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Abstract

Often when comparing the survival rates of individuals given either of two treat-

ments the analysis stops with a test of the hypothesis of no treatment di�erence and

perhaps a plot of the two survival functions. The hypothesis test is usually a com-

parison of the two survival curves over the entire observational period. An alternative

approach to this problem is to provide an investigator with a con�dence region for

the set of times at which the survival rates of the two treatments are the same. We

discuss how such con�dence regions can be constructed in three situations. First, we

construct con�dence regions when there are no additional factors that need be adjusted

for. Second, based on a proportional hazards model, we show how to construct the

desired con�dence regions adjusted for explanatory covariates that are not confounded

with the two treatments. Lastly, we extended these results to allow for explanatory

covariates that are confounded with treatment. These approaches are illustrated on

retrospective data gathered to compare the survival rates of allogeneic and autologous

bone marrow transplants for acute leukemia.

1 Introduction

A common problem arising in biomedical applications is the comparison of the survival
functions or hazard rates of two treatments. Most standard statistical tests are based on
comparing the survival curves or equivalently the hazard functions over a given time period.
The time period considered is typically the period from initiation of the treatment to some
point in time where observation of the patients ceases. This comparison may be made by
the log rank test (cf. Andersen et al. 1993), for example, when there are no other covariates
that may inuence survival. When there are other covariates that may a�ect outcome in
addition to the treatments under consideration, testing of treatment e�ects is carried out
by some type of regression technique. Tests may be based on any number of parametric or
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semi-parametric models, but most common are tests based on the Cox (1972) proportional
hazards model.

The results of these analyses tell the investigator whether the two treatments have the
same survival rates or not. When the results of the test indicate that the survival curves
are di�erent the natural question posed by most clinicians is "At what times are these two
treatments di�erent?" The answer to this question is crucial to a patient and physician in
deciding which of the two treatments to use. It is of special importance when one treatment
has higher early survival but lower long term survival. This question is of particular interest
in applications like bone marrow transplantation where, when comparing disease free survival
rates, one procedure may have a higher early mortality rate due to treatment toxicity than
the other treatment but among survivors of this early period the relapse rate is higher.

In this note we present methods for constructing a con�dence region for the times at
which the two treatments have the same survival function. Con�dence regions for the times
at which one treatment has a survival probability at least as high as the other treatment
are also presented. The con�dence regions are found by inverting a test that compares the
survival rates for the two treatments at �xed points in time. The set of all times for which
this test accepts the hypothesis of no treatment di�erence provides the desired con�dence
region. Note that the con�dence region is based on a comparison of the survival rates or
cumulative hazard rates at �xed points in time as opposed to the usual tests which compare
survival for the entire curve.

In the next section we present the results for comparing two treatments when there are
no other explanatory covariates that may a�ect survival. The con�dence region is based on
a comparison of the Nelson-Aalen estimators (Aalen 1978) of the cumulative hazard rates at
each point in time.

In Sections 3 and 4 the problem of constructing a con�dence region for the times at
which the survival rates are the same for the two treatments is considered for cases where an
adjustment for other covariates is needed. In Section 3 we examine the case where there is no
interaction between these other covariates and the main treatment comparison. In Section
4 we consider the problem when there is an interaction between the main treatment e�ect
and some of the covariates. In these sections we base the con�dence regions on a strati�ed
Cox regression model.

In each section we present an example of these con�dence regions using data from The
International Bone Marrow Transplant Registry and The Autologous Blood And Marrow
Registry. The primary comparison of interest is between the leukemia free survival rates of
autologous and allogeneic bone marrow transplants for acute leukemia patients. Autologous
transplants, where a patient's own marrow is used to re grow their immune system, are typ-
ically less toxic then allogeneic transplants where the marrow from an HLA matched sibling
is used. Patients do not experience graft-versus-host disease which is a leading contributor
to death in the �rst several months after transplant. It is well known, however, that graft-
versus-host disease has some protective e�ect against the reoccurrence of the leukemia, so
allogeneic patients who survive the initial period tend to have lower leukemia relapse rates,
o� setting their higher early treatment related mortality. For a patient there is thus a trade
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o� between early high mortality with allogeneic transplants and lower reoccurrence rates. To
help in the decision between these two competing treatment modalities a con�dence region
for the times at which the survival probabilities of the two treatments are the same is of
interest. Also, since autologous transplants are easier to perform as no donor is needed, a
con�dence region for those times where the survival probability for a autologous transplant
patient is not smaller than the corresponding survival probability for an allogeneic transplant
patient is also of interest.

