

Statistics, Probability and Diagnostic Medicine

Jennifer Le-Rademacher, PhD

Sponsored by the Clinical and Translational Science Institute (CTSI) and the Department of Population Health / Division of Biostatistics

Speaker Disclosure

In accordance with the ACCME policy on speaker disclosure, the speaker and planners who are in a position to control the educational activity of this program were asked to disclose all relevant financial relationships with any commercial interest to the audience. The speaker and program planners have no relationships to disclose.

Outline

- Define measures of diagnostic accuracy
- Statistics for qualitative tests
 - Sensitivity, specificity
 - Positive and negative predictive values
 - Prevalence, likelihood ratio
- Receiver-Operating Characteristic (ROC) plots
- Illustrative examples

Observed Data

Suppose the observed data are organized as shown:

		Disease	/ Condition	Row
		Present	Absent	total
Positive				T+
Test Results	Negative			T-
Column Total		D+	D-	N

Observed Data

Suppose the observed data are organized as shown:

		Disease /	Disease / Condition	
		Present	Absent	total
Test Results	Positive	True Positive (TP)	False Positive (FP)	T+
Te	Negative	False Negative (FN)	True Negative (TN)	T-
Column Total		D+	D-	N

Accuracy Measurements

- The ability to identify the presence or absence of the disease/condition
 - Sensitivity and specificity

- The ability to predict the presence or absence of the disease/condition
 - Positive predictive value (PPV) and negative predictive value (NPV)

Discriminating Accuracy

 Sensitivity: probability of a person with the disease having a positive test result

$$Sensitivity = \frac{TP}{D+}$$

 Specificity: probability of a person without the disease having a negative test result

$$Specificity = \frac{TN}{D}$$

Predictive Accuracy

Positive predictive value (PPV): probability
 of a person with a positive test result
 having the disease

 $PPV = \frac{TT}{T+T}$

 Negative predictive value (NPV): probability of a person with a negative test result being disease-free

$$NPV = \frac{TN}{T}$$

How good is the liver scan at diagnosis of abnormal pathology? (Altman and Bland, 1994)

		Pat	hology	Row
		Abnormal (+)	Normal (-)	total
Test Results	Abnormal (+)	231	32	
Te	Normal (-)	27	54	
Column Total				

How good is the liver scan at diagnosis of abnormal pathology? (Altman and Bland, 1994)

		Patl	hology	Row
		Abnormal (+)	Normal (-)	total
Test esults	Abnormal (+)	231	32	263
Te	Normal (-)	27	54	81
Column Total		258	86	344

		Patho	ology	Row
		Abnormal (+)	Normal (-)	total
Test Results	Abnormal (+)	231	32	263
Te	Normal (-)	27	54	81
Column Total 258		86	344	

Sensitivity =
$$\frac{TP}{D+} = \frac{231}{258} = 0.90$$

Interpretation: In this study, 90% of patients with abnormal pathology has abnormal scan, i.e., the scan correctly identifies abnormal pathology 90% of the time.

		Patho	ology	Row
		Abnormal (+)	Normal (-)	total
Abnormal (+)		231	32	263
Te	Normal (-)	27	54	81
Col	umn Total	258	86 344	

Specificity =
$$\frac{TN}{D} = \frac{54}{86} = 0.63$$

Interpretation: In this study, 63% of patients with normal pathology has normal scan, i.e., the scan correctly identifies normal pathology 63% of the time.

		Patho	ology	Row	
		Abnormal (+)	Normal (-)	total	
Test Results	Abnormal (+)	231	32	263	
	Normal (-)	27	54	81	
Col	Column Total 258 86		344		

$$PPV = \frac{TP}{T+} = \frac{231}{263} = 0.88$$

Interpretation: In this study, 88% of patients with abnormal scan has abnormal pathology, i.e., the scan correctly predicts abnormal pathology 88% of the time.

		Patho	ology	Row
		Abnormal (+)	Normal (-)	total
Fest sults	Abnormal (+)	231	32	263
Te	Normal (-)	27	54	81
Col	Column Total 258 86		344	

$$NPV = \frac{TN}{T - } = \frac{54}{81} = 0.67$$

Interpretation: In this study, 67% of patients with normal scan has normal pathology, i.e., the scan correctly predicts normal pathology 67% of the time.

Disease Prevalence

 Prevalence: the probability of a person in a population having the disease. In a randomized study (not case-control),

$$Prevalence = \frac{D+}{N}$$

Liver scan example

$$Prevalence = \frac{258}{344} = 0.75$$

Prevalence affects PPV and NPV

Prevalence

		Disease /	ease / Condition		
		Present	Absent	total	
st Ilts	Positive	TP	FP	T+	
Test Results	Negative	FN	TN	T-	
Column Total		D+	D-	N	

- Sensitivity is calculated using only the group with disease
- Specificity is calculated using only the group without disease

Prevalence

		Disease /	sease / Condition	
		Present	Absent	total
st Ilts	Positive	TP	FP	T+
Test Results	Negative	FN	TN	T-
Column Total		D+	D-	N

- PPV and NPV are calculated across the groups with and without disease
- Specific to the performance of a test on the study population

