0 censored) 

Howmany --- the sample size (n) 
Datatau --- a SAS data set with the single variable tau which is the M time points 

at which the pseudo-values are to be computed 
Outdata--- the name of the SAS data set that will contain the pseudo-values 

The macro uses Proc Lifetest to compute the Kaplan-Meier estimators at the time points 

in the data set datatau.  The output data set consists of M new lines for each observation 

each of which  includes the original data and two new variables: pseudo which contains 

the pseudo value for this observation and tpseudo which contains the time point at which 

the pseudo-value was computed.   
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 The corresponding R function is the object pseudosurv which has arguments  

Time—event time variable 
Cens---the event indicator (1 event, 0 censored) 
Tmax---a vector with the time points at which the pseudo-values are to be 

computed. 
The function returns a new object with the original time and censoring variables and new 

variables containing the pseudo values.  Here for M time points in Tmax an additional M 

columns are appended to the time and censoring matrix.  Since no sorting of the data 

occurs in the function this can be appended to the original data to obtain an augmented 

file with the pseudo-values.  The function uses the package “survival” in R. 

 To find pseudo-values for the restricted mean we have the SAS macro and R 

function pseudomean.  The arguments of the two functions are the same as above, with 

the exception that the data set datatau in the SAS macro and Tmax in the R function are 

replaced by the maximum cut-off point τ for the restricted mean.  For both functions the 

value of τ needs to be an interior point of the data.  The functions are again based on Proc 

Lifereg in SAS and the package “survival” in R. 

 To find pseudo-values for the cumulative incidence functions the SAS macro 

‘pseudoci’ and the R function ‘pseudoci’ are available.  The SAS macro ‘pseudoci’ 

makes use of a macro ‘cuminc’ to compute the cumulative incidence function.  The 

arguments of the SAS macro cuminc are  

datain---the input data set 
x --- the event time variable 
re --- the indicator of the first competing risk (1--- occurred, 0 --- otherwise) 
de --- the indicator of the second competing risk (1--- occurred, 0 --- otherwise) 
dataout --- the name of an output data set 
cir, cid  --- variable names for the cumulative incidence function of the first and 

second competing risks, respectively 
The macro uses PROC PHREG to obtain the crude hazard rates. hk(t),by fitting two Cox 

models, one for each competing risk, with a single covariate defined to be zero for all 
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cases.  The output statement yields the cumulative crude hazard rate which is converted 

to the hazard rate at the event times.  These are combined in a data step to yield the 

cumulative incidence functions.   

The cumulative incidence macro is called in the macro pseudoci (datain, x, re, de , 

howmany, datatau,dataout) which computes the pseudo-values at the time points in the 

data set datatau.  An expanded data set, dataout, includes all the data in the dataset datain 

and for each tau in datatau an entry for each observation with the variables rpseudo, 

dpseudo, the pseudo values for risks one and two respectively and tpseudo, the time point 

at which each pseudo-value is computed. 

The R function pseudoci has arguments time (the event time variable), status (1 if 

occurrence of risk 1, 2 if occurrence of risk 2 and 0 otherwise).  The final argument is 

Tmax which is a list of time points at which the pseudo-values are to be computed.  The 

function use routines in the “cmprsk” library.  The routine produces an object containing 

the pseudo-values for both competing risks.  The output object consists of columns for 

the time and status variable and the pseudo-values, alternating between the two 

competing risks. 

All the SAS and R functions are available at our website at 

http://www.biostat.mcw.edu/software/SoftMenu.html 

4. Example 

 To illustrate the macros and functions we use a data set on HLA matched sibling 

donor bone marrow transplants [12].  This data set, which consists of data on 137 

transplant patients, can be found on our website at 

http://www.biostat.mcw.edu/homepgs/klein/bmt.html. 
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An abbreviated data set constructed from these data consists of the time to death, relapse 

or lost to follow-up (tdfs), the indicators of relapse and death (relapse, trm), the indicator 

of treatment failure (dfs=relapse+trm), an id number from 1-137 (zid) and three factors 

that may be related to outcome: disease (1-Acute Lymphocytic Leukemia (ALL), 2-Low 

risk Acute Myeloid Leukemia (AML) and 3-High risk AML), the French-American-

British Disease grade for AML (fab=1 if AML and Grade 4 or 5, 0 otherwise), and 

recipient age at transplant (age). 

