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Comparing Reference Charts for Cross-Sectional

and Longitudinal Data

Abstract

Reference charts are valuable tools for clinicians in their daily work on pediatric
clinics. Reference charts are often constructed by smoothing techniques, and in this
paper we present a newly developed non-parametric test for comparing these charts.

We illustrate the method by two examples. The �rst example compares cross-
sectional data on height in children from two Danish studies from 1970 and 1990, re-
spectively. A second example shows how longitudinal data on growth for two types of
skeletal dysplasia may be compared. In the cross-sectional setting the test compares
the average height over the range of ages for the two groups, and in the longitudinal
setting the test compares, similarly, the average height given a particular history of
development.
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1 Introduction

A reference chart is a graph showing the distribution of some measurement of interest and
age. This is usually done by displaying the median and various percentiles over the range
of ages. When the measurements are approximately normally distributed, perhaps after
an appropriate transformation, the median is equivalent to the mean and this is usually
used for estimation purposes. Further, when measurements are approximately normal the
percentiles can all be expressed as a simple function of the mean and the standard deviation.
Therefore it often su�ces to estimate a mean function that relates the expected value of the
measurement to age, and the variance function that relates the variation of measurements to
age. The mean curve and the variance function may be estimated when some assumptions
are made, usually one assumes that they are smooth curves, and then uses a smoothing
technique to estimate the curves. Quite often smoothness is a reasonable assumption that
can be justi�ed based on biological reasoning. Even with smoothness, however, many
di�culties are still present, and these are not the issue of this paper. Cole & Green1

reviews methodological issues of construction for reference charts.
It is important to distinguish between reference charts used for cross-sectional purposes,

i.e., deciding whether or not a given measurement at a given age is normal compared to the
distribution in a comparable population, or longitudinal purposes, i.e., deciding whether
or not the growth of a child is normal based on repeated measurements. When evaluating
the development of the measurement of interest the techniques used should reect the
longitudinal aspect. The typical clinical situation is the following: a child returns for
measurements at the pediatric clinic, or shows up with a record of earlier measurements,
now, based on the current new measurement and the history of earlier measurements the
pediatrician wish to assess if the child is growing normally. It may be very misleading to
consider the change of percentiles on the cross-sectional growth-chart, see Cole2. Therefore,
rather than considering the cross-sectional growth chart other methods should be used. One
such approach is to use the previous measurements to predict the current new measurement,
and then construct a reference chart based on the values of the previous measurements. We
return to this issue in Section 4 where we compare the growth of two types of dwar�sm
based on longitudinal data.

The main objective of this work is to present a new non-parametric test for comparing
reference charts for both cross-sectional and longitudinal data, see Scheike & Zhang3.

The paper is organised as follows : Section 2 presents some methodological issues and the
test-statistic used for the comparison; Section 3 contains an adaptation of the methodology
to the cross sectional situation, and also presents an application to comparing standard
reference charts of height versus age constructed from a study from 1970 and a recent 1990
study, respectively; Section 4 presents an example of longitudinal growth data on two types
of skeletal dysplasia.
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2 A Log-Rank Test for Comparing Regression Functions

In this section we present a longitudinal regression model, for independent identically dis-
tributed subjects, that models the current measurement given the time it was measured,
the previous measurements and the times of these, see Scheike4 or Scheike & Zhang3 for
further details. This is expressed through the conditional regression model

Yi;j = m(V i
�i;j ) + �i;j; for j = 1; :::; Ni; i = 1; :::; n: (1)

Think of Yi;j as the jth measurement of the ith subject at time �i;j. We assume that
m(�) is a smooth function and that V i

s is an observable process that only depends on past
observations. Note that the regression function is equal to the conditional mean of the
current measurement given the time of the measurement and all past information, i.e.,

E(Yi;j j�i;j; (Yi;k; �i;k); k = 1; :::; j � 1) = m(V i
�i;j ); (2)

Assuming that the conditional variance of the noise terms, �i;j, is also a deterministic,
continuous and bounded function of the observable process V i

s , we have that

E(�i;jj�i;j = s; (Yi;k; �i;k); k = 1; :::; j � 1) = 0;

E(�i;j
2j�i;j = s; (Yi;k; �i;k); k = 1; :::; j � 1) = �2(V i

s ):

Apart from the regression relationship we also assume that the measurement times occur
continuously in time, such that a non-parametric estimation of the regression function is
possible. Section 3 contains an example of a cross-sectional regression model, where there
is only one measurement per subject and V i

s=s. Section 4 deals with a situation where we
believe (approximately of course) that the current measurement can be predicted from the
history of that subject based only on the current age, the previous measurement and the
age at which it was taken.

