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Abstract

In functional magnetic resonance imaging, voxel time courses are complex valued

but are traditionally converted to real magnitude-only ones. At a large signal-to-noise

ratio (SNR), the magnitude-only Ricean distriution is approximated by a normal dis-

tribution that has been suggested as reasonable in magnitude-only magnetic resonance

images for an SNR of 5 and potentially as low as 3. A complex activation model has

been recently introduced by Rowe and Logan (2004) that is valid for all SNR’s. The

properties of the parameter estimators and activation statistic for these two models and

a more accurate Ricean approximation are characterized in terms of bias, variance, and

Cramer-Rao lower bound. It was found that the unbiased estimators in the complex

model were unbiased at for any SNR while those of the normal magnitude-only model

became biased as the SNR decreased and at differing levels for the regression coeffi-

cients. The unbiased parameter estimators from the approximate Ricean model were

unbiased to lower SNR’s than the normal ones. Further, the variances of the parame-

ter estimators achieved their minimum value in the complex model regardless of SNR

while the normal magnitude-only model and the Ricean approximation did not as the
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SNR decreased. Finally the mean activation statistic for the complex model was higher

and not SNR dependent while it decreased with SNR in the magnitude-only models

but less so for the approximate Ricean model. These results indicate that using the

complex data model and not approximations to the true magnitude-only Ricean model

is more appropriate at lower SNR’s.

1 Introduction

Recently a complex time course model was introduced by Rowe and Logan [10] to deter-

mine functional brain activation. This model builds upon previous work [5, 7] in which pre

magnitude complex valued voxel time courses were used to determine brain activation. This

model showed improved power of detection at low signal-to-noise ratios and low contrast-to-

noise ratios for three distinct thresholding methods [6].

Also recently, the Cramer-Rao lower bound (CRLB) of unbiased parameter estimators

for a similar model in MRI was presented [11]. This complex MRI model required data for a

single time point and pooled information from neighboring voxels. In contrast, the complex

fMRI model uses repeated observations over time in each voxel where the magnitude of the

response is allowed to vary according to a general linear model.

2 Models

A nonlinear multiple regression model with design matrixX ′ = (x1, . . . , xn) was introduced

individually for each voxel [10] that includes a phase imperfection θ in which at time t, the

complex valued observations are given by

yt = [(x′tβ) cos θ + ηRt] + i[(x′tβ) sin θ + ηIt] (2.1)

where x′tβ = β0 + β1x1t + · · ·+ βqxqt, (ηRt, ηIt)
′ ∼ N (0,Σ) and Σ = σ2I2. The distributional

specification is on the real and imaginary parts of the observed signal and not on only the

magnitude. The phase imperfection in Equation 2.1 is assumed to be fixed and unknown

quantity, but may be estimated voxel-by-voxel as in Nan and Nowak (1999) and Rowe and

Logan (2004).
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In fMRI, repeated measurements are tken over time while a subject is performing a

task. In each voxel, we usually compute a measure of association between the observed time

course and a preassigned reference function that characterizes the experimental paradigm.

The typical method to compute activations [1, 2] is to use only the magnitude at time t

denoted by rt and written as

rt =
[
(x′tβ cos θ + ηRt)

2 + (x′tβ sin θ + ηIt)
2
]1

2 . (2.2)

As previously outlined [10], the magnitude of a complex valued observation at time t is

Ricean distributed [3, 8] and given by

p(rt|xt, β, σ
2) =

rt

σ2
exp

{
− 1

2σ2

[
r2
t + (x′tβ)2

]}∫ π

φt=−π

1

2π
exp

{
x′tβrt

σ2
cos(φt − θ)

}
dφt ,(2.3)

where a general linear model is assumed and the integral factor often denoted Io(x
′
tβrt/σ

2) is

the zeroth order modified Bessel function of the first kind. It is well known that for “large”

SNR’s the Ricean distribution of the magnitude rt in Equation 2.3 is approximately normal

with mean x′tβ and variance σ2. When the SNR is zero, the Ricean distribution is a Rayleigh

distribution. It is intermediate SNR values that are of interest along with guidelines for what

is considered a “large” SNR.