Prevalence

Population A		Patho	ology	Row
		(+)	(-)	total
st Ilts	(+)	231	32	263
Test Results	(-)	27	54	81
Column Total		258	86	344

Population B		Patho	ology	Row
		(+)	(-)	total
it Its	(+)	231	1184	1415
Test Results	(-)	27	1998	2025
Column Total		258	3182	3440

Population	Α	В
Sensitivity	90%	90%
Specificity	63%	63%
Prevalence	75%	7.5%
PPV	88%	16%
NPV	67%	99%

- Given the same test, the rarer the disease the lower PPV and the higher NPV.
- High sensitivity required for a high PPV in rare diseases

Likelihood Ratio

- *LR*: the ratio of the probability of having a test result given the disease to the probability of having the same result without the disease
- Positive LR: reference = 1, high positive LR means test is useful in detecting condition

$$LR = \frac{TP/D +}{FP/D -} = \frac{sensitivity}{1 - specificity}$$

Likelihood Ratio

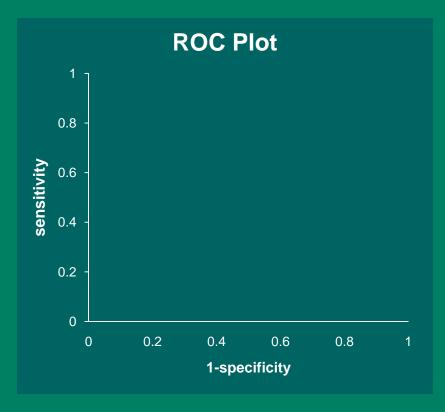
- Used to adjust for post-test probability
 Post-test odds = (pre-test odds)*LR
- Liver scan example

$$LR = \frac{sensitivity}{1 - specificity} = \frac{0.90}{1 - 0.63} = \frac{0.90}{0.37} = 2.4$$
pre-test odds = $\frac{0.75}{0.25} = 3$

post-test odds =
$$(2.4)3 = 7.2$$

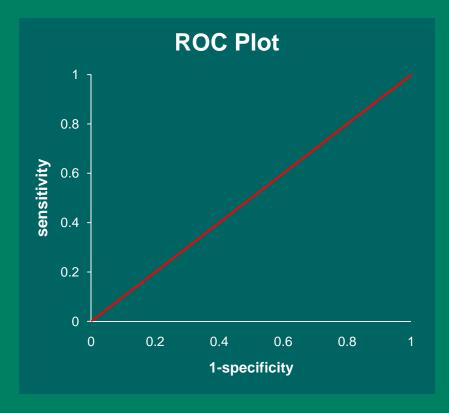
post-test prob=
$$\frac{7.2}{1+7.2}$$
 = .88

Receiver-Operating Characteristic (ROC)

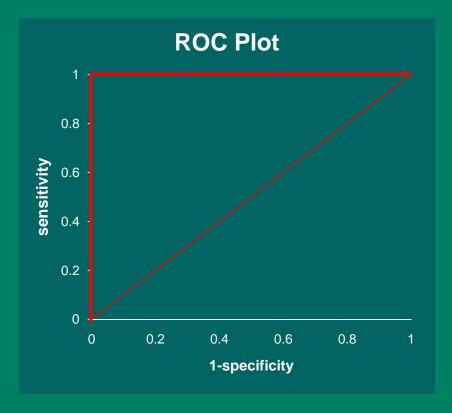

- Used for tests with quantitative results
- Compare diagnostic tests
- Choose the optimal cut point to distinguish "abnormal" from "normal"
- For each cut point, calculate the sensitivity and specificity

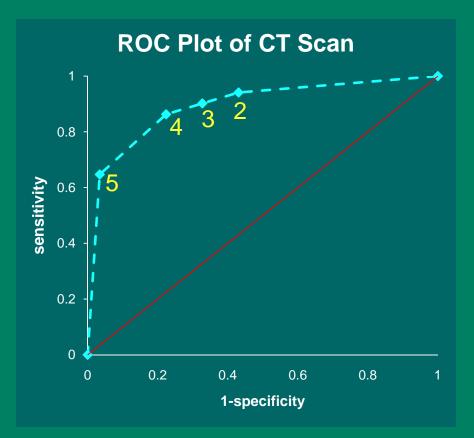
 CT scan example from Hanley and McNeil, 1982

		Disease Status		Row			4.04	4 40 4
		Abnormal	Normal	total		sensitivity	specificity	1-specificity
CT Ratings	Definitely abnormal (5)	33	2	35	→	0.65	0.97	0.03
	Probably abnormal (4)	11	11	22		0.86	0.78	0.22
	Unsure (3)	2	6	8	→	0.90	0.67	0.33
	Probability normal (2)	2	6	8		0.94	0.57	0.43
	Definitely normal (1)	3	33	36				
Column total		51	58	109				