The regression function may be estimated by standard smoothing techniques applied to
the measurements and the predictors (V i

s ), and the variance function is obtained similarly
by smoothing of the squared residuals.

The aim of this work is to establish a non-parametric test to compare the regression
functions for two independent groups of subjects. Below, we provide a description of the
asymptotic distribution of a log-rank test to evaluate this hypothesis.

We denote the number of subjects in the two groups as n1 and n2, the two regression
functions as m1(�) and m2(�), the two variance functions as �21(�) and �22(�), and the density
functions for the distribution of the regressors (V i

�i;j ) as �1(y) and �2(y). All these quantities
are estimated by standard smoothing techniques, and the estimators are denoted by a c ,
such that, e.g., dm(�) is a non-parametric estimator of m(�). Computational details of the
estimators are given in the appendix.

The non-parametric log-rank test is test based on comparing the cumulative regression
functions, we therefore consider the the process, T (z), de�ned as follows

T (z)
def

=

Z z

a
( bm1(y)� bm2(y))dy; (3)
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where a is introduced to avoid edge e�ects of the kernel estimators. Using local-linear
smoothers, or smoothers without edge-problems, this issue can be ignored for applications.

Scheike & Zhang3 studied the asymptotic distribution of T (z) and showed that if
nj=(n1 + n2)!pj, for j = 1; 2, and under su�cient smoothness and other weak regular-
ity conditions, it follows that

p
n1 + n2T (z) converge towards a Gaussian martingale with

mean zero (under the hypothesis) and variance function

H(y) = p�11

Z z

a

�21(y)

�1(y)
+ p�12

Z z

a

�22(y)

�2(y)
;

that can be estimated consistently by

dH(y) = (
n1

n1 + n2
)�1
Z z

a

d�21(y)d�1(y)
dy + (

n2
n1 + n2

)�1
Z z

a

d�22(y)d�2(y)
dy

One consequence of the Proposition is that

p
n1 + n2T (z) � N(0;H(y));

i.e., T (z) is approximately normally distributed with a variance we can estimate.
We now de�ne the log-rank (two-sample) test-statistic of the hypothesis Ho : m1(�) =

m2(�) on the interval [a; S � a] as

LR =
p
n1 + n2T (S � a)=

q bH(S � a)

where S is the upper limit of comparison. The two sample log-rank test, LR, have an
asymptotically standard normal distribution under the the null hypothesis ofm1(z) = m2(z)
on [a; S � a]. The test-statistic works best if m1(�) � m2(�) or m2(�) � m1(�).

If this is not the case one may instead consider the maximal deviation test-statistic

M
def

= sup
z2[a;S�a]

jT (z)j: (4)

To work out the log-rank test-statistic we thus need to have estimates of mk(�), �2k(�)
and �k(�), and we therefore propose that these are given when reference charts are pre-
sented. The next two section consider the implementation of the log-rank test-statistic in
two practical situations. Section 3 contains and application to cross-sectional data, and
Section 4 discusses a longitudinal situation.

3 Comparing Cross-Sectional Growth Data

The average height in the population has been increasing with time - the so called "sec-
ular trend". Consequently, construction of reference charts for height must be renewed
regularly. The secular change in mean height in a population is the result of a general
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increase in height at all ages after birth as well as an advancement of the pubertal growth
spurt. However, the latter only a�ects height during adolescence but may have no or lit-
tle importance for the secular trend for �nal adult height. Secular changes in height and
growth can be considered as a marker of changing health status (hygienic, nutritional) of
a population. Consequently, secular changes may be more pronounced in groups of low
social class, malnourished individuals who experience more marked improvements in their
general health status compared to the overall population. This implies that one can expect
a greater secular increase in the lower limits of the reference chart compared the the mean
curve and the upper limit. This emphasizes the existence of several pitfalls when comparing
reference charts to describe secular changes if these charts are based on populations that
vary in socio-economic and general health aspects.

Eight-hundred and twenty�ve male children and adolescents from 8 di�erent grammar
and highschools in the Copenhagen area agreed to participate in a study of growth dur-
ing 1988-1992. The schools are located in an area with a superior socio-economic status
compared to the rest of the country. The children were 6 to 20 years of age, and those
with chronic diseases and/or on medication were excluded from the analyses. Height was
measured with a portable Harpenden Stadiometer by trained pediatricians, from the De-
partment of Growth and Reproduction at the University hospital in Copenhagen, to nearest
0.1 cm. In this work we compare the mean height in the 1988-1992 study with a reference
chart on height from 1970-1971, see Andersen et al.5 . The Andersen study is considered
as the Danish standard.

