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Abstract

In many applications of survival analysis techniques there are intermediate events whose
occurrence may effect a patient's prognosis. The occurrence of these intermediate events can be
modeled using a proportional hazards model with time dependent covariates or by a model using
distinct hazards for each event that allows for non proportional hazard rates when other
intermediate events occur. Of interest to clinical investigators are not the estimates of these
trangition intensities, but rather synthesized estimates of predictive probabilities of patient's final
response given their current history of occurrence of these intermediate events. We show, using
an example of bone marrow transplantation taken from the data base of the International Bone
Marrow Transplant Registry, that these predictive probabilities are equivaent to certain transition
probabilities in a multistate Markov model. We show how, by using a combination of proportional
hazards regression and left truncated proportional hazards regression, one can estimate mode
parameters and the desired predictive probabilities. Asymptotic properties of the estimators are
discussed. Finally, we show how these predictive probabilities can be used to study the effects of
treatment strategies which alter the rate at which some intermediate events occur.

1. INTRODUCTION

In many applications of survival analysis techniques the ultimate outcome of a patient’s
treatment depends on the occurrence and timing of some intermediate events. This is particularly
true when studying the recovery process of apatient from a bone marrow transplant for leukemia.
Here a patient can experience one of several terminal events, such as death in remission,
reoccurrence of their leukemia or smply death. As the patient recovers from their transplant a
number of intermediate events may occur that have an influence on their eventual prognosis.
Examples of such intermediate events are the return of the patient’s plateletsto a“normal” level, the
development of various types of infections, the occurrence of acute or chronic graft-versus-host
disease, etc.

A natural way to model complex experiments such as this is by using a multistate model.
Andersen et a (1991) (Seeaso Andersen et d 1993) has studied such models using a finite state
Markov process model where the hazard rates for each possible transition in the multistate model



are modeled by a separate Cox (1972) proportional hazards model. Here each of the transition
probabilities is estimated using a (left truncated) Cox model. In a multistate model with two
intermediate events and two terminal events this entailsfitting 12 separate Cox models.

Recently, Klein et a (1993) have suggested an alternative approach to multistate modeling.
They suggest fitting a Cox model to each of the events with time dependent covariates used to
model the timing of the intermediate events that precede the event of interest. In a multistate model
with two intermediate events and two termina events this entails fitting 4 separate Cox models.
Thismodel isdiscussed in Section 3.

The Klein and Andersen approach are two extremes of how one can model multistate
survival. In this report we shal examine how one may model multistate survival experiments
where some of the transition rates are assumed to be proportional to others. This general modd is
discussed in Section 4.

Once the trangition rates are modeled it is necessary to synthesize these rates to provide
predictions of the patient's eventua prognosis. The patient’s prognosis is a dynamic entity that
depends on their history at a given point in time. The models we fit allow us to estimate a series of
predictive probabilities based on potential patient histories which may be observed a some time t.
These patient historiesinclude the information known on the patient at entry to the study (the fixed-
time covariates) and the knowledge of when the intermediate events have occurred.

Recently, Arjas and Eerola (1994) (cf. Eerola (1993)) have described a framework of
“predictive causality” for longitudinal studies that can be used to illustrate how the timing of the
occurrences of the time dependent covariatesin a patient’ s recovery process changes the prediction
of hisor her final prognosis. For a given patient, let (T,X)={(Tm,Xm); m>1} denote the ordered
times, 0 <T1 < To < ., a& which events occur during a patient’s recovery from transplantation,
with description, Xy, of what has happened to the patient & time Ty,. In the bone marrow
transplantation recovery process Xy, may denote return of the platelets to norma levels, the
development of acute GVHD, or the occurrence of relapse, or death. A patient history, Ht &
some timet post-transplantation consists of al the pre-transplantation information available on the
patient (the fixed-time covariates) and the set of marked points, {(Tm.Xm); Tm < t}, reflecting
what has happened to the patient up to this point in time. We consider the prediction that some
event, W, such asrelapse, occursin timeinterval, E (WLE ), for example within two years post-
transplantation. The predicted probability that WIE should depend on the patient’s history at the
timet at which this prediction is made. We define a prediction process by pt(E)=P[WUE[H;]