 We first will examine regression models for disease free survival based on the 

Kaplan-Meier estimator  We will use the SAS macro ‘pseudosurv’ to compute the 

pseudo-values.  In this example we compute pseudo values at 100, 200, 400 and 600 

days.  We assume that the macro is in a file ‘sasmac’ in the current directory.  The SAS 

code to compute the pseudo-values and put them into a permanent SAS data set 

‘pseudoval’ is as follows 

data one; 
input tdfs trm relapse dfs id disease fab age; 
lines; 
2081 0 0 0 1 1 0 26 
1602 0 0 0 2 1 0 21 
       . . . 
113 0 1 1 136 3 0 31 
363 1 0 1 137 3 0 52 
; 
libname out ‘ ‘; 
%include ‘sasmac’; 
data times; 
input tau; 
lines; 
100 
200 
400 
600; 
run; 
%pseudosurv(one,tdfs,dfs,137,times,in.pseudoval) 
proc print; 
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The data set in.pseudoval contains the following. 
 
 
 
Obs  tdfs  trm  rel  dfs   id  disease  fab  rage  pseudo  tpseudo 
1      1     1    0    1    35     1      0    42     0       100   
2      2     1    0    1   108     3      1    20     0       100   

. . . 
  
336  390     0    1    1   117     3      1    23    -0.01    400 
337  414     1    0    1    68     2      1    21     1.00    400 

. . . 
547 2569     0    0    0    39     2      1    19     1       600 
548 2640     0    0    0    93     3      0    18     1       600 
 
To compute regression estimates we use proc GENMOD.  The code to fit a model using 

the complementary log-log link is as follows: 

 

proc genmod; 
class zid disease (param=ref ref=first) tpseudo 
(param=ref ref=first); 
FWDLINK LINK=LOG(-log(1-_MEAN_)); 
INVLINK ILINK=1-EXP(-Exp(_XBETA_)); 
model pseudo= tpseudo disease fab age/dist=normal 
noscale; 
repeated subject=zid/corr=ind ; 

The output is  
 
          Analysis Of GEE Parameter Estimates 
          Empirical Standard Error Estimates 
                        Standard   95% Confidence 
Parameter       Estimate  Error       Limits       Pr > |Z| 
Intercept       1.1898   0.3628   0.4787   1.9008  0.0010 
tpseudo   200  -0.6182   0.1299  -0.8728  -0.3635  <.0001 
tpseudo   400  -1.0398   0.1568  -1.3471  -0.7325  <.0001 
tpseudo   600  -1.3025   0.1693  -1.6344  -0.9707  <.0001 
disease   2     0.9736   0.3009   0.3838   1.5633  0.0012 
disease   3    -0.0490   0.3210  -0.6782   0.5802  0.8788 
fab            -0.5737   0.2650  -1.0932  -0.0543  0.0304 
age            -0.0200   0.0122  -0.0440   0.0040  0.1025 
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The model shows that patients with AML low risk have better disease free survival than 

ALL patients (Relative Risk, RR=exp(-.9736)=0.38) and that AML patients with grade 4 

or 5 FAB have a lower disease free survival (RR=exp(0.5737)=1.77). 

 Without re-computing the pseudo values we could examine the effect of FAB 

over time.  We need to create in the data set a FAB indicator at each of the time points 

and rerun PROC GENMOD.  The code is  

data timedep; set in.pseudoval; 
if tpseudo=100 then fab100=fab;  else fab100=0; 
if tpseudo=200 then fab200=fab;  else fab200=0; 
if tpseudo=400 then fab400=fab;  else fab400=0; 
if tpseudo=600 then fab600=fab;  else fab600=0; 
proc genmod; 
class zid disease (param=ref ref=first) tpseudo (param=ref 
ref=first); 
FWDLINK LINK=LOG(-log(1-_MEAN_)); 
INVLINK ILINK=1-EXP(-Exp(_XBETA_)); 
model pseudo= tpseudo disease fab100 fab200 fab400 fab600 
repeated subject=zid/corr=ind ; 
contrast 'fab'  
fab100 1 fab200 0 fab400 0 fab600 0, 
fab100 0 fab200 1 fab400 0 fab600 0, 
fab100 0 fab200 0 fab400 1 fab600 0, 
fab100 0 fab200 0 fab400 0 fab600 1/wald; 
contrast 'fab by time'  
fab100 1 fab200 -1 fab400 0 fab600 0, 
fab100 0 fab200 1 fab400 -1 fab600 0, 
fab100 0 fab200 0 fab400 1 fab600 -1/wald; 
 
