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Abstract

In neuroscience, an important research question to be investigated,
is whether a region or regions of the brain are being activated when a
subject is presented a stimulus. A few methods are in use to address
this question but they do not jointly take into account the spatial re-
lationship among the set of voxels under consideration. Multivariate
regression can determine whether the set of voxels in one, or several re-
gions of interest are related to the experimental paradigm, in addition
to individual measures of activation which are different.

1 INTRODUCTION

In functional magnetic resonance imaging, the observed time courses in vox-
els are commonly analyzed using multiple linear regression. The typical analy-
sis [9] is to model a voxel’s observed time course as a linear function involving
an intercept, a scaled time trend, and a scaled reference function. This typical
multiple regression analysis assumes that the voxels are independent.

The multivariate regression model [10] is a generalization of the multiple
regression model to vector valued observations with dependent elements (vox-
els). This generalization allows spatial dependencies between voxels to be
incorporated into inferences of significance.

With multiple regression, inferences and hypotheses can only be evaluated
on individual voxels. With multivariate regression, inferences and hypothesis
can be evaluated on a set of voxels. That is, with multiple regression, one
gets independently computed measures of the degree of activation in voxel
1, voxel 2, and so on. Multivariate regression gives a jointly computed mea-
sure of activation in a region of interest in addition to individual measures of
activation.
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2 UNIVARIATE MODEL

In the multiple linear regression model, at time point i, the observed hemo-
dynamic response in voxel j is yji,

yji = β0j + β1jx1i + · · ·+ βqjxqi + εji (2.1)

which is written in terms of vectors as

yji = (1, x1i, . . . , xqi)



β0j
...
βqj


 + εji

yji = x′i βj + εji
1× 1 1× (q + 1) (q + 1)× 1 1× 1

(2.2)

where i = 1, . . . , n and j = 1, . . . , p.

This model, for each voxel j and all n time points, is written in terms of
vectors and matrices as


yj1
...
yjn


 =



x′1
...
x′n






β0j
...
βqj


 +



εj1
...
εjn




Yj = X βj + Ej .
n× 1 n× (q + 1) (q + 1)× 1 n× 1

(2.3)

The errors of observation εji are assumed to be independent and normally
distributed with zero mean and variance σ2

j . The likelihood is given by

p(Yj|βj , σ
2
j , X) = (2π)−

n
2 (σ2

j )
−n

2 e
− (Yj−Xβj)′(Yj−Xβj)

2σ2
j . (2.4)

It can be shown [10] that the maximum likelihood estimate of the vector of
regression coefficients β̂j for each voxel j is

β̂j = (X ′X)−1X ′Yj, (2.5)

that β̂j is multivariate Student t distributed,

β̂j ∼ t
(
n− q − 1, βj, (n− q − 1)−1gj(X

′X)−1
)
, (2.6)

and β̂kj is univariate Student t distributed,

β̂kj ∼ t
(
n− q − 1, βkj, (n− q − 1)−1gjWkk

)
(2.7)
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where gj = (Yj − Xβj)
′(Yj − Xβj) while Wkk is the kkth element of W =

(X ′X)−1. Note that σ̂2
j = gj/n is the maximum likelihood estimate of σ2

j .

Hypothesis (for each voxel) such as

H0 : Cjβj = γj vs H1 : Cjβj �= γj

σ2
j > 0 σ2

j > 0
(2.8)

can be evaluated where Cj is an r× (q+1) matrix of full row rank with linear
constraints as rows and γj is an r× 1 vector. This is done with the use of the

F =
(Cβ̂j − γj)

′[C(X ′X)−1C ′]−1(Cβ̂j − γj)

rgj/(n− q − 1)
(2.9)

which under the null hypothesis follows an F-distribution with r and n− q− 1
degrees of freedom. This statistic is derived (see appendix) from a likelihood
ratio statistic. Under the null hypothesis, the likelihood is maximized subject
to the constraint that Cjβj = γj using Lagrange multipliers.