The prediction process alows us to examine the effect of time dependent (and fixed-time)
covariates on the predicted prognosis of agiven patient in three ways. First, we can fix the time t
and the history, H, for a patient up to time t and see how the predicted probability of W being in E
changes as the prediction interval E varies. In the bone marrow transplantation example this will



allow usto estimate how the probability of relapse within T years post-transplantation, changes as t
variesfor apatient with agiven history at timet. That is, given a particular history at a given time
for a patient we can provide a prognosis for this patient at timesin the future. Second, we can fix a
potential history, H, for a patient and the prediction interval, E, and see how the pit(E) changes as t
increases. For example, for a patient with a given history of development of acute GVHD or
platelet recovery, this will give insight into how more and more of a patient history allows us to
refine our prediction of the chance that he or she would relapse within the first two years post-
transplantation, say. Arjas and Eerola cdl this the learning effect. Finally, we can fix the
prediction interval, E, and the time a which we observe the patient history, t, and look at the
prediction process for patients with different histories. This allows us to study directly the effect
of the timing of the intermediate endpoints on the prognosis of future patients. In the bone
marrow transplantation recovery process this may suggest to the physician that, if certain events
have not occurred by a given time, some additional therapy should be given, based on this model.

The example that is used throughout this paper is from a multicenter bone marrow
transplantation study of patients given an HLA identical sibling transplants, conducted between
1985 and 1990, for patients with acute lymphoblastic leukemia (ALL) or acute myelogenous
leukemia reported to the International Bone Marrow Transplant Registry. The data set consists of
1823 patients with observation times ranging from 10 days to 2236 days. 957 patients were aive
and disease free at their last observation time, 442 died in remission and 424 patients were
observed to relapse. In Section 2 amultistate model for this data is presented and in Section 5 we
shall present some empirical estimates of the predicted probabilities.

2BONE MARROW TRANSPLANTATION

Bone marrow transplantation is a standard treatment for acute leukemia. Recovery
following bone marrow transplantation is a complex process. Prognosis for recovery may depend
on risk factors known at the time of transplantation, such as patient's or donor's age and sex, the
stage of initial disease, the time from diagnosisto transplantation, and so on. The fina prognosis
may change as the patient’s post-transplantation history develops with the occurrence of events
during the recovery process, such as the development of acute or chronic graft-versus-host disease
(GVHD), the return of the platelet count to norma levels, the return of granulocytes to normal
levels, or the development of infections. Transplantation can be considered a failure when a
patient’s leukemia returns (relapse) or when he or she dies while in remission (trestment-related
death). Of interest is how the probabilities of relapse (denoted by R) and treatment-related desth
(denoted by D), aswell asleukemia-free surviva (the probability of being aive and in remission),
depend on the pre-transplantation (fixed-time covariates) and post-transplantation (time dependent
covariates) patient history.



Figure 1 shows a smplified diagram of a patient's recovery process based on two
intermediate events which may occur in the recovery process. These intermediate events are the
development of acute GVHD which typicdly occurs within the first 100 days following
transplantation (denoted by an A), and the recovery of the platelet count to a self-sustaining level >
40 x 109/L (caled platelet recovery in the sequel and denoted by a P). Immediately following
transplantation, patients have depressed platelet counts and are free of acute GVHD. At some point
in time they may develop acute GVHD or have their platelets recover, at which timetheir prognosis
(probabilities of treatment-related death or relapse at some future time) may change. These events
may occur in any order or a patient may die or relapse without any of these events occurring.
Patients may then experience the other event, which again modifies their prognosis, or they may
die or relapse.
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Multistate Model For Bone Marrow Transplant Recovery