Here the two contrast statements test for an overall FAB effect and if the FAB effect 

changes with time, respectively.  The relevant output is  

              Analysis Of GEE Parameter Estimates 
               Empirical Standard Error Estimates 
                        Standard   95% Confidence 
Parameter      Estimate  Error         Limits      Pr > |Z| 
Intercept       0.7575   0.1950   0.3753   1.1397   0.0001 
tpseudo   200  -0.7413   0.1617  -1.0582  -0.4244   <.0001 
tpseudo   400  -1.1113   0.1873  -1.4784  -0.7443   <.0001 
tpseudo   600  -1.3184   0.1980  -1.7065  -0.9302   <.0001 
disease   2     0.8362   0.2841   0.2792   1.3931   0.0033 
disease   3    -0.2002   0.3079  -0.8037   0.4034   0.5157 
fab100         -0.6454   0.3207  -1.2741  -0.0168   0.0442 
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fab200         -0.3262   0.2753  -0.8658   0.2134   0.2361 
fab400         -0.4075   0.2883  -0.9726   0.1575   0.1575 
fab600         -0.5906   0.3180  -1.2139   0.0327   0.0633 
                       Contrast Results for GEE Analysis 
                                Chi- 
    Contrast           DF     Square    Pr > ChiSq    Type 
    fab                 4       6.19        0.1857    Wald     
    fab by time         3       2.59        0.4593    Wald     
 

This model shows that there is no difference in the FAB effect over time (p=0.4593). 

Now we implement the same operations with R. First we download the data into an R 

object, define the required time points and generate pseudo-values.  We assume that the 

data are in the file ‘data.txt’ in the current directory. 

a<-read.table(file="data.txt", header=T) 
cutoffs <- c(100,200,400,600) 
pseudo <- pseudosurvival(a$tdfs,a$dfs,cutoffs) 

 

The “pseudo” object is as follows. 

> pseudo[order(pseudo$time),] 
 
      time cens    tmax =100  tmax =200  tmax =400   tmax =600 
35     1    1         0          0         0.0000      0.0000 
108    2    1         0          0         0.0000      0.0000 
                    .   .   . 
117  390    1         1          1        -0.0094     -0.0080 
68   414    1         1          1         1.0019     -0.0080  
                    .   .   . 
39  2569    0         1          1         1.0019      1.0032 
93  2640    0         1          1         1.0019      1.0032 
 
The second step requires some data manipulation to prepare for the GEE step. 
 

b <- NULL 
for(j in 3:ncol(pseudo)) b <- rbind(b,cbind(a,pseudo = 
pseudo[,j],tpseudo = cutoffs[j-2])) 
b <- b[order(b$id),] 
library(geepack) 
b$tpseudo <- as.factor(b$tpseudo) 
b$disease <- as.factor(b$disease) 
b$fab <- as.factor(b$fab) 
b$id <- as.factor(b$id) 
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The analysis is completed with GEE regression using the object geese in the package 

GEEPACK[13]. 

summary(fit <- geese(pseudo ~ tpseudo + disease + fab + 
rage, data = b, id=id, scale.fix=TRUE, family=gaussian, 
mean.link = "cloglog", corstr="independence")) 

 

generating 

           estimate   san.se     wald    P-value 
(Intercept)  1.1897   0.3736   10.1423    0.0014 
tpseudo200  -0.6181   0.1316   22.0555   <0.0001 
tpseudo400  -1.0398   0.1575   43.6022   <0.0001 
tpseudo600  -1.3025   0.1702   58.5320   <0.0001 
disease2     0.9735   0.3011   10.4533    0.0012 
disease3    -0.0490   0.3233    0.0229    0.8796 
fab1        -0.5737   0.2662    4.6458    0.0311 
rage        -0.0200   0.0127    2.4818    0.1152 
 