2 Con�dence Regions When There Are No Other Ex-

planatory Covariates

In this section we consider the simple case of comparing two treatments when there are no
explanatory covariates to be adjusted for. Suppose we have independent samples of size n1

and n2 from each of the two treatments. Let Nj(t); j = 1; 2 be the processes that count
the number of events that have occurred in sample j at or prior to time t. Let Yj(t) be the
number at risk at time t in the jth sample, j = 1; 2. Note in this formulation the data may
be right censored and left truncation is allowed (See Andersen et al (1993)). For j = 1; 2 let
�j(t) be the hazard rate of the time to the event in the jth group and let �j(t) =

R t
0 �(u)du

and Sj(t) = expf��j(t)g be the cumulative hazard rates and survival functions.
To construct a (1 � �) � 100% con�dence region for the set of all times, t0, for which

S1(t0) = S2(t0), we consider testing the hypothesis H0 : S1(t0) = S2(t0) against the alter-
native hypothesis HA : S1(t0) 6= S2(t0). Note that this null hypothesis is testing equality
of the two curves at a �xed point in time and is not a test for equality of the two survival
curves over the entire time period. This hypothesis about the equality of the two survival
functions is equivalent to the hypothesis H0 : �1(t0) = �2(t0). It is this hypothesis we shall
test at each point in time since the asymptotic convergence rates of the estimated cumulative
hazard rates tend to be faster than those for the estimated survival functions.

The con�dence region is based on the test statistic formed as the di�erence of the two
Nelson-Aalen estimators of the cumulative hazard functions. The test statistic here is an
estimator of �(t0) = �2(t0)� �1(t0) and is given by

�̂(t0) =
Z t0

0

dN2(u)

Y2(u)
�
Z t0

0

dN1(u)

Y1(u)
; (2.1)

which has a variance that can be estimated by

V ar[�̂(t0)] =
Z t0

0

dN2(u)

[Y2(u)]2
+
Z t0

0

dN1(u)

[Y1(u)]2
; (2.2)

An �-level test of Ho : �(t0) = 0 versus Ha : �(t0) 6= 0 is accepted when

j�̂(t0)=
q
V ar[�̂(t0)]j � z�=2, where z� is the �th upper quantile of a standard normal random

variable. Inverting this test yields a 100� (1� �) con�dence region for the times at which
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S1(t) = S2(t) as ft0 : �z�=2 � �̂(t0)=
q
V ar[�̂(t0)] � z�=2g. Note that the con�dence region

can also be written as ft0 : �̂(t0) � z�=2
q
V ar[�̂(t0)] � 0 � �̂(t0) + z�=2

q
V ar[�̂(t0)]g, so

that the desired region is the set of all those time points for which a (1��)�100% pointwise
con�dence region for �(t) contains 0.

To �nd regions of time where we are (1��)�100% con�dent that S1(t) � S2(t) consider
testing the hypothesis H0 : �1(t0) � �2(t0) versus HA : �1(t0) < �2(t0). This is equivalent
to testing H0 : �(t0) � 0 versus HA : �(t0) > 0. The desired con�dence region is

�
t0 : �̂(t0)=

q
V ar[�̂(t0)] < z�

�
=
�
t0 : 0 � �̂(t0)� z�

q
V ar[�̂(t0)]

�
:

To illustrate these calculations we consider data from a retrospective study of the e�ec-
tiveness of bone marrow transplantation for patients with acute myelocytic leukemia (AML).
Of interest is the comparison of survival rates between patients given either an autologous
(auto) or allogeneic (allo) transplant. The data set consists of data on 1,325 patients reported
over a four year period to either the International Bone Marrow Transplant Registry (allo
transplants) or the Autologous Blood and Marrow Registry (auto transplants). 381 patients
received an autologous transplant and 944 a HLA identical sibling allogeneic transplant.