In this section we focus attention on cross-sectional growth data, and provide explicit
formulas for the log-rank test introduced in the previous Section. A typical presentation of
cross-sectional data, that exhibit approximately normally distributed noise, will be a table
listing the average height and variance for ages at, say, yearly intervals. The average heights
and standard deviations are estimated by smoothing techniques, see Figure 1 and Table 1.
In Figure 1 the thick lines represent the Danish standard reference curves, i.e., median, 2.5
% and 97.5 % percentiles, based on a large study performed in 1970, the points are data
from the recent 1990 study of boys from Copenhagen and the thin line is the median (mean)
curve based on these data. It appears that there has been an increase in height during the
last 20 years.

To compute the LR test statistic for the hypothesis of equal regression functions, we
need some de�nitions for the entries of a table of reference values. Let for subtable j,
aj;i; xj;i; sj;i and fj;i denote the age and corresponding average height, variance and number
of individuals in age group (density of age multiplied by the size of the group). Note that the
density multiplied by the size of the sample is an estimate of the number of observations
used for the estimation of the average height for a particular age group. Now, we can
compute an approximate log-rank test-statistic for the hypothesis that the two groups have
the same mean-regression functions by computing the di�erence in the cumulative regression
functions for the two groups

T =
X
i

(a1;i+1 � a1;i)x1;i �
X
i

(a2;i+1 � a2;i)x2;i
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and an estimate of the variance of this quantity

bH =
X
i

(a1;i+1 � a1;i)
s1;i
f1;i

+
X
i

(a2;i+1 � a2;i)
s2;i
f2;i

:

Then the the log-rank test-statistic is computed as LR = T=
p bH. Using the summations

provided in the table we get T = 1985:0 � 1952:2 = 32:8 and bH = 9:2 + 0:8 = 10:0 which
results in a log-rank test-statistic of LR=10.3, that is approximately standard normal under
the null-hypothesis, and therefore is equivalent to a p-value less than 0.0001.

The average height of the recent study is 3.5 cm greater than the Danish standard from
Andersen et al.5. This equals approximately 0.5 standard deviation (depending on age) and
implies that, with the use of the reference charts based on heights obtained more that 20
years ago, a smaller fraction of short children in 1992 will be classi�ed as pathologically
short, i.e., with a height that is more that 2 standard deviations smaller than the average
height. The di�erence between the 2 studies must be ascribed to socio-economic di�erences
and secular changes.

4 Comparing Longitudinal Growth Data

In this section we wish to compare the growth of patients with two types of skeletal dysplasia,
namely hypochondroplasia (Hypo) and achondroplasia (Acho). Our data were provided by
the Department of Growth and Reproduction at the University hospital in Copenhagen and
consists of longitudinal measurements of height and weight for 36 patients with hypochon-
droplasia and 42 patients with achondroplasia.

Skeletal dysplasias represent more than 200 di�erent clinical types of short limbed
dwar�sm of which Achondroplasia and Hypochondroplasia are the most common types
of skeletal dysplasias. The sewere dwar�sm and dysproportion of the body in patients with
achondroplasia is caused by a point mutation on chromosome 4 in the �broblast growth
factor receptor (FGFR3) gene which can be demonstrated in all patients with achondropla-
sia. By contrast, patients with hypochondroplasia represent a more heterogenous group;
some patients have the same clinical appearance as patients with achondroplasia and simi-
lar degree of growth retardation, whereas others have an almost normal clinical phenotype
and growth. The mean standing height was approximately 3 SD's below the mean for age-
matched helathy children. Point mutations in the FGFR3 gene have been demonstrated in
50-60 % of patients with hypochondroplasia only. Whereas, several studies have reported
on actual heights in patients with skeletal dysplasia, little is known on possible di�erences
in the linear growth pattern in di�erent types of skeletal dysplasias. We refer to Hertel6 for
further details on skeletal dysplasia.

The focus of this section is on the longitudinal aspect of the data, with the speci�c aim
of deciding whether or not the two types of skeletal dysplasia results in di�erent growth
patterns. In Cole2 there is a thorough discussion of how to construct conditional reference
charts that can be used for monotoring longitudinal growth. Cole focuses on parametric
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models which may be viewed as a special case of the models presented in the previous
section and here.