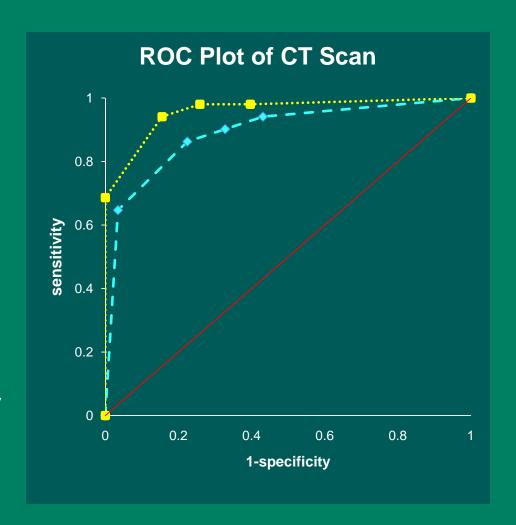

Receiver-Operating Characteristic (ROC)

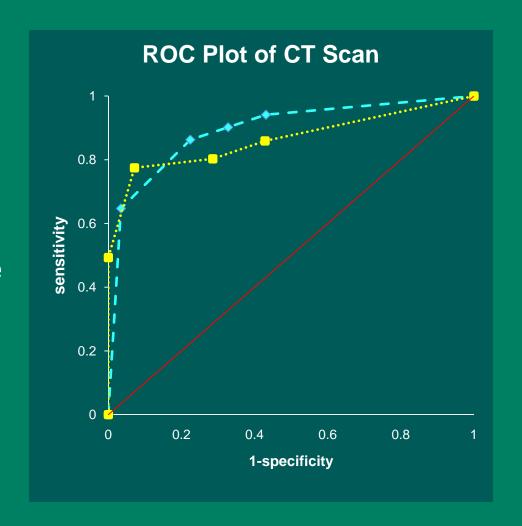
Plot sensitivity vs. (1-specificity)



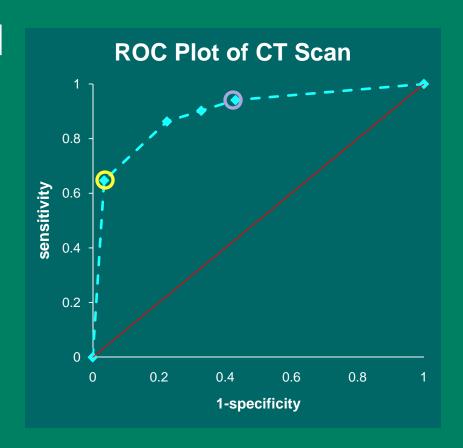

Receiver-Operating Characteristic (ROC)

Reference line - useless test


Test with perfect discrimination


	sensitivity	1-specificity
5	0.65	0.03
4	0.86	0.22
3	0.90	0.33
2	0.94	0.43

- Comparing tests:
 - Curve above and to the left indicates better performance
 - Test 1 hashigher accuracythan Test 2


- Comparing tests:
 - Cross-over
 - Compare the areas under the curves (AUC)

- Area under the ROC curve gives the global assessment of performance of the test.
- It is the probability of a random person with the disease has a higher (more positive) value than a random person without the disease.
- For an uninformative test, the area under the ROC curve = 50%.

- Having determined a good test, pick the best cut point
- Consider:
 - Cost of false diagnose
 - Prevalence of disease

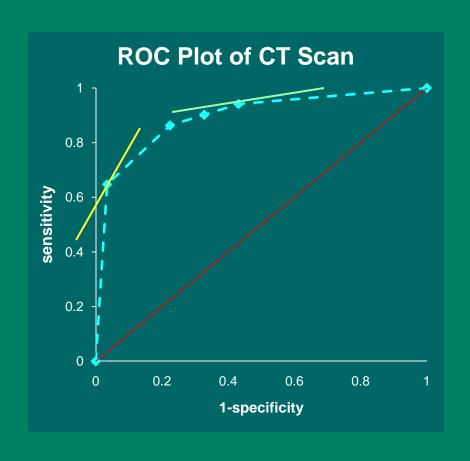
Summary

- Sensitivity and specificity are properties of diagnostic tests
- PPV and NPV are predictive measures and affected by prevalence
- LR used to adjust post-test probability
- Use ROC curves and AUCs to compare performance of multiple tests
- Optimal cut point based on ROC curve depends on costs of false diagnoses and disease prevalence

Resources

- The Clinical and Translation Science Institute (CTSI) supports education, collaboration, and research in clinical and translational science: www.ctsi.mcw.edu
- The Biostatistics Consulting Service provides comprehensive statistical support

http://www.mcw.edu/biostatsconsult.htm



Free drop-in consulting

- MCW/Froedtert/CHW:
 - Monday, Wednesday, Friday 1 3 PM @ Froedtert
 Pavilion, Room #L777A (TRU Offices)
 - Tuesday, Thursday 1 3 PM @ Health Research
 Center, H2400
- VA: 1st and 3rd Monday, 8:30-11:30 am
 - VA Medical Center, Building 111-B-5423
- Marquette: 2nd and 4th Monday, 8:30-11:30 am
 - Olin Engineering Building, Room 338D

- The best cut point can be chosen by minimizing the expected costs.
- It is affected by:
 - Cost of false diagnoses
 - Prevalence of disease