The comparison of interest is between the leukemia free survival times (LFS) of the two
groups. A patient is considered as an event if they die or their leukemia returns. The
event time is the smaller of the time of relapse or death. Figure 1 shows the Kaplan-
Meier estimators for the two treatment groups. The log rank test of equality of the survival
functions in the two treatment groups is rejected with a p-value of 0:0071.

Figure 2 is a plot of �̂(t0)=
q
V ar[�̂(t0)] against t0. Here �(t0) = �Auto(t0) � �Allo(t0).

The dotted lines at �1:96 are the cuto�s for a 95% con�dence region in that all time points

for which �̂(t0)=
q
V ar[�̂(t0)] lies within that band are included in the region. The 95%

con�dence region for the points where the survival functions are the same for the two types
of transplants is given by the set of all time (in years) in the set

C2 = ft0j t0 2 [0; 0:137) [ [0:143; 0:855) [ [0:880; 1:102) [ [1:124; 1:162)g :

The dashed lines at �1:645 can be used to �nd 95% con�dence regions for all the times
where the survival probability for one treatment is at least as good as for the other treatment.
Of interest here is a con�dence region for those times where patients given an auto transplant
have a survival probability at least as high as patients given an allo transplant. That is the
set of times where SAuto(t) � SAllo(t). A 95%con�dence region is found by determining all
those times that fall below the line at 1:645. That region is given by the following set

C1 = ft0j t0 2 [0; 0:526) [ [0:534; 0:537) [ [0:611; 0:641) [

[0:688; 0:726) [ [0:732; 0:768) [ [0:959; 0:984)g:

This region suggests that in the �rst year after transplant auto patients do not do any worst
then allo patients, but after about one year they have smaller survival probabilities.
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3 Adjustment For Covariates Not Confounded With

Outcome

In many experiments there are other risk factors that need to be adjusted for prior to making
the main comparison between the two treatments. Let Z = (Z1; � � � ; Zp) be a vector of �xed
time covariates that inuence survival. In this section we assume that there is no signi�cant
interaction between the comparison of interest and any of these covariates.

The con�dence region, adjusted for these other covariates, is based on the proportional
hazards model (Cox (1972)). Here we �t a proportional hazards model for the explanatory
covariates stratifying on the treatment of interest. That is we �t the model

�(tjZ;Treatment) =

(
�10(t) expf�

T
Zg; for treatment 1;

�20(t) expf�
T
Zg; for treatment 2:

(3.1)

Let �̂ and I(�̂) be the partial maximum likelihood estimator and the observed information
for this model. An estimator of the baseline cumulative hazard rate for treatment j, j = 1; 2
is given by Breslow's (1975) estimator

�̂j0(t) =
Z t

0

dNj(u)

S
(0)
j (�̂; u)

; where (3.2)

S(0)
j (�̂; u) =

nX
i=1

Yij(u) expf�
T
Zig (3.3)

with Yij(u) the indicator of whether the ith individual is at risk at time u and is in the jth
group.

For an individual with a covariate vector Z0, the two treatments will have the same
survival rate at time t0 if �(tjZ0;Treatment 1) = �(tjZ0;Treatment 2), which from (3.1)
is equivalent to having �10(t0) = �20(t0) or �(t0) = �20(t0) � �10(t0) = 0. Note that this
comparison is independent of the value of Z0. The test statistic for this hypothesis is

�̂(t0) = �̂20(t0)� �̂10(t0): (3.4)

Using standard counting process techniques the large sample variance of this statistic can
be shown to be

V ar[�̂(t0)] =
2X

j=1

Z t0

0

dNj(u)

[S
(0)
j (�̂; u)]2

+W T (�̂; t0)[I(�̂)]
�1
W (�̂; t0); where (3.5)

W
T (�̂; t0) =

Z t0

0

~Z2(�̂; u)d�̂20(u)� ~Z1(�̂; u)d�̂10(u);

~Zj(�̂; u) =
S

(1)
j (�̂; u)

S
(0)
j (�̂; u)

; and (3.6)

S
(1)
j (�̂; u) =

nX
i=1

Yij(u)Zi expf�̂
T
Zig:

5



Since at t0 an � level test of the equality of the two survival functions is accepted when
�̂(t0)=[V ar(�̂(t0))]

