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Abstract

Internal pilot designs allow re-estimation of the sample size at the

interim analysis using available information on nuisance parameters.

In general, this affects the Type I and II error rates. We propose a

method based on resampling the whole design at the interim analysis,

starting with sample size recalculation at the observed interim anal-

ysis values of nuisance parameters, and finishing with the decision

to accept or reject the null hypothesis. This internal resampling is

performed under both the null and under the alternative hypotheses

allowing the estimation of the bias of the type I error and power. Fi-

nally, the bias corrected error rates are used in the original sample size

calculation procedure to obtain an updated sample size. We explore

the proposed resampling approach under a set of simulation scenarios

and compare it with several others previously published internal pilot

designs.

KEYWORDS: Internal Pilot; Sample Size; Power Calculation; Hypothe-
sis Testing; Study Design.

1 Introduction

Ethical, financial, and recruitment constraints prevent researchers from en-
rolling arbitrarily many patients for a study to achieve statistically signif-
icant results. Pilot studies are used to provide information on parameters
needed to determine an appropriate sample size for a larger confirmatory
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study for which external funding is sought. The error variance and baseline
rates are common examples of such parameters. In observational studies,
there are often additional nuisance parameters involved in the sample size
estimation, such as the proportion of patients belonging to each group, or
the distribution and effect of other demographic variables which will be ad-
justed for in the analysis. These parameters can be estimated from the pilot
data and incorporated into the sample size estimation. The effect size is also
needed for sample size calculation, but it is usually defined as the smallest
clinically relevant value.

Having spent substantial effort and resources on the pilot study, investi-
gators often would wish to include the pilot data in the final data analysis.
However the use of this pilot data in both the design of subsequent data
collection (estimation of the sample size) as well as in the final analysis re-
quires an adjustment in order to control the type I error rate and power
appropriately. The methodology of internal pilot studies provides the tools
for such adjustments. Multiple authors have discussed procedures for sam-
ple size re-estimation based on estimates of nuisance parameters obtained at
an interim analysis. Proschan [7] and Friede and Kieser [2] review interim
pilot designs. The majority of work in this area has been focused on two-
arm prospective randomized studies with normally distributed or binomial
outcomes. Sample size re-estimation for a general linear hypothesis tested
through the general linear model was explored by Coffey and Muller [1]; an
interesting extension toward linear mixed models was suggested by Glueck
and Muller [4]. However neither of these papers accounts for randomness in
the distribution of the covariate of interest. An interim pilot design for the
analysis of covariance model (ANCOVA) was explored via simulations by
Friede and Kieser [3], while Gurka et al [5] analyzed the effect of unknown
group size proportions.

In this manuscript we propose a general methodology of constructing
interim pilot designs for any situation for which a sample size calculation
formula exists. Such a formula may include nuisance parameters that are
not available at the beginning of the study, but could be estimated if data
were available. The method is based on resampling the entire design, start-
ing with sample size recalculation at the interim analysis using the values
of nuisance parameters observed in the internal pilot data (see Section 2).
This resampling is performed under both the null and alternative hypothe-
ses allowing the estimation of the bias of the type I error and power. We
correct for this bias at the interim sample size recalculation to obtain a final
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sample size. In Section 3 we explore the proposed approach under a set of
simulation scenarios and compare its performance with several others previ-
ously published internal pilot designs. An illustrative example is presented
in Section 4. The article is concluded with a short summary in Section 5.

2 Methodology

Study design

We explore an internal pilot design when n1(< nmax) subjects are enrolled in
the study as an internal pilot and the second stage sample size is recalculated
at the interim analysis to secure the desired type I error, α, and power, 1−β.
We assume that there always exists an upper bound for the total sample size,
nmax, chosen for example, from budgetary or time constraints.

Consider the problem of independent sampling, where each observation
Yi is generated from a known p.d.f. (or p.m.f.) fY (y|θ, η) with unknown
parameters θ and η. We plan to test the null hypothesis H0 : θ = θ0 versus
the alternative hypothesis H1 : θ 6= θ0 with power 100(1 − β)% achieved at
θ = θ1. The parameters η are not in the research focus and will be treated
as nuisance.