A conditional reference chart is constructed from a conditional mean function and a
conditional variance function, which may be estimated by standard smoothing techniques.
We consider a longitudinal regression model where the regression function is a function of
the height at the previous measurement, current age and increment of age since the previous
measurement, as follows

Yk;i;j = mk(Yk;i;j�1; �k;i;j; �k;i;j � �k;i;j�1) + �k;i;j; for j = 2; :::; Nk
i ; i = 1; :::; nk ; k = 1; 2;

(5)
and

E(�i;j
2j�i;j ; (Yi;k; �i;k) k = 1; :::; j � 1) = �2(Yk;i;j�1; �k;i;j; �k;i;j � �k;i;j�1): (6)

This regression and variance function may be estimated for some values of the regressors.
A conditional reference chart would display curves for the upper and lower 2.5 % percentile
and the median. Thus, if normality of the residuals is approximately true the curves are
estimates of the following three curves

m(h0; a0; s)� 2�(h0; a0; s) andm(h0; a0; s);

for given initial age (a0) and initial height (h0) and for for s varying over some appropriate
range. Pursuing the issue non-parametrically this is a formidable task that will need a lot
of data. Therefore one would probably settle for a parametric version of the conditional
reference charts as in Cole2 for our data. In principle, however, this may be done and
then a log-rank test-statistic may be computed by integrating the estimated regression
function over some relevant area of the 3-dimensional regressor space. When the issue is
only comparison of the growth patterns things are somewhat easier due to the improved rate
of convergence of the cumulative regression functions which are the objects of comparison.

Analysing the data it turned out that a very good description of the data was obtained
from considering the simpler (incorrect) sub-model

Yk;i;j = mk(Yk;i;j�1; �k;i;j � �k;i;j�1) + �k;i;j; for j = 2; :::; Nk
i ; i = 1; :::; nk; k = 1; 2; (7)

and
E(�i;j

2j�i;j; (Yi;k; �i;k) k = 1; :::; j � 1) = �2(Yk;i;j�1; �k;i;j � �k;i;j�1): (8)

The residuals in the model represent further biological variation and measurement error and
were expected to be right-skewed and biased for small values of time-increments. Residuals
plots, however, revealed that this was not a serious problem for our study. The second
regressor of the ideal model (age) did not contribute much additional information in terms
of predicting the growth of hypo or acho patients. Therefore, when the objective is solely to
compare the growth patterns the above simpler sub-model may be used. When a di�erence
is found it can be concluded that the longitudinal growth are di�erent for the two diagnosis.
In contrast, however, equivalent behaviour for two groups based on the limited model will
only make this conclusion valid for the observed age-span.
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It appears that patients with hypochondroplasia grow faster than patients with achon-
droplasia, and if we apply our regression log-rank test to the the 2-dimensional regression
model with the following region of previous height and time since previous measurement :
[50; 120] � [0:2; 1:9] our test statistic can be calculated for a choice of the two dimensional
band-widths. Figure 2 shows the di�erence in the cumulative regression functions (T (z))
for b1 = 5:0 and b2 = 0:2. For this choice of bandwidths we get a test-statistic evaluated
in the endpoint (T (120; 1:9)) on 94:1 with variance 586, and this results in a LR = 3:9
test-statistic which is approximately standard normal thus resulting in a p-value of approx-
imately 0:0001. Further smoothing of the regression functions results in the same conclusion
although the test-statistic decreases some. Note that one would expect the test-statistic to
have good power in this application since the Hypo diagnosis appears to result in a con-
sistently better growth than the Acho diagnosis. A similar comparison of the increase of
weight did not result in a signi�cant di�erence between the two groups, with a p-value at
0:48 for the bandwidths chosen as for height.

Despite the recents capability of locating mutations in speci�c genes resulting in speci�c
phenotypes, accurate diagnosis in children with skeletal dysplasia is often di�cult. In this
context di�erences in the linear growth pattern as well as in body proportions (Hertel6)
between these two types of skeletal dysplasia may improve correct diagnosis in these growth-
retarded children and may enhance our knowledge on the di�erent pathogenetic background
for these types of dwar�sm.

Due to the rather limited data available we have been forced to ask rather general
questions, but in principle, when the conditional regression and variance functions are
estimated one may proceed to compare these for various areas of the regressor space and
thereby obtain a more detailed analysis of where the di�erences originate from.

