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Abstract

In functional magnetic resonance imaging, voxel time courses are complex valued
but are traditionally converted to real magnitude-only ones. At a large signal-to-noise
ratio (SNR), the magnitude-only Ricean distriution is approximated by a normal dis-
tribution that has been suggested as reasonable in magnitude-only magnetic resonance
images for an SNR of 5 and potentially as low as 3. A complex activation model has
been recently introduced by Rowe and Logan (2004) that is valid for all SNR’s. The
properties of the parameter estimators and activation statistic for these two models and
a more accurate Ricean approximation are characterized in terms of bias, variance, and
Cramer-Rao lower bound. It was found that the unbiased estimators in the complex
model were unbiased at for any SNR while those of the normal magnitude-only model
became biased as the SNR decreased and at differing levels for the regression coeffi-
cients. The unbiased parameter estimators from the approximate Ricean model were
unbiased to lower SNR’s than the normal ones. Further, the variances of the parame-
ter estimators achieved their minimum value in the complex model regardless of SNR

while the normal magnitude-only model and the Ricean approximation did not as the
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SNR decreased. Finally the mean activation statistic for the complex model was higher
and not SNR dependent while it decreased with SNR, in the magnitude-only models
but less so for the approximate Ricean model. These results indicate that using the
complex data model and not approximations to the true magnitude-only Ricean model

is more appropriate at lower SNR’s.

1 Introduction

Recently a complex time course model was introduced by Rowe and Logan [10] to deter-
mine functional brain activation. This model builds upon previous work [5, 7] in which pre
magnitude complex valued voxel time courses were used to determine brain activation. This
model showed improved power of detection at low signal-to-noise ratios and low contrast-to-
noise ratios for three distinct thresholding methods [6].

Also recently, the Cramer-Rao lower bound (CRLB) of unbiased parameter estimators
for a similar model in MRI was presented [11]. This complex MRI model required data for a
single time point and pooled information from neighboring voxels. In contrast, the complex
fMRI model uses repeated observations over time in each voxel where the magnitude of the

response is allowed to vary according to a general linear model.

2 Models

A nonlinear multiple regression model with design matrix X’ = (z1, ..., z,) was introduced
individually for each voxel [10] that includes a phase imperfection € in which at time ¢, the
complex valued observations are given by

v = [(7,03)cosO + nri| + i[(z,5) sin 6 + 0y (2.1)

where 8 = o + 121t + - - - + ByTars e, nre)’ ~ N(0,X) and ¥ = 021, The distributional
specification is on the real and imaginary parts of the observed signal and not on only the
magnitude. The phase imperfection in Equation 2.1 is assumed to be fixed and unknown

quantity, but may be estimated voxel-by-voxel as in Nan and Nowak (1999) and Rowe and

Logan (2004).



In fMRI, repeated measurements are tken over time while a subject is performing a
task. In each voxel, we usually compute a measure of association between the observed time
course and a preassigned reference function that characterizes the experimental paradigm.
The typical method to compute activations [1, 2] is to use only the magnitude at time ¢

denoted by r; and written as

N

re = [(#}8cos 0+ nre)* + (z,Bsinb + np)? (2.2)

As previously outlined [10], the magnitude of a complex valued observation at time t is

Ricean distributed [3, 8] and given by

r

p(ri|ze, B,0%) = U—’; exp {—2%2 (7 + (,8)?] } /; 1 exp {Iiﬁn cos(¢y — 9)} dg2.3)

2 o2

t=—T

where a general linear model is assumed and the integral factor often denoted I,(z}0r;/0?) is
the zeroth order modified Bessel function of the first kind. It is well known that for “large”
SNR’s the Ricean distribution of the magnitude r; in Equation 2.3 is approximately normal
with mean x}3 and variance 2. When the SNR is zero, the Ricean distribution is a Rayleigh
distribution. It is intermediate SNR values that are of interest along with guidelines for what
is considered a “large” SNR.