Instead of focusing on the behavior of test statistics we direct our at-
tention to the properties of decision functions, δ (D), where δ (·) is a binary
function (1 to reject H0, 0 otherwise) associated with a study design D.
In this manuscript, we define a study design as (1) a set of data collec-
tion rules including the sample size calculation/recalculation procedure, (2)
a definition of a test statistic, and (3) a definition of the decision rule it-
self. These definitions should cover all possible situations including rules
for “exceptions”, such as having no observations in a certain category, or
zero variance, etc. It is convenient to consider parameterized study de-
signs, D (α, β, θ0, θ1, other parameters), where in addition to the previously
described α, β, θ0, and θ1 other parameters may be present, for example n1

and nmax.

Fixed sample size and internal pilot designs

To clarify the introduced concept of study design and notations, we show
how several common designs fit into the described framework.
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Designs with fixed sample size calculation (D1): These designs are
associated with a rule for calculating a fixed sample size (v) at the start
of the study based on α, β, θ0 and θ1, and an assumed value of η. The
functional form of a test statistic, Tv = Tv (Y1, ..., Yv) with a corresponding
critical value calculation, is also defined in this design.

Let D1t

(

α, β, θ0, θ1, η
(0)

)

(∈ D1) denote the study design for the one sam-
ple t-test. The sample size is calculated for given α and β under an assumed
value of the standard deviation, η(0). Thus, η(0) is the only nuisance pa-
rameter of D1t. The statistical properties of D1t are described by the power
function

P (θ|D1t) = Pr
(
∣

∣Tv(α,β,θ0,θ1,η(0))

∣

∣ > k(v)|θ,D1t

)

, (1)

where v(α, β, θ0, θ1, η
(0)) is the sample size formula, Tv is the t-statistic,

k(v) = tv−1,α/2 is the critical value.
A two sample t-test with a fixed allocation ratio (r) always keeps r100%

units allocated to group 1 and (1 − r)100% to group 2. We denote this

design as D2t

(

α, β, θ0, θ1, η
(0), r

)

. The nuisance parameters η(0) =
(

η
(0)
1 , η

(0)
2

)

denote guesses on the standard deviation (η1) and the mean of group 1 (η2).
We do not include r among the nuisance parameters since we assumed that
the allocation ratio is controlled by the investigator via, say, a randomized
block design. If the data are normally distributed, the distribution of the two
sample t-test does not depend on η2 under either the null or the alternative
hypotheses. Only η

(0)
1 affects the sample size calculations.

If the allocation ratio is not fixed, then r describes the long term al-
location ratio (i.e., the probability that an observational unit belongs to
group 1). Then, the distribution of the test statistic is a binomial mixture
of two t-statistics with varying degrees of freedom. This design is denoted

as D2tr

(

α, β, θ0, θ1, η
(0)

)

, where η(0) =
(

η
(0)
1 , η

(0)
2 , η

(0)
3

)

. Here we added η
(0)
3 ,

a guessed value of the true allocation ratio η3. The use of η3 instead of r
differentiates parameters responsible for random and fixed allocation ratios.

Internal pilot designs (D2): Fixed sample designs can be augmented
to become internal pilot designs by adding rules/parameters describing the
interim sample size re-estimation procedure. A naive approach to interim
sample size recalculation uses η̂, the interim analysis estimate of the nuisance
parameter without further adjustments. Then, the naive internal pilot design
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for the one sample t-test,

D1t,IPN (α, β, θ0, θ1, n1, nmax) (∈ D2) ,

is an alternative to D1t, which does not use η(0) but depends on n1 and nmax.
Its power function is

P (θ|D1t,IPN) = Pr
(
∣

∣Tv(α,β,θ0,θ1,η̂θ)

∣

∣ > k(v)|θ,D1t,IPN

)

, (2)

where η̂θ depends on η, n1, nmax and possibly θ. In this manuscript we
assume that η̂θ is independent of θ, that is η̂ = η̂θ.

A naive internal pilot-based sample size recalculation for a two sample
t-test will be denoted by D2t,IPN . This design was first analyzed by Wittes
and Brittain [9]. We also consider the internal pilot design D2t,IPS suggested
by Stein [8], which slightly modifies the functional form of the two-sample
t-statistic, whereas D2t,IPN uses the classical two sample t-statistic for Tv.