Maximum likelihood estimates (MLE’s) of the parameters (β, σ2) can be determined for

both null and alternative hypotheses such as H0 : Cβ = γ versus H1 : Cβ 6= γ from

p(r|X,β, σ2) = (σ2)−n

(
n∏

t=1

rt

)
exp

{
− 1

2σ2

(
n∑

t=1

r2
t +

n∑

t=1

(x′tβ)2

)}
n∏

t=1

Io(x
′
tβrt/σ

2) ,

or the logarithm of the likelihood

LL = −n log(σ2) +

n∑

t=1

log rt −
1

2σ2

(
n∑

t=1

r2
t +

n∑

t=1

(x′tβ)2

)
+

n∑

t=1

log Io(x
′
tβrt/σ

2)

where r = (r1, . . . , rn)
′. When maximizing the log likelihood under the null hypothesis, the

Lagrange multiplier constraint ψ′(Cβ − γ) is added. If the parameter estimates under the

null hypothesis are denoted (β̃, σ̃2) and those under the alternative hypothesis (β̂, σ̂2), then

substituting back into the likelihood and the ratio λ of null over alternative leads to the
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approximately χ2 distributed statistic

−2 log λ = 2n log(σ̃2/σ̂2) +
1

σ̃2

(
n∑

t=1

r2
t +

n∑

t=1

(r′tβ̃)2

)
− 1

σ̂2

(
n∑

t=1

r2
t +

n∑

t=1

(x′tβ̂)2

)

−2

n∑

t=1

log
[
Io(x

′
tβ̃rt/σ̃

2)/Io(x
′
tβ̂rt/σ̂

2)
]

with degrees of freedom rqual to the full row rank of C.

However, an exact solution is difficult in practice and requires nonstandard numerical

maximization. We will explore an alternative approximation to the Ricean distribution that

is valid at lower SNR’s than the normal approximation. A more accurate approximation to

the Ricean distribution is

p(rt|xt, β, σ
2) =

√
rt

x′tβ

1√
2πσ2

exp

{
− 1

2σ2
[rt − (x′tβ)]

2

}
, (2.4)

which is found by approximating the cosine term in Equation 2.3 by the first two terms of

its Taylor series expansion cos(φt − θ) = 1 − (φt − θ)2/2 and integrating.

3 Statistics

For each of the three models, MLE statistics can be found under both the null and alterna-

tive hypotheses. Unbiased versions of the MLE’s are easily found as are activation statistics

can be found from a generalized likelihood ratio test. Using the subscripts N , T , and C to

denote the normal approximation to the Ricean distribution, the Taylor series approxima-

tion to the Ricean distribution, and the complex bivariate normal distribution models, the

MLE’s for the three models under the alternative and null two hypotheses denoted with hats

and tildes respectively are

Normal

β̂N = (X ′X)−1X ′r β̃N = Ψ(X ′X)−1X ′r

σ̂2
N = 1

n
(r −Xβ̂N )′(r −Xβ̂N) σ̃2

N = 1
n
(r −Xβ̃N)′(r −Xβ̃N )

(3.1)

Taylor

β̂T = β̂N − σ̃2
T

2
(X ′X)−1

∑n
t=1 xt/(x

′
tβ̂T ) β̃T = β̃N − Ψ

σ̃2
T

2
(X ′X)−1

∑n
t=1 xt/(x

′
tβ̃T )

σ̂2
T = 1

n
(r −Xβ̂T )′(r −Xβ̂T ) σ̃2

T = 1
n
(r −Xβ̃T )′(r −Xβ̃T )

(3.2)
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Complex

θ̂C = 1
2
tan−1

[
β̂′

R(X ′X)β̂I

(β̂′
R(X ′X)β̂R−β̂′

I(X ′X)β̂I)/2

]