Figure 1 shows that there are 12 possible transitions that can occur in this multistate model.
There are six possible states in which a patient may bein at any giventime, t. These states are;



1-{Tp=xt, Ta>t, Tp=t, TR2t} (Alive disease free without having GVHD or having had
platelets recovered)

2-{Tp<t, Ta=t, Tp=t, Tr=t} (Alive disease free without having GVHD with plaelets
recovered)

3{Tpxt, Ta<t, Tp=t, Tr>t} (Alive disease free without platelets recovered having
experienced GVHD)

4 -{Tp<t, Ta<t, Tp=t, TRt} (Alive disease free with platelets recovered having experienced
GVHD)

5-{Tp<t, TRt} (Dead prior to relapse)

6- { Tp<t, TR<t} (Relapsed)

3. PROPORTIONAL HAZARDS MODEL

In this section we shall present a basic model for multistate survival studies based on a
series of Cox regression analysis using time dependent covariates. To mode survival we assume
that an individual is at risk having any one of the eventsin some set e. This set consists of both the
intermediate eventswhich may affect a patient's eventua prognosis and the termind events. In
the bone marrow transplant example the set eis {A, P, R, D}, where A is the event GVHD has
occurred, P is the event the platelets have recovered, R is the event relapsed and D is the event
died.

From the eventsin the set e we can define a set of statess={1,2,...,p}. Each element of s
tells us which final event has occurred or what combination of intermediate events has occurred.
In the transplant example there are six states listed in the previous section.

For a given model only certain transitions are possible. We let t be the set of possible
transitions. In the transplant example t has twelve elements as shown in Figure 1. That is
t ={12, 13, 15, 16, 24, 25, 26, 34, 25, 26, 45, 46}. For any event X [le we define t(X) as the
set of transitionsinto event X that are possible. In our example t(P) ={12, 34}, t(A) ={13, 23},
t(D) ={15, 25, 35, 45}, and t(R) ={16, 26, 36, 46}.

For any event, X, in e we define the ancestor set a(X) asthe set of intermediate events that
may happen prior to the occurrence of the event X. In our example we have a(P)= {A}, a(A)=
{P} and a(R)= a(D) = {A, P}.

To model the transitions rates for this model we shall use a proportional hazards regression
model. For each event, X, in e wefit a proportional hazards regression modd which includes the
fixed time covariates specific to the event aswell a time dependent covariate for each of the events
in the ancestor set of X. If welet Zg be the vector of fixed time covariates that have an influence
on any event in eand let Bgx be avector of risk coefficients for these covariates for the event X.



Note that if afixed covariate has no effect on the timing of event X then the risk coefficient for that
factor isset to 0. The model for the hazard rate of the timeto event X isgiven by

A(t1ZF) = Aox(®) exp{ BexZr+ 3 Brox [T<t] } - (3.2)
x'Oa(X)

Here [] isthe indicator function and Byx istherisk coefficient for the effect of the occurrence of
event X' on thetimeto event X. The baseline hazard rate, Agx(t), can be different for distinct
levels of some fixed covariates athough for smplicity we shall consider the unstratified case in the
sequel. The parametersin (4.1) can be estimated from any standard Cox regression package.
Using the model (4.1) the hazard rate for any of the transitions in the set t can be modeled.
Specifying atransition determines X and the values to be assigned to the indicators I[ Tx<t] for any

intermediate event. For example,
A1s(t | ZE)=hop(t) exp{ BrpZE}
A2s(t | ZE)=Aop(t) exp{ BEDZF+ Bro}
Ass(t | ZE)=Aop(t) exp{ BrDZE+ BaD}
and