1=2 is in the interval [�z�=2; z�=2], a (1� �)� 100% con�dence region for
those times at which the two treatments have the same survival probability isn

t0 : �z�=2 � �̂(t0)=[V ar(�̂(t0))]
1=2 � z�=2

o
=

�
t0 : �̂(t0)� z�=2

q
V ar(�̂(t0)) � 0 � �̂(t0) + z�=2

q
V ar(�̂(t0))

�
(3.7)

Similarly a con�dence region for those points in time where treatment 2 is at least as good
as treatment 1 (�(t0) � 0) is given by

�
t0 : �̂(t0)=

q
V ar(�̂(t0)) < z�=2

�

=
�
t0 : 0 � �̂(t0)� z�=2

q
V ar(�̂(t0))

�
:

We shall illustrate these calculations on the data set discussed in Section 2. Additional
information, in addition to type of transplant, on each patient includes remission status (1st
or second complete remission), age (dichotomized as � 30 or > 30) and Karnofsky score
(dichotomized as < 90 or � 90) at transplant. For patients in second complete remission the
duration of the �rst complete remission (dichotomized as � 1 yr or > 1 yr) is also available.

The con�dence region is based on the results of �tting a proportional hazards model,
strati�ed on transplant type, with binary covariates for remission status, age, Karnofsky

score and duration of �rst complete remission. Figure 3 shows a plot of �̂(t0)=
q
V ar(�̂(t0))

versus t. Using this Figure we �nd that a 95% con�dence region for the times where the
survival probabilities for the two transplant types are not di�erent, adjusted for this set of
covariates, is the set of time points given by

C2 = ft0j t0 2 [0; 0:132) [ [0:151; 1:242) [ [2:281; 2:418)gyears:

A 95% con�dence region for those times where patients given an auto transplant have a
survival probability at least as high as patients given an allo transplant is given by

C1 = ft0j t0 2 [0; 0:861) [ [0:872; 1:179)g :

4 Adjustment For Covariates Confounded With Out-

come

In some instances the comparison of the treatments of interest is complicated by some of the
explanatory covariates have di�erential e�ects on the survival rates for the two treatments.
Suppose that the covariate vector can be partitioned as ZT = (ZT

1 ;Z
T
2 )

T , where Z1 is a
vector of length q1 of the covariates confounded with treatment and Z2 is a vector of length
q2 of the covariates not confounded with treatment.
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To construct the con�dence region where the survival rates are the same for the two
treatments a strati�ed proportional hazards model is used. We �t the model

�(tjZ;Treatment) =

(
�10(t) expf

T
1 Z1 + �TZ2g; for treatment 1;

�20(t) expf
T
2 Z1 + �TZ2g; for treatment 2:

(4.1)

Estimates for � = (�T1 ; 
T
1 ; 

T
2 ) are found by �tting a Cox model, strati�ed on treat-

ment group to the data with an augmented covariate vector ZT = (ZT
2 ;Z

T
1 I[Treatment =

1];ZT
1 I[Treatment = 2]). For a given set of confounding factors, Z10, the two treatments

will have the same survival rate at time t0 if

�(t0jZ10) = �20(t0) expf
T
2 Z10g � �10(t0) expf

T
1 Z10g (4.2)

is equal to zero. The estimator of �(t0jZ10) given by

�̂(t0jZ10) = �̂20(t0) expf̂
T
2 Z10g � �̂10(t0) expf̂

T
1 Z10g

follows from the �tted Cox model with �j0() estimated using Breslow's estimator (3.2).

An estimator of the asymptotic variance of �̂(t0jZ10) can be shown to be

V ar(�̂(t0jZ10)) =
2X

j=1

Z t0

0
expf2̂Tj Z10g

dNj(u)

[S
(0)
j (�̂; u)]2

+

+
n
W 2(�̂; t0)�W 1(�̂; t0)

oT
[I(�̂)]�1

n
W 2(�̂; t0)�W 1(�̂; t0)

o

Here

W j(�̂; t0) = expf̂Tj Z10g
Z t0

0
[ ~Zj(�̂; u)�Z(j)]d�̂j0(u); j = 1; 2

with ~Zj(�̂; u), de�ned by (3.6) and Z(1) = (0T ;ZT
10; 0

T ) and Z(2) = (0T ; 0T ;ZT
10):