β̂C = β̂R cos θ̂C + β̂I sin θ̂C

σ̂2
C = 1

2n


 yR −Xβ̂ cos θ̂C

yI −Xβ̂ sin θ̂C




′
 yR −Xβ̂ cos θ̂C

yI −Xβ̂ sin θ̂C




θ̃C = 1
2
tan−1

[
β̂′

RΨ(X ′X)β̂I

(β̂′
RΨ(X ′X)β̂R−β̂′

IΨ(X ′X)β̂I)/2

]

β̃C = Ψ
(
β̂R cos θ̃C + β̂I sin θ̃C

)

σ̃2
C = 1

2n


 yR −Xβ̃ cos θ̃C

yI −Xβ̃ sin θ̃C




′
 yR −Xβ̃ cos θ̃C

yI −Xβ̃ sin θ̃C




(3.3)

where Ψ = Iq+1−(X ′X)−1C ′[C(X ′X)−1C ′]−1C, β̂R = (X ′X)−1X ′yR, and β̂I = (X ′X)−1X ′yI ,

while yR and yI are the n × 1 vectors of real and imaginary observations. The parameters

for the approximate Taylor series model are iteratively estimated [9, 10].

Alternative hypothesis estimators will be evaluated in terms of the deviation of their

mean and variance from the true value and their CRLB. An estimator τ of θ is said to be

unbiased if E(τ ) = θ for all θ [4]. The deviation of the mean of an estimator from the

true value is called the bias, b(τ ) = E(τ ) − θ. However, since the CRLB is for unbiased

parmaeter estimators, the alternative hypothesis estimators for the variance are multiplied

by n/(n− q− 1) for the magnitude-only models and 2n/(2n− q− 2) for the complex model.

As outlined in the Appendix, the CRLB for the magnitude-only normal activation model

is found to be

CRLBN =

β σ2

β

σ2


 σ2(X ′X)−1 0

0 2σ4/n


 , (3.4)

for the magnitude-only Taylor series approximation to the Ricean distribution model to be

CRLBT =

β σ2

β

σ2


 σ2(X ′X)−1

[
I − σ2

2
(X ′X)−1

∑n
t=1 xt/(x

′
tβ)
]−1

0

0 2σ4/n


 ,

(3.5)
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and for the complex activation model of Rowe and Logan (2004) it can also be found to be

CRLBC =

β σ2 θ

β

σ2

θ




σ2(X ′X)−1 0 0

0 σ4/n 0

0 0 σ2/β′(X ′X)β




. (3.6)

Note that the CRLB for the variance of an unbiased estimate of the observation variance

is two times larger in the magnitude-only models than in the complex model. The mean

variance of an estimator may not achieve the CRLB for finite sample sizes. If the mean

variance does achieve the CRLB then the estimator is said to be efficient while if it achieves

the CRLB asymptotically, then it is said to be asymptotically efficient. Activation statistics

are taken to be −2 log λ with λ being the likelihood ratio statistic.

4 Simulation

Data is generated to simulate voxel activation from a bilateral finger tapping fMRI block

design experiment as in [10]. The simulation consisted of n = 256 points where the true

activation structure is known so that the two models can be evaluated.

Simulated fMRI data is constructed according to a general linear model which consists

of an intercept β0, a coefficient β1 for a time trend t for all voxels and a coefficient β2 for a

reference function x2t related to a block experimental design. This model dictates that at

time t,

yt = [(β0 + β1t+ β2x2t) cos θ + ηRt] + i[(β0 + β1t+ β2x2t) sin θ + ηIt],

where ηRt and ηIt are i.i.d. N(0,σ2).

For all voxels in this simulation study, the phase was generically selected to be θ = π/6,

while β1 = 0.00001, and σ = 0.04909 which are values taken from a “highly active” voxel

[10]. The coefficient for the reference function β2 has a value determined by a contrast-

to-noise ratio (CNR=β2/σ) of 1/2. Therefore since the variance is held fixed, the SNR is

parameterized by varying β0 so that the ratio SNR= β0/σ takes on values 1, 2.5, 5, 7.5, 10, 12.5

and 15. For each SNR combination, 106 simulated voxel time courses were generated and

the parameters estimated by all three models.
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The mean and variance of the unbiased parameter estimates and activation statistics

from the simulations were computed and plotted in Figures 1 and 2 for the various SNR’s.