Internal sample size recalculation makes the final sample size a random
variable, which makes the distribution of the test statistic Tv and therefore
the critical value of the test difficult to calculate. Exact control of the type
I error is achieved by D2t,IPS, but this is rather an exception than a rule
for internal pilot designs. In general, the true type I error rate is rarely
controlled,

Eδ (D2t,IPN (α, β, θ0, θ1, n1, nmax) |H0) = a (α, β|D2t,IPN) 6= α.

The desired power is not controlled in either Stein’s or the naive internal
pilot designs,

Eδ (D (α, β, θ0, θ1, n1, nmax) |H1) = 1 − b (α, β|D) 6= 1 − β.

Sample size recalculation via resampling

We propose a new approach to sample size re-estimation after the internal
pilot that maintains both the type I and type II error rates. This approach
is applicable to any internal pilot design.

Key idea: For a design D ∈ D2 we find αnew and βnew to control the
desired type I error and power,

Eδ (D (αnew, βnew, θ0, θ1, n1, nmax) |H0) = α
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and
Eδ (D (αnew, βnew, θ0, θ1, n1, nmax) |H1) = 1 − β.

This definition leads to a fully defined internal pilot procedure Da(α, β, θ0, θ1, n1, nmax),
since all the details about sample size re-estimation, final hypothesis testing,
etc are already defined in D.

Implementation: At the interim analysis we estimate η̂ and perform the
following resampling procedure with M iterations. For each i = 1, ..., M , we

generate
(

Y
(i)
1 , ..., Y

(i)
n1

)

from fY (y|θ0, η̂), estimate vi ∈ [n1, nmax] based on

these n1 observations, generate additional (vi−n1) observations
(

Y
(i)
n1+1, ..., Y

(i)
vi

)

from fY (y|θ0, η̂), and calculate T
(i)
vi on this ith sample. We add the subscript

i to highlight dependence on iteration. The estimated type I error rate is

â (α, β|D) =
1

M

M
∑

i=1

I
(

T (i)
vi

> ki

)

6= α,

where ki is the critical value for an originally assumed distribution of T
(i)
vi .

On the logit scale (logit(x) = ln (x/(1 − x))) the bias-corrected αnew can be
expressed as

logit(αnew) = logit(α) − [logit(â) − logit(α)]

or

αnew =
α2 (1 − â)

(1 − α)2 â + α2 (1 − â)
. (3)

Then, we perform a similar resampling procedure to find βnew. For i =

1, ..., M , we generate
(

Y
(i)
1 , ..., Y

(i)
n1

)

from fY (y|θ1, η̂), estimate vi ∈ [n1, nmax]

on these n1 observations using αnew and β in the sample size formula, gener-

ate additional (vi − n1) observations
(

Y
(i)
n1+1, ..., Y

(i)
vi

)

from fY (y|θ1, η̂), and

calculate T
(i)
vi on this ith sample. The estimated power

1 − b̂ (αnew, β|D) =
1

M

M
∑

i=1

I
(

T (i)
vi

> ki

)

6= 1 − β
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leads to the bias-corrected value

βnew =
β2

(

1 − b̂
)

(1 − β)2 b̂ + β2
(

1 − b̂
) . (4)

This internal resampling scheme assumes that the functional form of the data
distribution, including the distribution of covariates, is known. For example,
we can assume that the covariates follow a normal distribution. Alterna-
tively, a nonparametric bootstrap resampling of the internal pilot data can
be used. The illustrative example in Section 4 uses a combination of non-
parametric (the distribution of covariates) and parametric (the distribution
of outcome conditional on covariates) bootstraps for internal resampling.

3 Simulation Studies

Here we consider a few scenarios showing how the proposed general method-
ology works and compare it with other applicable approaches.

Internal pilot for a one sample t-test

Let Y1, ..., Yn1, ... be an i.i.d. sample from N(θ, η2) and the one sample t-test
is planned for testing H0 : θ = 0 against H1 : θ 6= 0, with target power
100(1− β)% achieved at θ = θ1. The test statistic on v observations is Tv =√

vȲv/Sv, where Ȳv = v−1
∑v

i=1 Yi and S2
v = (v−1)−1

∑v
i=1

(

Yi − Ȳv

)2
. Under

H1, Tv has a noncentral t-distribution with v − 1 degrees of freedom and
noncentrality parameter ω1 =

√
v(θ1 − θ0)/η. The cumulative distribution

function will be denoted as P (Tv > x|v − 1, ω1). Then, the sample size at a
known η is a solution to