For example,H0 : βkj = 0 can be evaluated with γkj = 0, C = (. . . , 0, 1, 0, . . .)
is a (q + 1) dimensional zero row vector except a one in the kth column, and
either of the test statistics

tkj =
β̂kj − γkj

[Wkkgj/(n− q − 1)]
1
2

(2.10)

Fkj =
(β̂kj − γkj)

2

Wkkgj/(n− q − 1)
(2.11)

which are distributed as either univariate student t with n − q − 1 degrees
of freedom or F with 1 and n − q − 1 numerator and denominator degrees
of freedom respectively. In the above statistics which can be derived from a
likelihood ratio statistic, gj is computed under the alternative hypothesis. In
order for the above statistics to be computable, (X ′X) has to be invertible
and n > q + 1

3 MULTIVARIATE MODEL

In the multivariate linear regression model, at time point i, the observed
hemodynamic response in all p voxels is yi,


y1i
...
ypi


 =



β01 + β11x1i + · · ·+ βq1xqi

...
β0p + β1px1i + · · ·+ βqpxqi


 +



ε1i
...
εpi


 (3.1)
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which can be written as

(y1i, . . . , ypi) = (1, x1i, . . . , xqi)



β01 β02 . . . β0p
...
βq1 βq2 . . . βqp


 + (ε1i, . . . , εpi)

y′i = x′i (B0, B1, . . . , Bq)
′ + ε′i

y′i = x′i B′ + ε′i
1× p 1× (q + 1) (q + 1)× p 1× p

(3.2)

where i = 1, . . . , n.

The model, for all p voxels and all n time points, is written as

y′1
...
y′n


 =



x′1
...
x′n






β01 β02 . . . β0p
...
βq1 βq2 . . . βqp


 +



ε′1
...
ε′n




Y = X B′ + E.
n× p n× (q + 1) (q + 1)× p n× p

(3.3)

Notice that if p = 1, this reduces to the univariate regression model. Each
row of Y , for example the ith, is the observed values in all p voxels at time i
and each column of Y , for example the jth is the observed values at all n time
points in voxel j.

The errors of observation εi are assumed to be independent and normally
distributed with p dimensional zero mean vector and p × p positive definite
covariance matrix Σ. This means that for each observation, which is a row in
the left hand side of the model, there is a regression. Each row has its own
regression complete with its own set of regression coefficients. It can be shown
[10] that the estimate of the matrix of regression coefficients B̂′ for all voxels
is

B̂′ = (X ′X)−1X ′Y, (3.4)

that B̂ is matrix Student t distributed,

B̂ ∼ t
(
n− q − 1, B, [(n− q − 1)(X ′X)]

−1
, G

)
, (3.5)

that B̂k is multivariate Student t distributed,

B̂k ∼ t (n− q − p,Bk, (n− q − p)−1WkkG
)
, (3.6)

that β̂j is multivariate Student t distributed,

β̂j ∼ t
(
n− q − p, βj , (n− q − p)−1gj(X

′X)−1
)
, (3.7)
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and β̂kj = B̂jk is univariate Student t distributed,

β̂kj ∼ t
(
n− q − p, βkj, (n− q − p)−1Wkkgj

)
, (3.8)

where G = (Y − XB′)′(Y − XB′), gj is its jth diagonal element, while Wkk

is the kth diagonal element of W = (X ′X)−1. Note that Σ̂ = G/n is the
maximum likelihood estimate of Σ.

Notice that the estimate of the matrix of regression coefficients B̂ does not
depend on the (spatial) covariance between the voxels Σ or its estimate Σ̂. So
whether or not the voxels are spatially correlated, the estimate of the coefficient
matrix is the same. However, the spatial correlation between the voxels does
matter in the covariance matrix of the estimated coefficients. When we make
significance statements about the coefficients, the spatial correlation matters!

Hypothesis regarding a particular coefficient (for all voxels or a subset of
voxels) such as

H0 : CB′ = Γ vs H1 : CB′ �= Γ
Σ > 0 Σ > 0

(3.9)

(i.e. Bk = 0) can be evaluated with the test statistic

Fk =
n− q − p

p
(B̂k − Γk)

′W−1
kk G

−1(B̂k − Γk) (3.10)

which follows an F-distribution with p numerator and n− q − p denominator
degrees of freedom respectively. In order for this F statistic to be computable
(X ′X) has to be invertible and n ≥ q + p. Note that G is invertible if p ≤ n
or the number of voxels is less than or equal to the number of time points [5].
In the above statistic, G is computed under the alternative hypothesis.

Note that if each of the elements of vector yi were independent, then Σ
would be diagonal. Since we assume that each voxel has its own distinct error
term (i.e. its own σ2

j = Σjj), Σ = diag(σ2
1, . . . , σ

2
p) is a matrix with nonzero

variances along the diagonal and zero covariances off the diagonal.