Note that the mean and variance of the parameter estimates in the magnitude-only normal

(in red) and the Taylor series (in cyan) models deviate from the true value as the SNR

decreases while the parameter estimates in the complex model (in blue) achieve their correct

value and remain fairly constant.

It can be seen in Figure 1 that the the estimated intercept coefficient or baseline is

unbiased for the magnitude-only normal model to about an SNR of 7.5 and the magnitude-

only Taylor model down to an SNR of about 2.5. Further, the for the reference function

coefficient β2 and the variance σ4 in the magnitude-only normal model are unbiased only to

an SNR of approximately 10 while they are unbiased for the Taylor approximate model to

an SNR of about 5.

Also included are the true parameter values and the CRLB’s for the magnitude-only

normal, the magnitude-only Taylor approximation, and complex models, in green, yellow,

and magenta, respectively in Figure 2. The CRLB’s are not exactly attained even for large

SNR’s because the estimators are only asymptotically efficient. Also note that the error

variance estimates are approximately twice as large for the magnitude-only models than for

the complex model, even for the largest value of SNR. This factor of two disparity is as

stated by the CRLB’s.

Additionally, the mean and variance of the −2 log λ activation statistics for testing the

hypothesis that β2 = 0 are included in Figures 1 and 2 respectively. The mean and variance

of the activation statistics are uniformly lower for the magnitude-only models than for the

complex model of Rowe and Logan with a disparity that levels off as the SNR increases.
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Figure 1: Plot of estimated parameter means with varying SNR.
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Figure 2: Plot of estimated parameter variances with varying SNR.
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5 Conclusions

A previously proposed complex data fMRI model of Rowe and Logan (2004) as an alter-

native to the typical magnitude-only normal data model was outlined along with a model

that uses a Taylor series approximation in the Ricean distribution. Maximum likelihood

parameter estimates were also described. The CRLB for the variance of the observation

variance was half as large in the complex data model as it is in the magnitude-only models.

Simulations were performed for several SNR’s and the parameters for both models esti-

mated along with an activation statistic. The mean and variance of the estimated parame-

ter values and activation statistics were computed and compared with the true values and

CRLB’s where applicable.

It was found that the complex model performed extremely well at estimating the true

parameter values and achieving its CRLB’s even for very low SNR. The magnitude-only

models did not perform as well as the complex model. Additionally, even for very large

SNR’s, the variance of the error variance was twice as large for the magnitude-only models

as for the complex model. These results indicate that using the complex data model instead

of approximations to the Ricean distribution of the magnitude-only data are more useful at

low SNR.
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A MLE’s for Taylor Model

The logarithm of the likelihood for the Taylor series approximation of the Ricean distri-

bution of magnitude-only observations is

LL = −n
2

log(2π) +
1

2

n∑

t=1

log rt −
n

2
log(σ2) − n

2

n∑

t=1

log(x′tβ)− 1

2σ2
(r −Xβ)′(r −Xβ) .(A.1)

Unrestricted MLE’s

Maximizing the likelihood in Equation A.1 with respect to the parameters is the same as

maximizing the logarithm of the likelihood with respect to the parameters and yields

∂LL

∂β
= − 1

2σ2
[2(X ′X)β − 2X ′r] − 1

2

n∑

t=1

1

x′tβ
xt

∂LL

∂σ2
−2n

2

1

σ2
+
h

2

1

(σ2)2

where h = (r−Xβ)′(r−Xβ). By setting these derivatives equal to zero and solving, we get

the MLE’s under the unrestricted model given in Equation 3.2.

Restricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood in Equation A.1 with respect to the parameters with the Lagrange

multiplier term ψ′(Cβ − γ) added for the alternative hypothesis restriction and yields

∂LL

∂β
= − 1

2σ2
[2(X ′X)β − 2X ′r] − 1

2

n∑

t=1

1

x′tβ
xt − C ′ψ

∂LL

∂ψ
= (Cβ − γ)

∂LL

∂σ2
−2n

2

1

σ2
+
h

2

1

(σ2)2
.