Aas(t | ZF)=AoD(t) eXIO{ BrDZF+BpD+ BAD} -

For any transition, ij, we define the cumulative transition rate as

t
Aij(t | ZF)= {) Aij(ul ZE)du , 7, i,j0t

Aijt|ZF)=0if iz, ij0t, and

Niit1Zp) =- Y Aij(u| Zf) , iUs.
j0s
Since Ajj(t | ZF)is absolutely continuous for any i,j,Us it follows that the matrix A = (Ajj)pxp iSthe
trangition intensity of aMarkov process with state space s={1,...,p} (See Andersen et a pp 92-
93). Thetransition probability matrix of this Markov processis given by



Plst|Zg] = |_|[I +dA(u | Zg)], (3.2
s<ust
where I isthe product-integral (cf. Gill and Johansen (1990) for details on the matrix product
integral) and | isthe pxp identity matrix. Thistransition probability matrix serves as the basis for
making an inference about a patient's eventual prognosis given their current history.

To estimate the trandtion probability matrix the required Cox models are fit and the
estimators of 3 are obtained. Bredow's estimator of the baseline hazard (Breslow 1972) rates are
then computed and substituted into (4.2). For the bone marrow transplant example this yields the
following estimators of the predicted probabilities (Here we shall ignore the dependence on Zg for

notational convenience)

Pish= M {1- DA },i=1,2,3 4
s<ust g

Pish= v Pii(su)Pji(ut) AAji(u) | ij=12,13,24, 34,45,46;
s<u<t

Piis)= 3 Piisul AAjj(u)y+ P4 (UHAA ia(u)] |, ij=25,26, 35, 36;
s<u<t

and

N N N N N N N\ .
Pajst)= ¥ Pa(su-)[ AA gj(u)+ P2j (U)AA 12(U)+ P 3j (U,)AA 13(u)], j=4,5,6.
s<ust

The asymptotic distribution of P[st | Zg] can be obtained by basic counting process

techniques. Details are found in Qian(1995). The basic result is as follows (Here for ease of
exposition we have suppressed the dependence on the fixed covariates, Zg) :

Theorem 1 Under suitable regularity conditions each of the elements of the random matrix

\n {’I\D [st | ZF] -P[st | Zg]} converges weakly to a zero-mean Gaussian martingale with
covariance function given by

t
Fij.x (S,U,t) Fkm, x(S,U,t)
s O(Bx,u)

N 5
Cov(Vn(Rij(st), Pum(st) = 5 O
xO

ro1
dAox(U) + Gy 25 G « 5’



where

Fijx = Y Dighjx(sut); ijOs
ght(X)
i<g<hs]

t

Gijx sh)=] 3 {Dignx(sublZg - ex(Bx,WldAox(u)}; ij0s
S ghOt(X)
i<g<hsj

Dighj x (S:u.t) = exp{BxZgh} Pig(s,u-) [Phj(u,t) -Pgj(u,t)] ij, ght s.

n
OPx.u) = 3 exp{BxZxi (W}Yxi (1),
| =1

n
> Zxi (u) exp{BxZxi (u)}Yxi (t)
=1 _
eX(BX!'“') = SX(O)(BX’U) X and

>x isthe covariance matrix of the estimates of Bx.

Here Zjk is the union of the set of fixed covariates with aset of indicator covariates that tell
usthat anindividual isin statej at timet. Y (t) istheindicator that individual | isat riskfor event

X at timet, and Zx (t) isthe covariate vector for event X for individua | at timet.

Estimators of the variability of the predicted probabilities are obtained by substituting the
appropriate estimator into the covariance in Theorem 1. In particular we have that the variance of P
ij(sit) is estimated consistently by

g Aix(suy Ao
E a [?x%—x,)]szX(“”G 1(Bx) G o 7 (33)
X e

where dNy(t) is the number of type X events occurring at timet and ix isthe observed information
matrix for the regression estimates for event X.

4. Child-Event Models



The model constructed in Section 3 assumes that for any event X in e the hazard rates of
any two X transitionsij, km [It(X) are proportional. This is a testable hypothesis that may fail to
be true in some circumstances. In this section we shall look at models that relax this assumption.