P (|Tv| > k|v − 1, ω1) = 1 − β,

P (|Tv| > k|v − 1, 0) = α,
(5)

where the critical value k is also found from these equations.
Given an assumed value η(0), one can proceed with fixed sample size

calculation for the design D1t

(

α, β, θ0, θ1, η
(0)

)

.
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Design D1t,IPN (α, β, θ0, θ1, n1, nmax) does not formally depend on η and
uses the internally estimated

η̂ =

√

√

√

√

1

n1 − 1

n1
∑

i=1

(

Yi − Ȳ
)2

when solving Equations (5).
We define Da

1t,IPN (α, β, θ0, θ1, n1, nmax) as D1t,IPN (α, β, θ0, θ1, n1, nmax)
augmented with internal recalculation of α and β using Equations (3) and
(4). Then, v is found by resolving

P (|Tv| > k|v − 1, ω̂1) = 1 − βnew,

P (|Tv| > k|v − 1, 0) = αnew,
(6)

where ω̂1 =
√

v(θ1 − θ0)/η̂.
Tables 1 and 2 summarize the results of this simulation study with inter-

nal pilot size of n1 = 5 and 10. For the fixed sample design D1t we consider
the unrealistic case of η = η(0), that is perfect knowledge of the nuisance pa-
rameter. Thus for this example the goal is to be as close as possible to this
ideal case. Both tables show the expected inflation of the type I error rate
by the naive design D1t,IPN accompanied by loss of power with increasing
values of the standard deviation. The resampling-adjusted design Da

1t,IPN

eliminates most of the type I error inflation and power deflation, especially
for n1 = 10. The price for this correction is a higher expected sample size
with more variability.

Internal pilot for a two sample t-test with a fixed group

allocation

In this section we consider the randomized block design. The randomization
is performed within blocks to ensure the desired allocation ratio r. The size
of the block (b) determines the magnitude of the sample size increments.
Then, the internal pilot of n1 experimental (or observational) units con-
sists of m1 = n1/b blocks separating n1 units to two treatment groups with
n10 and n11 observations respectively, n1 = n10 + n11. Mathematically, we
consider two data generating processes

Y10, ..., Yn100, ..., Yv00, ... ∼ N(η2, η
2
1)
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Table 1: Monte-Carlo Type I error, Power, and Sample Sizes; 100, 000 simu-
lations; one sample t-test designs, n1 = 10, nmax = 300.

D1t D1t,IPN Da
1t,IPN

η Type I error
1.6 0.0492 0.0643 0.0573
2 0.0500 0.0612 0.0513
3 0.0495 0.0553 0.0473

3.5 0.0494 0.0526 0.0473
Power

1.6 0.8177 0.8091 0.8367
2 0.8086 0.7841 0.8216
3 0.8040 0.7601 0.8001

3.5 0.8043 0.7517 0.7943
EN(SD)

1.6 23 22.73(9.33) 26.86(12.22)
2 34 33.89(14.80) 40.93(18.01)
3 73 73.17(33.29) 86.68(38.06)

3.5 99 98.53(45.05) 115.89(51.21)
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Table 2: Monte-Carlo Type I error, Power, and Sample Sizes; 100, 000 simu-
lations; one sample t-test designs, n1 = 5, nmax = 300.

D1t D1t,IPN Da
1t,IPN

η Type I error
0.6 0.0501 0.0523 0.0515
1 0.0515 0.0727 0.0682
2 0.0487 0.0685 0.0519
3 0.0503 0.0589 0.0448

3.5 0.0504 0.0574 0.0458
Power

0.6 0.8985 0.9387 0.9335
1 0.8030 0.8327 0.8596
2 0.8076 0.7319 0.7897
3 0.8033 0.7057 0.7663

3.5 0.8034 0.6953 0.7560
EN(SD)

0.6 6 6.00(1.59) 6.18(2.29)
1 10 10.56(5.39) 13.22(8.51)
2 34 33.88(22.24) 46.87(30.06)
3 73 73.30(49.34) 97.85(61.65)

3.5 99 97.79(64.78) 127.84(76.90)
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and
Y11, ..., Yn111, ..., Yv11, ... ∼ N(η2 + θ, η2

1),

where n10, n11, v0 and v1 satisfy

n10

n10 + n11

=
n10

n1

=
v1

v1 + v2

=
v1

v
= r.