After determining ROI activation via Equation 3.10, individual voxel acti-
vation can be determined via

tkj =
β̂kj − γkj

[Wkkgj/(n− q − p)] 12
(3.11)

Fkj =
(β̂kj − γkj)

2

Wkkgj/(n− q − p) (3.12)

which are distributed as either univariate student t with n− q − p degrees of
freedom or F with 1 numerator and n− q− p denominator degrees of freedom
respectively from Equation 3.8.
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4 SIMULATION

From an FMRI experiment, a 4× 4 ROI is selected from a single slice. For
this ROI, simulated FMRI data is constructed. The voxels in the ROI are
numbered sequentially from top left to bottom right and stacked in increasing
numerical order. The simulated data consists of n = 128 data points for
p = 16 voxels. The simulated data is generated according to Equation 3.3
where the design matrix X is a n × 3 matrix whose first column is an n
dimensional vector of ones, the second column is at an n dimensional vector of
the first counting numbers, and the third column is an n dimensional vector
consisting of eight replicates of eight ones then eight negative ones. The true
regression coefficient matrix B is given in Table 2. The voxels were assumed to
have an AR(1) spatial correlation Σ as in Table 3 and the observation errors
were randomly generated multivariate normal variates with zero mean and
covariance matrix Σ. Values for the variance and corelation were selected to
be σ2 = 64 and ρ = 0.25. The simulated voxel time courses are displayed in
Figure 1 and sample error covariance matrix is given in Table 5.

Figure 1: Simulated time courses.

16 32 48 64 80 96 112 128

−20

0

20

40

60

80

100

A multivariate regression was performed and the estimated regression coef-
ficients are displayed in Table 2. An F-test was performed using Equation 3.10
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to jointly determine if the vector of coefficients corresponding to the reference
function is zero or not. This is a test to determine if there was activation in the
ROI due to the presentation of the stimulus. The F-statistic was F = 43.7380
with a critical value of F10−6,16,128−2−16 = 4.4614. This was also computed
assuming that G was diagonal and resulted in F = 28.2180 with the same
critical value. It is concluded that there is activation in the ROI due to the
presentation of the stimulus. Recall that an ANOVA for equality of means is
followed up by post hoc tests to determine which means are different if the
null hypothesis is rejected. Similarly, the multivariate hypothesis test for the
reference function coefficients is followed up by univariate regression tests to
determine which voxels are active if the null hypothesis is rejected.

Figure 2: Marginal univariate (left) and multivariate (right) activations.
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Marginal univariate and multivariate voxel t-statistic activations are com-
puted according to Equations 2.10 and 3.11 and presented in Table 4. These
marginal maps which are displayed in Figure 2 are thresholded at critical val-
ues t1−α/2,128−2−1 = 5.1465 and t1−α/2,128−2−16 = 5.1830 where α = 10−6. It
is evident from these individual coefficient tests that the general activation in
the ROI is in the pattern of a cross as by design except for a couple of negative
activations for the independent t-statistics.

The above simulation procedure was replicated 10000 times to evaluate the
distributions of the statistics. In Figure 3 histograms of the F-statistics for ROI
activation are displayed assuming both dependent (full G) and independent
(diagonal G) voxels. The mean and standard deviation of these histograms
are (34.3935, 5.5572) for the dependent voxels (left) and (31.1633, 3.1888) for
the independent voxels (right).

Further, t-statistics histograms of sixteen voxels (which are not presented
here) were made. The means and standard deviations are given in Table 4.
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Figure 3: Histograms of ROI F-statistics for dependent (left) and independent
(right) voxels.
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Table 1: Computed means and standard deviations for the marginal multi-
variate (top) and univariate (bottom) t-statistics.
t̄, σ̄t 1 2 3 4

1 7.0776, 1.1159 1.4174, 1.0083 1.4040, 0.9997 7.0476, 1.1057
2 -4.2406, 1.0397 7.0732, 1.0915 7.0812, 1.0986 -4.2425, 1.0398
3 -4.2433, 1.0520 7.0762, 1.1071 7.0853, 1.0978 -4.2435, 1.0451
4 7.0769, 1.0917 1.4239, 1.0127 1.4260, 1.0219 7.0800, 1.1069

t̄, σ̄t 1 2 3 4
1 6.6394, 1.0468 1.3297, 0.9458 1.3171, 0.9378 6.6113, 1.0372
2 -3.9780, 0.9753 6.6353, 1.0239 6.6427, 1.0306 -3.9799, 0.9754
3 -3.9806, 0.9869 6.6380, 1.0386 6.6466, 1.0298 -3.9807, 0.9804
4 6.6387, 1.0241 1.3357, 0.9500 1.3377, 0.9587 6.6417, 1.0383

The correlation matrix between the 10000 sets of t-statistics (from both
methods) of length 16 was computed and resulted in the same 16× 16 corre-
lation structure as the random error from which the data was generated.