Maximum likelihood estimates (MLE’s) of the parameters (3, %) can be determined for
both null and alternative hypotheses such as Hy : C'f = 7 versus H; : C'3 # ~ from

p(rlX, 5,0%) = (o) <H ) exp {—% <Z + ;(:viﬁ)2> } H Lo(xBri/a®) |

or the logarithm of the likelihood

n 1 n n n
LL = —nlog(c?) + Zlog "t 52 <Z 7+ Z(ziﬁf) - Zlog I(z,Br,/o?)
t=1 1 t=1 t=1

t—

where 7 = (rq,...,7,)". When maximizing the log likelihood under the null hypothesis, the
Lagrange multiplier constraint ¢'(C'3 — ) is added. If the parameter estimates under the
null hypothesis are denoted (3,52) and those under the alternative hypothesis (B, 62), then

substituting back into the likelihood and the ratio A of null over alternative leads to the



approximately y? distributed statistic

n

—2logA = 2nlog(62/6%) + % <Z r2 4 Z(r;5)2> — % <Z rZ 4 Z(x;[%f)
t=1 t=1

t=1 t=1
-2 i log [Io(ziﬁn/ﬁz)/Io(ZEQﬁATt/g)}
=1

with degrees of freedom rqual to the full row rank of C'.

However, an exact solution is difficult in practice and requires nonstandard numerical
maximization. We will explore an alternative approximation to the Ricean distribution that
is valid at lower SNR’s than the normal approximation. A more accurate approximation to

the Ricean distribution is

o1 1 ,
p(ri|z, B,0%) = 937’;—6\/77 exp {_T‘Q [re — (fftﬁ)]z} ; (2.4)

which is found by approximating the cosine term in Equation 2.3 by the first two terms of

its Taylor series expansion cos(¢; — ) = 1 — (¢, — 0)?/2 and integrating.

3 Statistics

For each of the three models, MLE statistics can be found under both the null and alterna-
tive hypotheses. Unbiased versions of the MLE’s are easily found as are activation statistics
can be found from a generalized likelihood ratio test. Using the subscripts N, T', and C' to
denote the normal approximation to the Ricean distribution, the Taylor series approxima-
tion to the Ricean distribution, and the complex bivariate normal distribution models, the
MLE’s for the three models under the alternative and null two hypotheses denoted with hats

and tildes respectively are

Normal
By = (X)X By = VXXX (3.1)
6% = r—XBy)(r—XpBy) 6% = L(r—XBn)(r—XBy)
Taylor
br = By = FXX)' 0 wf(2ibr) Br o= By — VEXX) 0 2/ (x)Br)
52 — L(r — XBr)'(r — XBr) 53 = L(r — XBr)'(r — Xfr)
(3.2)



Complex

4 _ 1 -1 B};»,(X/X)BI
bo = p tan [(B;;»,(X’X)BR—BKX’X)BI)/z
fe = Brcosbc + [Brsinfe
/
5_2 . 1 yR_XﬁCOSQC yR_XﬁCOSQC
c = o . . ) .
? yr — X[Bsinfgo yr — X[Bsinfgo
0o = Ltan—1 [ . BRu(X'X)8r } (3.3)
2 (BrY(X'X)Br—B1¥(X'X)Br)/2
Bc = L (BR cos 9~c + B; sin éc)
~ ~ / ~ ~
52— 1 yr — X B cosbc yr — X[ cosbc
C T on ~ ~ - -
? yr — X[Bsinf¢o yr — X[Bsinfgo

where ¥ = I, —(X'X)"1C'[C(X'X) 1" 71C, fr = (X' X) ' X'yg, and §; = (X'X) X'y,
while yz and y; are the n x 1 vectors of real and imaginary observations. The parameters
for the approximate Taylor series model are iteratively estimated [9, 10].

Alternative hypothesis estimators will be evaluated in terms of the deviation of their
mean and variance from the true value and their CRLB. An estimator 7 of # is said to be
unbiased if E(7) = 6 for all # [4]. The deviation of the mean of an estimator from the
true value is called the bias, b(7) = E(7) — 6. However, since the CRLB is for unbiased
parmaeter estimators, the alternative hypothesis estimators for the variance are multiplied
by n/(n —q— 1) for the magnitude-only models and 2n/(2n — g — 2) for the complex model.