The parameter estimates are the same as those obtained using GENMOD in SAS, 

however variance estimates are a bit higher. In SAS the variance is estimated by a 

“sandwich” estimator m ( )ˆVar β  presented in equation (3). By default, the “geese” function 

in R uses a different “sandwich” estimator of the variance proposed in [13].  In the 

examples where we used this estimator it was consistently larger than m ( )ˆVar β . An 

alternative to the sandwich estimator is the jackknife variance estimators [14].  The 

routine “geese” allows the user to decide between the fully iterated jackknife, the one-

step jackknife, and approximate jackknife (AJ) variance estimates. We suggest using the 

AJ variance estimate. The code and results using that estimator are as follows: 

fit <- geese(pseudo ~ tpseudo + disease + fab + rage, data = b, 
id=id, jack=TRUE, scale.fix=TRUE, family=gaussian, mean.link = 
"cloglog", corstr="independence") 
cbind(mean = round(fit$beta,4), 
SD = round(sqrt(diag(fit$vbeta.ajs)),4), 
Z = round(fit$beta/sqrt(diag(fit$vbeta.ajs)),4),  



14 

PVal=round(2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs)))),4)) 
 
               mean   SD     Z       PVal 
(Intercept)  1.1897 0.3670  3.2416 0.0012 
tpseudo200  -0.6181 0.1272 -4.8602 0.0000 
tpseudo400  -1.0398 0.1533 -6.7831 0.0000 
tpseudo600  -1.3025 0.1654 -7.8758 0.0000 
disease2     0.9735 0.3003  3.2422 0.0012 
disease3    -0.0490 0.3251 -0.1507 0.8803 
fab1        -0.5737 0.2676 -2.1437 0.0321 
rage        -0.0200 0.0125 -1.5962 0.1105 

 

To examine the effect of FAB over time we create four new variables  

b$fab100 <- 0; b$fab100[b$tpseudo==100] <- b$fab[b$tpseudo==100]; 
b$fab200 <- 0; b$fab200[b$tpseudo==200] <- b$fab[b$tpseudo==200]; 
b$fab400 <- 0; b$fab400[b$tpseudo==400] <- b$fab[b$tpseudo==400]; 
b$fab600 <- 0; b$fab600[b$tpseudo==600] <- b$fab[b$tpseudo==600]; 
 
b$fab100 <- as.factor(b$fab100) 
b$fab200 <- as.factor(b$fab200) 
b$fab400 <- as.factor(b$fab400) 
b$fab600 <- as.factor(b$fab600) 

 

and use them in the GEE regression model 

fit <- geese(pseudo ~ tpseudo + disease + fab100 + fab200 + fab400 
+ fab600, data = b, id=id, jack=TRUE, scale.fix=TRUE, 
family=gaussian, mean.link = "cloglog", corstr="independence") 
cbind(mean = round(fit$beta,4), 
SD = round(sqrt(diag(fit$vbeta.ajs)),4), 
Z = round(fit$beta/sqrt(diag(fit$vbeta.ajs)),4),  
PVal = round(2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs)))),4)) 
 

The results are 
 

               mean   SD       Z     PVal 
(Intercept)  0.7575 0.1917  3.9510 0.0001 
tpseudo200  -0.7413 0.1578 -4.6970 0.0000 
tpseudo400  -1.1113 0.1828 -6.0801 0.0000 
tpseudo600  -1.3183 0.1933 -6.8219 0.0000 
disease2     0.8362 0.2797  2.9900 0.0028 
disease3    -0.2002 0.3058 -0.6546 0.5127 
fab1001     -0.6454 0.3187 -2.0253 0.0428 
fab2001     -0.3262 0.2728 -1.1955 0.2319 
fab4001     -0.4075 0.2855 -1.4275 0.1534 
fab6001     -0.5906 0.3155 -1.8719 0.0612 

 

To test the overall FAB effect we use the following R code. 
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C <- rbind( c(0,0,0,0,0,0,1,0,0,0), c(0,0,0,0,0,0,0,1,0,0), 
c(0,0,0,0,0,0,0,0,1,0), c(0,0,0,0,0,0,0,0,0,1)) 
SSH0 <- t(C %*% fit$beta) %*% solve(C %*% fit$vbeta.ajs %*% t(C)) 
%*% (C %*% fit$beta) 
1-pchisq(SSH0,nrow(C)) 
          [,1] 
[1,] 0.1790 

 
To test if the FAB effect differs with time we use the following R code. 