To relax this proportiondity assumption we consider models with time dependent
stratification. Suppose we can divide the ancestor set a(X) into two digoint sets ag(X) and ac(X) .
Here ag(X) isthe set of ancestors of X for which atime dependent stratification will be used and
ac(X) isthe set of ancestors for which the proportional hazards modeling will be used. Let m(X) =
2 to the power the number of elementsin ag(X). Here m(X) isthe total number of distinct baseline
hazard rates to be fit in the model. Number the m(X) baseline hazard rates from (O, ...,0) to
(1,...,2). Ataneventtime Tx we shall call an event atype Xnth event if h=(1[Ty<t], X' ag(X)).
Thus we have created m(X) "child-events’, Xp, from each parent-event X. The X, transition set is
naturaly t(Xp) = {ijOt(X): {h=(I[Tx<t], X'0 ag(X) )} asdetermined by statei}.

For each child event a distinct baseline hazard rate is assumed so that

Axp(tl ZF) = Noxp(t) exp{Brx Zr+ ) Bxrx {Tx <t] }
X'Uac(X)
and the hazard rate for each Xp, trangitionis
Nij(t) = Aoxp(t) exp{ BxZij)}-
Here Zjj consists of the fixed covariates and a vector of 0 and 1's with a 1 in the correct position

for any event in az(X) which must have occurred prior to timet to bein statei.
Estimates of Aox,,(t ) and the B's can be obtained from standard Cox regression packages.

As opposed to the proportiona hazards model, in this analysis there may be some time dependent
sratification so that left truncated regression models must be employed. Once the parameter
estimates are obtained and an estimate for Ajj(t) is obtained then these can be used in (3.2) to obtain
estimates of the predicted probabilities.

To illustrate this approach consider the bone marrow transplantation example. One
possible time dependent stratification is to fit different baseline rates for the death event for
individuals whose platelets have or have not recovered. Consider the parent event D whose
ancestors aretheeventsPand A. The set a(D)is divided into the sets a¢(D)= { A} and ag(D)={P}.
Two child events, D1 and D2 are defined by {Tp>Tp}and { Tp<Tp}. Here D1 is the event death
without platelets being recovered and D, the event death with platelets recovered. Two
proportional hazards models are fit for to the death event. The first model is Ap,(t | ZF)= AoD4(1)
exp{ Brx ZF+BaDI[Ta<t]}. Individualsare censored for Agp, When their platelets recover. For
the second model we have Aop,(t) exp{ Brx ZF+BaDI[Ta<t]}. Here the andysis for Aop, is

based on aleft truncated Cox regression model with individuals entering the risk set at the time at
which their platelets recover. Thefour trangition rates to the state D are



A15(t | ZF) = AoD4(t) exp{Brx ZF},

A25(t | ZF) = AoD(t) exp{Brx ZF},

A3s(t | ZF) = Aob4(t) exp{ Brx ZF+ BaD}; and

Aas(t | ZF) = AoDo(t) eXp{Brx ZF+ BAD}-

If in addition to dtratifying on the recovery time for the platelets we also stratify for D on
the occurrence of acute GVHD we have ag(D)={ P,A} and &(D) is the empty set. Now there are
four child eventsfor D corresponding h = (0,0), (1,0), (0,1) and (1,1). These correspond to the
states {Tp >Tp, TA>Tp}, {Tp <Tp, TA>TD}, {Tp >Tp, Ta<Tp} and {Tp < Tp, Ta < Tp},
respectively. The models for the transitions into state D contain distinct baseline hazard rates for
each of these states, and there are no time dependent covariates in the model.