As outlined in the Appendix, the CRLB for the magnitude-only normal activation model

is found to be

B o’
CRLBy = §3 2(X'X)L 0 : (3.4)
o? 0 201 /n

for the magnitude-only Taylor series approximation to the Ricean distribution model to be

5 o?
, -1
CRLBr = 3 o(X'X)"! [1 — Z(XX)T S a(a)8) 0 )
52 0 201 /n



and for the complex activation model of Rowe and Logan (2004) it can also be found to be

6] o? 0
2 / —1
CRLBe— O [T 0 ! . (3.6)
o? 0 at/n 0
6 0 0 o2/F(X'X)3

Note that the CRLB for the variance of an unbiased estimate of the observation variance
is two times larger in the magnitude-only models than in the complex model. The mean
variance of an estimator may not achieve the CRLB for finite sample sizes. If the mean
variance does achieve the CRLB then the estimator is said to be efficient while if it achieves
the CRLB asymptotically, then it is said to be asymptotically efficient. Activation statistics
are taken to be —2log A with A being the likelihood ratio statistic.

4 Simulation

Data is generated to simulate voxel activation from a bilateral finger tapping fMRI block
design experiment as in [10]. The simulation consisted of n = 256 points where the true
activation structure is known so that the two models can be evaluated.

Simulated fMRI data is constructed according to a general linear model which consists
of an intercept [y, a coefficient 3; for a time trend ¢ for all voxels and a coefficient 35 for a
reference function xy; related to a block experimental design. This model dictates that at
time ¢,

Y = [(Bo + Bit + Paxar) cos @ + npe) + 1[(Bo + Bit + Bowar) sin 6 + ],

where ng; and 7y are i.i.d. N(0,02).

For all voxels in this simulation study, the phase was generically selected to be 6 = 7/6,
while 47 = 0.00001, and ¢ = 0.04909 which are values taken from a “highly active” voxel
[10]. The coefficient for the reference function 3, has a value determined by a contrast-
to-noise ratio (CNR=0/c0) of 1/2. Therefore since the variance is held fixed, the SNR is
parameterized by varying (3 so that the ratio SNR= /o takes on values 1, 2.5, 5, 7.5, 10, 12.5
and 15. For each SNR combination, 10° simulated voxel time courses were generated and

the parameters estimated by all three models.

6



The mean and variance of the unbiased parameter estimates and activation statistics
from the simulations were computed and plotted in Figures 1 and 2 for the various SNR’s.
Note that the mean and variance of the parameter estimates in the magnitude-only normal
(in red) and the Taylor series (in cyan) models deviate from the true value as the SNR
decreases while the parameter estimates in the complex model (in blue) achieve their correct
value and remain fairly constant.

It can be seen in Figure 1 that the the estimated intercept coefficient or baseline is
unbiased for the magnitude-only normal model to about an SNR of 7.5 and the magnitude-
only Taylor model down to an SNR of about 2.5. Further, the for the reference function
coefficient 35 and the variance o# in the magnitude-only normal model are unbiased only to
an SNR of approximately 10 while they are unbiased for the Taylor approximate model to
an SNR of about 5.

Also included are the true parameter values and the CRLB’s for the magnitude-only
normal, the magnitude-only Taylor approximation, and complex models, in green, yellow,
and magenta, respectively in Figure 2. The CRLB’s are not exactly attained even for large
SNR’s because the estimators are only asymptotically efficient. Also note that the error
variance estimates are approximately twice as large for the magnitude-only models than for
the complex model, even for the largest value of SNR. This factor of two disparity is as
stated by the CRLB’s.

Additionally, the mean and variance of the —2log A activation statistics for testing the
hypothesis that §; = 0 are included in Figures 1 and 2 respectively. The mean and variance
of the activation statistics are uniformly lower for the magnitude-only models than for the

complex model of Rowe and Logan with a disparity that levels off as the SNR increases.
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Figure 1: Plot of estimated parameter means with varying SNR.
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Figure 2: Plot of estimated parameter variances with varying SNR.
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5 Conclusions

A previously proposed complex data fMRI model of Rowe and Logan (2004) as an alter-
native to the typical magnitude-only normal data model was outlined along with a model
that uses a Taylor series approximation in the Ricean distribution. Maximum likelihood
parameter estimates were also described. The CRLB for the variance of the observation
variance was half as large in the complex data model as it is in the magnitude-only models.

Simulations were performed for several SNR’s and the parameters for both models esti-
mated along with an activation statistic. The mean and variance of the estimated parame-
ter values and activation statistics were computed and compared with the true values and
CRLB’s where applicable.