By setting these derivatives equal to zero and solving, we get the MLE’s under the restricted

model given in Equation 3.2.

Note that σ̂2 = ĥ/(2n) and σ̃2 = h̃/(2n). Then the generalized likelihood ratio is

λ =
p(r|β̃, σ̃2, θ̃,X)

p(r|β̂, σ̂2, θ̂,X)
=

(σ̃2)
−2n/2

e−2h̃n/(2h̃)

(σ̂2)−2n/2 e−2ĥn/(2ĥ)
. (A.2)
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B Cramer-Rao Lower Bounds

The CRLB for the variance of an unbiased estimate of a model parameter requires the

second derivatives of the log likelihoods LL with respect to the model parameters.

B.1 Normal Model

The second derivatives of the log likelihood are

H(1, 1) =
∂2LL

∂β∂β′ = − 1

2σ2
[2(X ′X)]

H(2, 2) =
∂2LL

∂(σ2)2
= −n

2
(−1)(σ2)−2 − 2

h

2
(σ2)−3

H(1, 2) =
∂2LL

∂β∂σ2
= [X ′r − (X ′X)β](−1)(σ2)−2 .

The symmetric Hessian matrix H is formed from the second derivatives and it is seen to

be negative definite and therefore the estimated values from the first derivatives are maxima

and not minima. The Fisher information matrix I is -E(H|β, σ2), that is, the expectation

of the Hessian matrix with respect to r. The CRLB is the inverse of the Fisher information

matrix. By taking expectations of the block elements of the Hessian matrix, the CRLB in

Equation 3.4 is found.

B.2 Taylor Model

The second derivatives of the log likelihood are

H(1, 1) =
∂2LL

∂β∂β′ = − 1

2σ2
[2(X ′X)] − 1

2

n∑

t=1

xt(−1)(x′tβ)−2x′t

H(2, 2) =
∂2LL

∂(σ2)2
= −n

2
(−1)(σ2)−2 − 2

h

2
(σ2)−3

H(1, 2) =
∂2LL

∂β∂σ2
= [X ′r − (X ′X)β](−1)(σ2)−2 .

The symmetric Hessian matrix H is formed from the second derivatives and it is seen to

be negative definite and therefore the estimated values from the first derivatives are maxima

and not minima. The Fisher information matrix I is -E(H|β, σ2), that is, the expectation

of the Hessian matrix with respect to r. The CRLB is the inverse of the Fisher information
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matrix. By taking expectations of the block elements of the Hessian matrix, the CRLB in

Equation 3.5 is found.

B.3 Complex Model

The second derivatives of the log likelihood are

H(1, 1) =
∂2LL

∂β∂β′ = − 1

2σ2
[2(X ′X)]

H(2, 2) =
∂2LL

∂θ2
= − 1

2σ2
[−2β ′ (−X ′yR cos θ −X ′yI sin θ)]

H(3, 3) =
∂2LL

∂(σ2)2
= −2n

2
(−1)(σ2)−2 +

h

2
(−2)(σ2)−3

H(1, 2) =
∂2LL

∂β∂θ
= − 1

σ2
[X ′yR sin θ −X ′yI cos θ]

H(1, 3) =
∂2LL

∂β∂σ2
= − 1

σ4
[X ′yR cos θ +X ′yI sin θ − (X ′X)β]

H(2, 3) =
∂2LL

∂θ∂σ2
=

1

σ4
β ′X ′[yR sin θ − yI cos θ] .

.

The symmetric Hessian matrix H is formed from the second derivatives and it is seen to

be negative definite and therefore the estimated values from the first derivatives are maxima

and not minima. The Fisher information matrix I is -E(H|β, θ, σ2), that is, the expectation

of the Hessian matrix with respect to yR and yI. The CRLB is the inverse of the Fisher

information matrix. By taking expectations of the block elements of the Hessian matrix, the

CRLB in Equation 3.6 is found.
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