The asymptotic properties of the estimated prediction probabilities are similar to those in
theorem one with the ssimple change of the summations over X[Je being changed to double sums
over both XJe and h=1,...m(X). For example, the estimated variance of the predicted
probability of atypeij transition in the time period (st] is

Pyt = m(x)é[t x4 8, 06, |
L SRRCTNT i L L

In the model presented above the coefficient vector, Bx, is the same for al child events,
Xh. Thisassumption can be relaxed as well by alowing each child event to have its own 3. This

involves fitting separate Cox models for each child event. The estimation process follows as
N
above. Here an estimate of the asymptotic variance of P jj(s;t) is

A A m(X) ot /Iéi', Ut A A
V(Rjst) = 3 3 EJ M]Zdl\lxh(u)+Gij,Xhi_1(BXh)Gij,Xh

U
U
e =1 05 SOBxp) i

The extreme case of this model iswhere al events are divided to their fullest (i.e. each child
event corresponds to one and only one transition) and each transition has its own (3. This is the
usual model for multi-state processes introduced by Andersen et ad (1991) (Cf. Andersen et d
(1993) Section VI1.2).

5. BONE MARROW TRANSPLANT EXAMPLE



Toillustrate these calculations we shall fit the multistate proportional hazards model to the
data from the International Bone Marrow Transplant Registry. As shown in figure 1 we have a
model with two intermediate events, platelet recovery (P) and acute GVHD (A) and two termina
events, death in remission (D) and relapse (R). There were 1823 patients in the data set.

After acareful examination of the effects of various fixed time covariates on the four events
we found that the most important covariates were the patients Karnofsky score at transplant, their
waiting time from diagnosis to transplant and their age. In testing for proportional hazards for each
of these covariates using a time dependent covariate approach (See Klein and Moeschberger
(1996)) we found that the relapse hazards were not proportional a different ages. In the analysis
reported below we have decided to stratify all the analysis on age (two strata age <20 or age >20).
The other two risk factors were discretized as Karnofsky Score <80 versus Karnofsky score =90,
and time from diagnosis to transplant <10 weeks versus >10 weeks.

To apply the proportional hazards model we fit four Cox models to the data, one for each
of the four endpoints. For each event, X, weinclude atime dependent covariate for each event in
a(X). Theresultsarefoundin Table 1.

Table 1
Estimated Risk Coefficients And Standard Errors For The Proportional Hazards
M odel
Platelet Acute GVHD Deathin Relapse
Covariate Recovery Remission
Karnofsky Score <80 -.333 (.075) .208 (.109) * .359 (.108) 414 (.119)
Waiting Time >10 Weeks  -.062 (.060) *  .014 (.099) * 411 (.099) .351 (.102)
Platelet Recovered -.347 (.166) -1.405 (.116) -.322 (.126)
Acute GVHD -0.433 (.074) 1.172 (.097) -.283 (.130)

* Not significant at 5% level

Here we see that patients with a low Karnofsky score tend to take longer to have their
platelets recover and are more likely to die or relapse. Patients with a long waiting time to
transplant also have an increased risk of relapse and death.

Examining the two time dependent covariates we see that when a patient's platelets recover
their risks of GVHD, death and relapse are decreased. When a patient develops GVHD their risk
of relapseis decreased but their risk of death isincreased. This decease in relapse risk is the well-
known graft-versus-leukemia effect of GVHD.

To examinethefit of the proportional hazards model we also fit the Andersen model with
distinct baseline hazard rate (stratified on age) and different covariate values for each transition.



Here a standard Cox model is used for transitions 12, 13, 15, 16 and left truncated Cox models are
used for all other transitions. Theresultsarein Table 2.