It was found that the complex model performed extremely well at estimating the true
parameter values and achieving its CRLB’s even for very low SNR. The magnitude-only
models did not perform as well as the complex model. Additionally, even for very large
SNR’s, the variance of the error variance was twice as large for the magnitude-only models
as for the complex model. These results indicate that using the complex data model instead

of approximations to the Ricean distribution of the magnitude-only data are more useful at

low SNR.
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A MLE’s for Taylor Model

The logarithm of the likelihood for the Taylor series approximation of the Ricean distri-

bution of magnitude-only observations is
LL = ——log (2m) + Zlogrt——log ——Zlog xB) — (r—Xﬁ) (r — XB)1)

Unrestricted MLE’s

Maximizing the likelihood in Equation A.1 with respect to the parameters is the same as

maximizing the logarithm of the likelihood with respect to the parameters and yields

OLL 1 Tew 1
= 2X'X)3 —2X'r

57~ 3 PXNP-2X =5 ) S
OLL _2_ni+ﬁ 1

do? 2 02 2(0?)?

where h = (r — X3)'(r — X3). By setting these derivatives equal to zero and solving, we get
the MLE’s under the unrestricted model given in Equation 3.2.

Restricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the
logarithm of the likelihood in Equation A.1 with respect to the parameters with the Lagrange
multiplier term ¢’'(C3 — ~) added for the alternative hypothesis restriction and yields

OLL 1 Ll 1 ,
5 —g[(XX)ﬁ 2X'r] - Z tﬁit—C?ﬂ
OLL

I (CB =)

OLL onl h 1

do? 202 2(02)2

By setting these derivatives equal to zero and solving, we get the MLE’s under the restricted
model given in Equation 3.2.

Note that 62 = h/(2n) and 62 = h/(2n). Then the generalized likelihood ratio is

Qz
Cbz
Qe

2\—2n/2  _ofhn/(2h)
):( ) e . (A.2)

X) (52)—%/2 e—2hn/(2h)

. _ U,
p(rl,

Q> Ql

Q>
%>
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B Cramer-Rao Lower Bounds
The CRLB for the variance of an unbiased estimate of a model parameter requires the

second derivatives of the log likelihoods LL with respect to the model parameters.

B.1 Normal Model

The second derivatives of the log likelihood are

O?LL 1

H(1,1) = 0308 ) [2(X'X)]
HE.2) = 52 = ~Rn() - 2h(e)
HOL2) = TEL = - ()1

The symmetric Hessian matrix H is formed from the second derivatives and it is seen to
be negative definite and therefore the estimated values from the first derivatives are maxima
and not minima. The Fisher information matrix I is -E(H|3,0?), that is, the expectation
of the Hessian matrix with respect to . The CRLB is the inverse of the Fisher information

matrix. By taking expectations of the block elements of the Hessian matrix, the CRLB in

Equation 3.4 is found.

B.2 Taylor Model

The second derivatives of the log likelihood are

H(1,1)=§;g§, = 21 2(X'X)] __th ) (2 8) %!
9> h

.Y = 528 = R -2
O2LL

H(l 2) aﬁ80-2 — [X/r— (X/X)ﬁ](—l)(O'z)_z ]

The symmetric Hessian matrix H is formed from the second derivatives and it is seen to
be negative definite and therefore the estimated values from the first derivatives are maxima
and not minima. The Fisher information matrix I is -E(H|3,0?), that is, the expectation

of the Hessian matrix with respect to . The CRLB is the inverse of the Fisher information
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matrix. By taking expectations of the block elements of the Hessian matrix, the CRLB in

Equation 3.5 is found.

B.3 Complex Model

The second derivatives of the log likelihood are

O’LL 1

HLY) = 5272 = =503 RIX'X)]

H(2,2) = a;% _ —2%2 =28’ (— X"y cos 6 — X'y sin )]

G, = St = ~2 )i+ G2

H(1,2) = g;%g _ —% X'y sind — X'ys cos f]

H(1,3) = % - —%[X’y}g cos 6+ X'y;sin 6 — (X'X)5]
O*LL

1
H(2,3) = Fﬁ’X’[gmsin@—y;cos@] .

~ 90002

The symmetric Hessian matrix H is formed from the second derivatives and it is seen to
be negative definite and therefore the estimated values from the first derivatives are maxima
and not minima. The Fisher information matrix I is -FE(H|(3, 0, 0?), that is, the expectation
of the Hessian matrix with respect to yr and y;. The CRLB is the inverse of the Fisher
information matrix. By taking expectations of the block elements of the Hessian matrix, the

CRLB in Equation 3.6 is found.
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