5 Discussion

In this work we have presented a new non-parametric test for comparison of the mean-
curve of two reference charts. After an appropriate transformation the mean curves may
often be interpreted as median-curves. The methodology is applicable for both standard
reference charts of, say, height versus age, and conditional reference charts. Reference charts
are often constructed from an assumption of smoothness and the present non-parametric
test ties naturally into this framework where parametric assumption are unwanted. The
test focuses on the mean curve of the reference chart although the variance function may
also di�er and contain important information about the distribution of the measurement
of interest. This may be particularly relevant when studying secular changes that results
in a more pronounced change for individuals in either tail of the distribution. The secular
change of body-mass index, e.g., is believed to result in a distribution with the same median
but with increasing skewness.

The proposed test is good at detecting di�erences where the same pattern is consistent
across ages. When this is not expected to be the case alternative tests should be used.

The proposed methodology breaks down when the smoothing procedure breaks down
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and the methodology is therefore limited to low dimensions. In an example we compared
the longitudinal growth for two di�erent diagnosis of skeletal dysplasia where an ideal 3-
dimensional regression function was reduced to a 2-dimensional regression function that
provided an adequate description of the data.

6 Appendix: Formulas for estimators

In this appendix we provide formulas for estimators of the quantities that are used in the
log-rank test statistic.

We provide a Nadaraya-Watson (ND) type estimator of the regression functions and the
variance function as well as an estimator of �(y).

Let K(�) be a kernel function with support on [�1; 1], R K(u)du = 1 and
R
uK(u)du = 0,

and let b = (b1; :::; bd) be a d-dimensional bandwidth, jbj = b1 � ::: � bd, b 2]0;1[d. De�ne

further CK
def

=
R
K2(u)du , dK

def

=
R
u2K(u)du and eK

def

=
R
uK(u)du. We assume that

eK is 0 to obtain an asymptotically unbiased result for our estimator. We abuse notation by
letting K denote a d-dimensional kernel as well as a one dimensional through the product
kernel, i.e., K(y; b)

def

= K(y1
b1
; :::; yd

bd
)

def

=
Qd

i=1K(yi
bi
).

Now, the ND estimator, dm(y), of the regression function m(y) is de�ned by

bm(y)
def

=
br(y)b�(y)

where

br(y) def

=
1

n

nX
i=1

N
i

tX
j=1

Yi;j
1
jbjK(y � V i

�i;j ; b);

and

b�(y) def

=
1

n

nX
i=1

N
i

tX
j=1

1
jbjK(y � V i

�i;j ; b):

b�(y) is an estimator of �(y).
The variance functions, �2(�), can be estimated by the following squared-residual kernel

estimator bV (y) = V (y)b�(y) � ( bm(y))2 (9)

where

V (y)
def

=
1

n

nX
i=1

N
i

tX
j=1

(Yi;j)
2 1
jbjK(y � V i

�k;i;j ; b) (10)
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Figure 1. Estimated mean (thin line) and data points from Copenhagen boys 1988-1992
(dots), and estimated mean and 95 % reference area for Danish standard reference from
1971 (thick lines).

Table 1. Estimate of density multiplied by sample size, estimate of mean, estimate of
variance, and log-rank test for di�erence between mean curves of Copenhagen boys and
Danish standard reference.

Figure 2. Normalised di�erence in cumulative regression functions for Hypo-Acho for
bandwidth (5,0.2). The log-rank test results in p-value at 0.0001.

12



Copenhagen Boys 1990 (825) Danish Reference 1971 (10925)
age # boys Mean Variance (�2) �

2 / # boys # boys Mean Variance (�2) �
2 / # boys

6 37.02 118.49 21.18 0.57 269 118.8 23.72 0.09
7 61.08 124.63 21.59 0.35 402 124.1 28.73 0.07
8 64.35 130.31 22.48 0.35 932 129 35.52 0.04
9 67.64 136.14 24.08 0.36 1175 134 33.29 0.03
10 72.53 141.44 27.74 0.38 1124 139.1 36 0.03
11 79.77 145.27 35.47 0.44 1152 143.8 40.83 0.04
12 83.37 151.58 53.98 0.65 967 148.8 48.72 0.05
13 74.98 159.12 67.93 0.91 1103 154.8 66.1 0.06
14 68.56 166.25 71.85 1.05 1127 161.7 81.18 0.07
15 66.79 172.65 63.72 0.95 1017 168.3 75.69 0.07
16 63.43 177.32 50.21 0.79 786 173.8 56.7 0.07
17 49.67 180.1 42.72 0.86 536 177 47.89 0.09
18 23.89 181.73 37.55 1.57 345 179 39.19 0.11
sum 813.07 1985.05 - 9.23 10395 1952.20 - 0.82

Log-rank test-statistic from Table LR=-10.3,p < 0.000
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