5 CONCLUSION

The multivariate regression model was presented with the univariate regres-
sion model as a special case. The matrix Student T distribution of the matrix
of estimated regression coefficients was presented along with the multivari-
ate Student t distributions of any row or colum in addition to the univariate
Student t distribution of any element. Multivariate tests of hypothesis were
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presented for all the coefficients of a particular independent variable (for ex-
ample a reference function). The multivariate test of hypothesis was used to
determine whether a region of interest was activated or not. This multivariate
test of hypothesis was followed up by univariate tests of hypothesis to deter-
mine the particular voxels which were active. These tests of hypothesis were
illustrated on a simulated FMRI data set for a region of interest.

A APPENDIX

A.1 Univariate Likelihood Ratio

The likelihood ratio statistic is computed by maximizing the likelihood
p(Yj|βj , σ

2
j , X) with respect to βj and σ2

j under the null and alternative hy-

potheses. Denote the maximized values under the null hypothesis by (β̃j, σ̃
2
j )

and those under the alternative hypothesis as (β̂j, σ̂
2
j ). These maximized values

are then substituted into the likelihoods and the ratio

λj =
p(Yj|β̃j , σ̃

2
j , X)

p(Yj|β̂, σ̂2
j , X)

(A.1)

=
(2π)−

n
2 (σ̃2

j )
−n

2 e
− (Yj−Xβ̃j)′(Yj−Xβ̃j)

2σ̃2
j

(2π)−
n
2 (σ̂2

j )
−n

2 e
− (Yj−Xβ̂j)′(Yj−Xβ̂j)

2σ̂2
j

(A.2)

λ
− 2

n
j =

(Yj −Xβ̃j)
′(Yj −Xβ̃j)

(Yj −Xβ̂j)′(Yj −Xβ̂j)
(A.3)

=
gj + (β̂j − β̃j)

′(X ′X)(β̂j − β̃j)

gj
(A.4)

(
n− q − 1

r

)
(λ

− 2
n

j − 1) =
(Cβ̂j − γj)

′[C(X ′X)−1C ′]−1(Cβ̂j − γj)

rgj/(n− q − 1)
(A.5)

taken. In this, equivalence of the second term in the numerator of the next
to last equation and the numerator of the last equation can be shown. The

statistic
(

n−q−1
r

)
(λ

− 2
n

j − 1) follows an F-distribution with r and n − q − 1
degrees of freedom. If C = (0, I), then the second term in the numerator can
be shown to be equal to the sum of squares of the reduced model minus the
sum of squares of the full model.
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A.2 Multivariate Likelihood Ratio

Similarly as in the univariate case, likelihood ratio statistic is computed by
maximizing the likelihood p(Y |B,Σ, X) with respect to (B,Σ) under the two
hypotheses to obtain null and alternative estimates (B̃, Σ̃) and (B̂, Σ̂). The
likelihood ratio is

λ =
p(Y |B̃, Σ̃, X)

p(Y |B̂, Σ̂, X)
(A.6)

=
(2π)−

np
2 |Σ̃|−n

2 e−
1
2
trΣ̃−1(Y −XB̃′)(Y −XB̃′)′

(2π)−
np
2 |Σ̂|−n

2 e−
1
2
trΣ̂−1(Y −XB̂′)(Y −XB̂′)′

(A.7)

λ−
2
n =

|(Y −XB̃′)(Y −XB̃′)′|
|(Y −XB̂′)(Y −XB̂′)′| (A.8)

= |G+ (B̂ − B̃)(X ′X)(B̂ − B̃)′|/|G| (A.9)

It should be noted that when C = (0, I), Λ = λ
2
n is distributed as Wilks’

Lambda with the second term in the denominator being the sum of squares
of the reduced model minus the sum of squares of the full model. Further, it
can be shown that when C = (0, I),

(B̂ − B̃)(X ′X)(B̂ − B̃)′ = (CB̂′ − Γ)′[C(X ′X)−1C ′]−1(CB̂′ − Γ) (A.10)

so that,

λ−
2
n = |G+ (CB̂′ − Γ)′[C(X ′X)−1C ′]−1(CB̂′ − Γ)|/|G|. (A.11)

When C = (0, . . . , 0, 1, 0, . . . , 0) is a row vector of zeros with a 1 in the kth

position, it can also be shown that(
n− q − p

p

)
(λ−

2
n − 1) =

(
n− q − p

p

)
W−1

kk (B̂k − Γk)
′G−1(B̂k − Γk) (A.12)

follows an F-distribution with p numerator and n− q− p denominator degrees
of freedom.