For testing H0 : θ = θ0 versus H1 : θ 6= θ0 on v observations (without
internal sample size recalculation and known r and η1) the two-sample t-test
statistic

Tv =

√

v2v1(v − 2)

v

Ȳ1 − Ȳ0
√

(v2 − 1) S1 + (v1 − 1)S0

=
√

v − 2

(

Ȳ1 − Ȳ0

)

η−1
1

(

v−1
2 + v−1

1

)

−1/2

√

(v2 − 1)S1η
−2
1 + (v1 − 1)S0η

−2
1

=
Z + ω2

√

(v − 2)−1χ2
v−2

(7)

has a noncentral t-distribution with v − 2 degrees of freedom and noncen-
trality parameter

ω2 =
θ1 − θ0

η1

√

v−1
2 + v−1

1

,

where Ȳj = v−1
j

∑vj

i=1 Yij, S2
j = (vj − 1)−1 ∑vj

i=1

(

Yij − Ȳj

)2
, j = 0, 1, Z is a

standard normal random variable, and χ2
v−2 is a χ2 random variable with

v − 2 degrees of freedom.
Then, v and k are found from

P (|Tv| > k|v − 2, ω2) = 1 − β,

P (|Tv| > k|v − 2, 0) = α.
(8)

Design D2t

(

α, β, θ0, θ1, η
(0)

)

uses a two dimensional nuisance guess η(0) =
(

η
(0)
1 , η

(0)
2

)

. Its internal pilot counterpart D2t,IPN (α, β, θ0, θ1, n1, nmax) uses

η̂(0) = (η̂1, η̂2) based on the interim pilot for sample size recalculation. We
also consider a “restricted” naive internal pilot, D2t,IPNR, which is a vari-
ation of D2t,IPN , which sets 2n1 as the lower bound for the total sample
size. This design approximates the Wittes-Brittain[9] idea of performing the
interim analysis at half the originally planned sample size, and allowing only
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Table 3: Monte-Carlo Type I error, Power, and Sample Sizes; 100, 000 sim-
ulations; two sample t-test designs; n1 = 20 (10 per group); fixed allocation,
r = 0.5

η1 D2t D2t,IPS D2t,IPN D2t,IPNR Da
2t,IPN

Type I error
1 0.0497 0.0499 0.0584 0.0508 0.0526

1.5 0.0515 0.0506 0.0547 0.0542 0.0499
2 0.0492 0.0501 0.0523 0.0522 0.0493

2.5 0.0508 0.0500 0.0514 0.0514 0.0499
Power

1 0.8059 0.8147 0.8333 0.8952 0.8286
1.5 0.8044 0.8038 0.8159 0.8174 0.8108
2 0.8023 0.8043 0.8134 0.8134 0.8061

2.5 0.8020 0.8016 0.8091 0.8091 0.8002
EN(SD)

1 34 36.28(11.41) 36.28(11.41) 43.08(6.40) 37.34(12.35)
1.5 74 80.08(26.31) 80.08(26.31) 80.30(25.94) 81.24(25.67)
2 128 141.48(46.94) 141.48(46.94) 141.50(46.93) 140.38(45.23)

2.5 200 220.62(72.99) 220.62(72.99) 220.62(72.99) 215.88(70.60)

increase in the targeted study size. The use of internal resampling to find
αnew and βnew defines Da

2t,IPN .
Simulations in Tables 3 and 4 consider only r = 0.5 for different sizes

of internal pilot. This simplification allows us to compare the performance
of several designs D1t,IPN (fixed sample size, under the unrealistic assump-
tion of a correctly guessed η = η(0)), D2t,IPN (naive internal pilot), D2t,IPNR

(restricted naive internal pilot), D2t,IPS (naive internal pilot with Stein’s ap-
proach to modify the test statistic, see [8]) and Da

2t,IPN (internal resampling
adjusted naive approach).