 
C <- rbind(c(0,0,0,0,0,0,-1,1,0,0), c(0,0,0,0,0,0,0,1,-1,0), 
c(0,0,0,0,0,0,0,0,1,-1)) 
SSH0 <- t(C %*% fit$beta) %*% solve(C %*% fit$vbeta.ajs %*% t(C)) 
%*% (C %*% fit$beta) 
1-pchisq(SSH0,nrow(C)) 
          [,1] 
[1,] 0.4443 

 

For the restricted mean time to treatment failure we use the SAS macro or the R 

function “pseudomean”.  To illustrate we look at a regression model for the mean time to 

treatment failure restricted to 2000 days.  Here we use the identity link function.  The 

SAS code, assuming the macro was in the file ‘pseudomu’ is 

%include 'pseudomu'; 
%pseudomean(one, tdfs, dfs, 137,2000,outdata); 
proc genmod; 
class zid disease (param=ref ref=first); 
model psumean= disease fab rage/dist=normal link=id 
noscale; 
repeated subject=id/corr=ind; 

 

The relevant output is  

                      Analysis Of GEE Parameter Estimates 
                       Empirical Standard Error Estimates 
                              Standard   95% Confidence 
Parameter   Estimate     Error        Limits            Z   Pr > |Z| 
Intercept    1154.997 219.2613  725.2530  1584.741     5.27   <.0001 
disease   2  630.5407 185.4911  266.9848   994.0967    3.40   0.0007 
disease   3  143.5041 216.8834 -281.580    568.5878    0.66   0.5082 
fab         -518.600  169.5438 -850.900   -186.301    -3.06   0.0022 
age          -11.5556   6.8876  -25.0551     1.9438   -1.68   0.0934 
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Here we see that AML low risk patients have the longest restricted mean life, namely 

630.5 days longer than ALL patients and that AML patients with FAB class 4/5 have 

lifetimes 578.6 days shorter than the reference group. 

The analogous R commands and output would be 

a<-read.table(file="data.txt", header=T) 
a <- cbind(a,pseudo = pseudomean(time=a$tdfs, dead=a$dfs, 
tmax=2000)$psumean) 
library(geepack) 
a$disease <- as.factor(a$disease) 
summary(fit <- geese(pseudo ~ rage + fab + disease, data = a, id=id, 
jack = T, family=gaussian, corstr="independence", scale.fix=F)) 
cbind(mean = round(fit$beta,4), 
SD = round(sqrt(diag(fit$vbeta.ajs)),4), 
Z = round(fit$beta/sqrt(diag(fit$vbeta.ajs)),4),  
PVal = round(2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs)))),4)) 

 
               mean     SD         Z     PVal 
(Intercept) 1154.9972 223.1147  5.1767 0.0000 
disease2     630.5407 187.2927  3.3666 0.0008 
disease3     143.5041 220.7480  0.6501 0.5156 
fab         -518.6004 172.8409 -3.0004 0.0027 
rage         -11.5556   7.0672 -1.6351 0.1020 
 
 

This R output shows elevated standard deviations resulting in higher P-

values than in SAS output.  

The restricted mean pseudo values with an identity link can also be 
used with the “gee” function from the “gee” package [14] as follows. 
 

library(gee) 
fit <- gee(pseudo ~ disease + fab + rage, data = a, id=id, 
family=gaussian, corstr="independence", scale.fix=F) 
cbind(mean = round(fit$coef,4), 
SD=round(sqrt(diag(fit$robust.variance)),4), 
Z=round(fit$coef/sqrt(diag(fit$robust.variance)),4),  
PVal=round(2-
2*pnorm(abs(fit$coef/sqrt(diag(fit$robust.variance)))),4)) 

 
                mean     SD       Z     PVal 
(Intercept) 1154.9972 219.2613  5.2677 0.0000 
disease2     630.5407 185.4911  3.3993 0.0007 
disease3     143.5041 216.8834  0.6617 0.5082 
fab         -518.6004 169.5438 -3.0588 0.0022 
age         -11.5556   6.8876 -1.6777 0.0934 
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The function “gee” which used the sandwich estimator (3) to estimate the variance shows 

results identical to SAS.  However, “gee” requires the use of a default link function 

(identity for the normal) and does not allow the selection of the complementary log-log as 

needed with the pseudovalue approach for survival and cumulative hazard functions. 