Whenever it can be shown that Equation A.10 is true, the likelihood ratio
statistic in Equation A.11 is true and can be used for significance evaluation.
Additional hypotheses which we may wish to test include

C = (0, . . . , 0, I,−I, 0, . . . , 0) (A.13)

and (A.14)

C = (0, . . . , 0, e′,−e′, 0, . . . , 0) (A.15)

where e is a column vector of ones.
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Table 2: True (top) and estimated (bottom) regression coefficient matrix.
B′ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0.2 0.7 0.4 0.3 0.9 0.4 0.5 0.2 0.9 0.1 0.5 0.1 0.6 0.4 0.4 0.8
1 0.5 0.1 0.9 0.2 0.6 0.8 0.3 0.7 0.1 0.3 0.5 0.6 0.4 0.2 0.5 0.9
2 5.0 1.0 1.0 5.0 -3.0 5.0 5.0 -3.0 -3.0 5.0 5.0 -3.0 5.0 1.0 1.0 5.0

B̂′ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 3.7 2.4 1.0 0.8 1.6 0.8 0.2 0.2 2.9 -0.9 0.3 -1.5 0.4 -0.5 -0.2 0.5
1 0.5 0.1 0.9 0.2 0.6 0.8 0.3 0.7 0.1 0.3 0.5 0.6 0.4 0.2 0.5 0.9
2 5.1 0.8 0.5 5.1 -2.6 5.0 4.6 -3.7 -2.8 4.3 4.4 -4.0 4.7 0.9 1.7 5.0

Table 3: ROI voxels covariance matrix.
Σ/σ2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 ρ 0 0 ρ 0 0 0 0 0 0 0 0 0 0 0
2 ρ 1 ρ 0 0 ρ 0 0 0 0 0 0 0 0 0 0
3 0 ρ 1 ρ 0 0 ρ 0 0 0 0 0 0 0 0 0
4 0 0 ρ 1 0 0 0 ρ 0 0 0 0 0 0 0 0
5 ρ 0 0 0 1 ρ 0 0 ρ 0 0 0 0 0 0 0
6 0 ρ 0 0 ρ 1 ρ 0 0 ρ 0 0 0 0 0 0
7 0 0 ρ 0 0 ρ 1 ρ 0 0 ρ 0 0 0 0 0
8 0 0 0 ρ 0 0 ρ 1 0 0 0 ρ 0 0 0 0
9 0 0 0 0 ρ 0 0 0 1 ρ 0 0 ρ 0 0 0
10 0 0 0 0 0 ρ 0 0 ρ 1 ρ 0 0 ρ 0 0
11 0 0 0 0 0 0 ρ 0 0 ρ 1 ρ 0 0 ρ 0
12 0 0 0 0 0 0 0 ρ 0 0 ρ 1 0 0 0 ρ
13 0 0 0 0 0 0 0 0 ρ 0 0 0 1 ρ 0 0
14 0 0 0 0 0 0 0 0 0 ρ 0 0 ρ 1 ρ 0
15 0 0 0 0 0 0 0 0 0 0 ρ 0 0 ρ 1 ρ
16 0 0 0 0 0 0 0 0 0 0 0 ρ 0 0 ρ 1

Table 4: Marginal univariate (left) and multivariate (right) t-statistics.
t 1 2 3 4
1 6.6334, 6.2227 1.2038, 1.1292 0.6442, 0.6043 7.4922, 7.0283
2 -3.8636, -3.6244 7.2984, 6.8465 6.9349, 6.5055 -5.4322, -5.0958
3 -3.5956, -3.3730 5.6255, 5.2772 5.7558, 5.3994 -5.2393, -4.9149
4 6.3367, 5.9444 1.3136, 1.2322 2.4626, 2.3101 7.1131, 6.6727
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