Estimated Risk Coefficients And Standard Errors From Fitting The Andersen

M odel
Transition Karnofsky Score <80 Waiting Time >10 Weeks
1->2 -.319 (.083) -.065 (.065)*
1->3 251 (.115) -.013 (.106)
1->5 422 (.185) .760 (.170)
1->6 .609 (.251) 518 (.239)
2->4 -.098 (.364)* .189 (.288)*
2->5 959 (.254) .031 (.267)*
2->6 332 (.157) 246 (.127)
3->4 -.334 (.173) -.040 (.146)
3->5 142 (.190)* .330 (.180)*
3->6 1.063 (.454) 445 (.434)*
4->5 235 (.273)* 297 (.233)*
4->6 133 (.372)* 474 (.297)*

Table 2

* Not significant at 5% level

To examine the fit of the smpler proportional hazards we plot in Figure 2 the logs of the
baseline hazards estimated from the Andersen model for each of the transitions. If the proportional
hazards model holds true then we should have paralld curves for each transition into one of the
four events. A cursory look at these figures does not suggest any marked departure from
proportionality.

We shall use the proportional hazards multistate model to examine how a patient's
prognosis a one year after transplant depends on their history in the first few weeks of their
recovery process. Wefirst estimate the probability of dying in remission in thefirst year given the
patient's history at s weeks following transplant for each of the four possible states a patient may
be in a s weeks. This estimated probability is given by P i5[ 75,365]. Figure 3 shows the
estimates under the proportional model for an individual who is under 20 years of age with a
Karnofsky score of 90 or more and a waiting time to transplant of less than 10 weeks. Other
values of the fixed covariates would give dightly different pictures. Here apatient isinitialy in the
state 1 and we see that when their platelets recover their risk of death drops. The development of
GVHD at any point in time elevates the chance of death. This probability is particularly high if the
platelets have yet to recover. Figure 4 gives the one year probability of relapsing for each of the
four states. Here again a patient is initially in state 1 and has a relatively high likelihood of
relapsing. When graft-versus-host disease occurs this probability drops.



Figure 5 gives the leukemia free survival probabilities for the first year given a patient's
history at sweeks. Thisisthe probability of being alive and disease free at the end of the first year
after transplant. This probability is given by 1- {Pjs[75,365]+ Pjg[7s,365]}. The curves
naturaly increase as a patient survives disease free for alonger time. We see that once a patient
has their platelets recover their prognosis is much better. The occurrence of GVHD without the
platel ets being recovered leads to the |east favorable prognosis.

Figure 6 shows 95% confidence intervals and point estimates for the leukemia free survival
a one year for each possible history a patient may have a s weeks. For comparison the
proportional hazards and Andersen models are presented. Here we note that the confidence
intervals based on the proportional hazards model are shorter. This is to be expected since this
model has fewer parametersto estimate.

6 DISCUSSION

In our example we have presented estimates of predicted probabilities for some basic
outcomesin bone marrow transplantation for a patient with a given history at some point in their
recovery process. Similar plots can be used to examine how different values of the fixed time
covariates affect the predicted patient prognosis.

We have chosen hereto fix thetime, t, to which the prediction is made a one year and to
see how changesin the history affect the estimated probabilities. We could have fixed the time at
which the history was measured and draw a curve for arange of times. These curves would be
predicted survival curves given a patient's history at sometime. An example of this approach can
befoundinKlen et al (1993).

The models presented here can also be used to provide some insight into how changing the
rate or the timing of intermediate events effect a patient's eventua prognosis. For example, if
some therapy was developed to increase the rate at which platelets recover this hypothetical therapy
could be compared to existing therapy by modifying the baseline platelet recovery hazard rate and
examining the predicted probabilities of death and relapse. This approach can aso be used to
examine how changing the rate at which one competing risk occurs affects the occurrence of
another competing risk. For example, if the treatment mortality rate where cut in haf how does
this effect the predicted probability of relapse? This approach is more reasonable than existing
methods for analyzing competing risks where one postulates a world in which one of the
competing risks can not occur.

The basis of al the models presented hereis asound preliminary analysis of the data using
proportional hazards regresson models. This analysis involves not only finding important
prognostic factors, but also involves checking of the proportionality assumptions of the models to
determine the number of child events.
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