For the cumulative incidence function we use the SAS macro and the R function 

“pseudoci” to compute the pseudo-values.  To illustrate the SAS code we fit the 

complementary log-log model to the relapse cumulative incidence evaluated at 100, 200, 

400, 600 days.  Assuming the macro is in the file ‘pseudoci.txt’  the SAS code is  

%include 'pseudoci.txt'; 
 data times;   
input tau ; 
cards;  
100 
200 
400 
600 
run; 
%pseudoci(one,tdfs,rel,trm,137,times,in.dataoutcr); 
data two;  set in.dataoutcr ; 
 dis2=0; dis3=0; if disease=2 then dis2=1; 
 if disease=3 then dis3=1;  
proc print data=two round; 
proc genmod; 
class zid tpseudo ; 
FWDLINK LINK=LOG(-log(1-_MEAN_)); 
INVLINK ILINK=1-EXP(-Exp(_XBETA_)); 
model rpseudo= tpseudo dis3 dis2 fab /dist=normal noscale  noint; 
repeated subject=zid/corr=ind ; 

 

A partial listing of the SAS output is as follows: 

                            d               r  d   t 
                            i               p  p   p 
                            s               s  s   s 
           t                e      r        e  e   e   d  d 
      O    d  t  r  d       a  f   a    t   u  u   u   i  i 
      b    f  r  e  f   i   s  a   g    a   d  d   d   s  s 
      s    s  m  l  s   d   e  b   e    u   o  o   o   2  3 
      1    1  1  0  1   35  1  0  42   100  0  1  100  0  0 
      2    1  1  0  1   35  1  0  42   200  0  1  200  0  0 
      3    1  1  0  1   35  1  0  42   400  0  1  400  0  0 
      4    1  1  0  1   35  1  0  42   600  0  1  600  0  0 

. . . 
                      Analysis Of GEE Parameter Estimates 
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                       Empirical Standard Error Estimates 
                              Standard   95% Confidence 
Parameter     Estimate    Error       Limits            Z Pr > |Z| 
Intercept       0.0000   0.0000   0.0000   0.0000     .      .     
tpseudo   100   2.5704   0.6280   1.3395   3.8012    4.09   <.0001 
tpseudo   200   2.0100   0.6183   0.7982   3.2218    3.25   0.0012 
tpseudo   400   1.5875   0.6004   0.4107   2.7644    2.64   0.0082 
tpseudo   600   1.4160   0.5935   0.2527   2.5792    2.39   0.0170 
dis3            0.3183   0.5775  -0.8136   1.4502    0.55   0.5815 
dis2            1.7435   0.6561   0.4577   3.0294    2.66   0.0079 
fab            -1.1645   0.5079  -2.1600  -0.1689   -2.29   0.0219 
rage           -0.0146   0.0209  -0.0555   0.0263   -0.70   0.4847 
 

 

 
                        Standard    95% Confidence 
Parameter      Estimate   Error       Limits         Z    Pr > |Z| 
tpseudo   100  -2.5704   0.6280  -3.8012  -1.3395   -4.09   <.0001 
tpseudo   200  -2.0100   0.6183  -3.2218  -0.7982   -3.25   0.0012 
tpseudo   400  -1.5875   0.6004  -2.7644  -0.4107   -2.64   0.0082 
tpseudo   600  -1.4160   0.5935  -2.5792  -0.2527   -2.39   0.0170 
disease   2    -1.7435   0.6561  -3.0294  -0.4577   -2.66   0.0079 
disease   3    -0.3183   0.5775  -1.4502   0.8136   -0.55   0.5815 
fab             1.1645   0.5079   0.1689   2.1600    2.29   0.0219 
age             0.0146   0.0209  -0.0263   0.0555    0.70   0.4847 
 

Here the model suggests that the AML low risk patients have the least likelihood of 

relapse and the AML FAB 4/5 the highest chance of  relapse.  Note that here we are 

modeling the probability of having relapsed where for the Kaplan-Meier curves we are 

modeling the probability of the event occurring. 