Since at t0 an � level test of the equality of the two survival functions for a �xed value
of Z is accepted when �̂(t0jZ10)=[V ar(�̂(t0jZ10))]

1=2 is in the interval [�z�=2; z�=2], a
(1��)�100% con�dence region for those times at which the two treatments are not di�erent
is given by n

t : �z�=2 � �̂(t0jZ10)=[V ar(�̂(t0jZ10))]
1=2 � z�=2

o
Similarly a con�dence region for those points in time where treatment 2 is at least as

good as treatment 1 is given byn
t : �̂(t0jZ10)=[V ar(�̂(t0jZ10))]

1=2 � z�
o

To illustrate this approach we again use the data comparing autologous and allogeneic
transplants. Here, based on a standard semi-parametric regression analysis, it appears that
age has a di�erential e�ect on the two types of transplants. To adjust for this confounding
factor a proportional hazards model strati�ed on type of transplant is �t to the covariates
remission status, Karnofsky score (< 90 or � 90), duration of �rst complete remission
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(dichotomized as � 1 yr or > 1 yr) and two interaction covariates. The interaction covariates
are Z11 = 1 if age > 30 and allo transplant and Z12 = 1 if age > 30 and auto transplant.
Figure 4a and 4b show the standardized di�erence between the cumulative hazard rates for
patients under 30 and over 30 years of age, respectively. Note that here the estimate of � for
a patient under age 30 is the di�erence of the baseline cumulative hazards from the strati�ed
Cox model, while for patients over 30 each of the baseline hazards is multiplied by the factor
exp[j] before di�erencing.

The 95% con�dence regions for the times (in years) where the two treatments have the
same survival probability are

C2�30 = ft0jt0 2 [0; 1:242) [ [2:349; 2:418)g

for patients age 30 or less and

C2>30 = ft0jt0 2 [0; 0:115) [ [0:118; 0:129) [ [0:1590; 5:891)g

for patients over age 30. This suggests that for older patients there is no advantage in survival
for either type of transplant but for younger patients the two survival rates are di�erent after
the �rst 15 months or so.

A 95% con�dence region for those times where patients given an auto transplant have a
survival probability at least as high as patients given an allo transplant is given by

C1�30 = ft0jt0 2 [0; 0:858) [ [0:885; 1:162)g

or patients age 30 or less and

C1>30 = ft0jt0 2 [0; 5:891)g

for patients over age 30. Note that this suggests that the auto transplant survival rate is at
least as good as the allo transplant rate for patients over age 30, but for patients under 30
the survival rate is only as good for a little over a year after transplant.

5 Discussion

In this note we have presented an approach to �nding con�dence regions for the times at
which the survival functions of two treatments are the same. The con�dence regions are
based on pointwise comparisons of the cumulative hazard rates estimated from a strati�ed
proportional hazards model. Our use of the cumulative hazard rate as the basic statistic
for making these comparisons is motivated by the work of Borgan and Liestl (1990) and
Andersen et al (1996) who found the small to moderate sample size performance of inference
techniques based on the cumulative hazard rate to be better than that of similar techniques
based on the estimated survival function. We could have developed the con�dence regions
discussed in this paper based on a direct test of the equality of the two survival function
estimators. For example, in the no covariate case the con�dence region is based on the
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di�erence of the two Kaplan-Meier estimators of the survival function. We �nd that for
most samples we have examined this alternative approach gives quite similar results to those
presented here.

Con�dence regions can be based on other non- and semi-parametric models. One possible
model is to base the regions on an additive regression model (Aalen (1989, 1993)). Here the
estimate of the di�erence in cumulative hazards and its standard error follows directly from
the �tted model. An other possible model is to use a proportional hazards model where,
rather then stratifying on the treatments, a series of time dependent indicators are used for
the treatment e�ects in subintervals of time.

The intervals we presented are useful for clinicians to instruct their patients on the long
and short term e�ects of their decision on which treatment to follow. They are one result of a
long process of analyzing a complex survival experiment. The process includes construction
by usual techniques of a �nal regression model and a careful check of the appropriateness
of the �nal model. The plots and con�dence regions serve as an aide to understanding the
results of this complex analysis.
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