R implementation uses the function “pseudoci” which produces a dataset where the 

time and status variables are presented in the first two columns and the pseudo-values are 

located in columns starting from the third.  Odd numbered columns correspond to the 

competing risk with indicator 1 and even numbered columns for the competing risk 

numbered two.  A pair of pseudo-values is given for each time point in “datatau.”  In the 

example, the third column represents the relapse pseudo-value at 100 days, the fourth the 

trm pseudo-value at 100 day, the fifth the relapse pseudo-value at 200 days, the sixth the 
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trm pseudo-value at 200 days, and so forth.  In order to use the “geese” function we need 

only relapse pseudo-values arranged in one column and in another column we need the 

pseudo-value’s time points.  The six lines of code in bold after the call to “pseudoci” 

merge the output of the function with the original data and prepare it for analysis using 

the function “geese.”  The program and output are given below: 

a<-read.table(file="data.txt", header=T) 
cutoffs <- c(100,200,400,600) 
a$icr <- a$rel + 2 * a$trm 
#This code creates a competing risk indicator with value 
# 1 if relapse, 2 if dead in remission, 0 if censored 
pseudo <- pseudoci(a$tdfs,a$icr,cutoffs) 
 
rel_mask <- c(100,-1,200,-1,400,-1,600,-1) 
b <- NULL 
for(j in 3:ncol(pseudo)) b <- rbind(b,cbind(a,pseudo = 
pseudo[,j],tpseudo = rel_mask[j-2])) 
b <- b[order(b$id),] 
b <- b[b$tpseudo != -1,] 
 
library(geepack) 
b$tpseudo    <- as.factor(b$tpseudo) 
b$disease <- as.factor(b$disease) 
b$fab <- as.factor(b$fab) 
fit <- geese(pseudo ~ tpseudo + disease + fab + rage - 1 , data = 
b, id=id, jack = T, 
scale.fix=TRUE, family=gaussian, mean.link = "cloglog", 
corstr="independence") 
cbind(mean = round(fit$beta,4), 
SD = round(sqrt(diag(fit$vbeta.ajs)),4), 
Z = round(fit$beta/sqrt(diag(fit$vbeta.ajs)),4),  
PVal = round(2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs)))),4)) 

 
 

              mean     SD       Z   PVal 
tpseudo100 -2.5704 0.6495 -3.9577 0.0001 
tpseudo200 -2.0100 0.6404 -3.1387 0.0017 
tpseudo400 -1.5875 0.6237 -2.5455 0.0109 
tpseudo600 -1.4160 0.6170 -2.2948 0.0217 
disease2   -1.7435 0.6687 -2.6072 0.0091 
disease3   -0.3183 0.5910 -0.5386 0.5902 
fab1        1.1645 0.5235  2.2244 0.0261 
rage        0.0146 0.0220  0.6640 0.5067 

 
Again the estimates are identical to those obtained in SAS but the bootstrap standard 
errors are slightly larger. 
 
5 Discussion 
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 We have presented SAS macros and R functions to find pseudo-values for 

the survival function, the restricted mean and the cumulative incidence function.  The 

routines can be found on our website at 

http://www.biostat.mcw.edu/software/SoftMenu.html 

 The regression models for the survival function and cumulative incidence 

functions can be based on the functions at a single point in time or they can be for several 

points of the curves.  When a regression model for the entire curve is to be studied we 

recommend five to ten time points roughly evenly spaced on the event scale.  In the 

examples we used an independent working covariance matrix for the GEE calculations.  

Another possibility is to use the empirical correlations between the pseudo-values. [6]  

The “geese” function from the R package “geepack” was used for GEE fitting. 

The “gee” function did not allow us to change mean link function to complementary log 

for the Gaussian family. However, “gee” sandwich variance estimates are identical to 

those in SAS, which is not true for “geese”. 
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