Internal pilot for a two sample t-test with a random
group allocation

We saw that for a fixed sample size calculation with a fixed allocation ratio
the test statistic (7) has a central (under H0) or noncentral (under H1)
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Table 4: Monte-Carlo Type I error, Power, and Sample Sizes; 100, 000 sim-
ulations; two sample t-test designs; n1 = 10 (5 per group); fixed allocation,
r = 0.5

η1 D2t D2t,IPS D2t,IPN D2t,IPNR Da
2t,IPN

Type I error
1 0.0507 0.0508 0.0636 0.0579 0.0526

1.5 0.0496 0.0503 0.0546 0.0537 0.0467
2 0.0499 0.0499 0.0510 0.0509 0.0469

2.5 0.0504 0.0496 0.0515 0.0515 0.0491
Power

1 0.8081 0.8140 0.8401 0.8446 0.8213
1.5 0.8093 0.8077 0.8261 0.8259 0.7995
2 0.8010 0.8030 0.8184 0.8183 0.7883

2.5 0.8046 0.8021 0.8167 0.8167 0.7852
EN(SD)

1 34 41.89(20.46) 41.90(20.46) 42.44(19.75) 41.77(19.36)
1.5 74 92.95(45.96) 92.95(45.96) 92.99(45.90) 88.01(40.94)
2 128 163.86(81.28) 163.86(81.28) 163.87(81.27) 150.85(72.31)

2.5 200 254.98(122.50) 254.98(122.50) 254.98(122.50) 232.94(112.03)
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t-distribution. However random allocation of subjects to groups leads to
a different distribution. Since only the noncentrality parameter dependens
on v1 and v2, the distribution under H0 does not change, but under H1 it
becomes a mixture with

P (|Tv| > k|v − 2, θ1, θ0, η3) =
v

∑

v1=0

v!

v1!v2!
ηv1

3 (1 − η3)
v2 P (|Tv| > k|v − 2, ω2(v1, v2)) .

(9)
Moreover, the test statistic is not defined if min(v1, v2) ≤ 1 and has to be
extended to these possible situations. For example, at v1 = 1 or v2 = 1 one
can estimate the pooled standard deviation on one sample only; for the case
v1 = v2 = 0 one can set Tv = 0. Thus, even a fixed sample size calculation
faces substantial complications in deriving the distribution of the two sample
t-test statistic under H1.

In practice, the random aspect of the allocation is usually ignored in
the sample size estimation formulas and the formula for a fixed allocation is
used instead. Fixed allocation sample size calculation leads to two numbers
v1 and v2, but real life recruitment rarely allows to enroll exactly v1 and
v2 subjects in groups 1 and 2 respectively. Then, the investigator faces a
dilemma: stop after recruiting v1 + v2 subjects even if there are not enough
subjects in one of the groups, or continue recruiting until at least v1 and
v2 subjects are enrolled in the groups 1 and 2 respectively. Our simulation
study in Table 5 considers a fixed sample size calculation design (D2tr)
with a recruitment until both numbers are met. By analogy with previous
simulation examples we consider D2tr,IPN (naive sample size recalculation),
D2tr,IPNR (restricted naive sample size recalculation, the total sample size is
at least twice as large as the size of the internal pilot) and the adjusted by
interim resampling design Da

2tr,IPN .
The results show that while type I error rate is only slightly inflated for

the internal pilot designs, all the designs except our proposed method have
above targeted power.

4 Example

The examples described in the simulation studies were relatively simple to
allow comparisons with existing internal pilot methodology. In this sec-
tion we show a more realistic example of a hypothetical observational study.
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Table 5: Monte-Carlo Type I error, Power, and Sample Sizes; 100, 000 simu-
lations; two sample t-test designs; n1 = 20; random allocation

η1 η3 D2tr D2tr,IPN D2tr,IPNR Da
2tr,IPN

Type I error
0.5 1 0.0480 0.0560 0.0502 0.0562
0.5 1.5 0.0500 0.0540 0.0535 0.0506
0.5 2 0.0499 0.0520 0.0520 0.0509
0.25 1 0.0508 0.0555 0.0529 0.0553
0.25 1.5 0.0497 0.0517 0.0516 0.0497
0.25 2 0.0502 0.0519 0.0519 0.0508

Power
0.5 1 0.8455 0.8543 0.9028 0.8070
0.5 1.5 0.8369 0.8444 0.8454 0.8181
0.5 2 0.8247 0.8384 0.8385 0.8116
0.25 1 0.8419 0.8669 0.8834 0.8264
0.25 1.5 0.8431 0.8515 0.8516 0.8235
0.25 2 0.8296 0.8429 0.8429 0.8145

EN(SD)
0.5 1 38.64(7.50) 41.12(16.36) 46.69(12.96) 36.78(16.54)
0.5 1.5 80.85(10.73) 90.51(36.48) 90.68(36.23) 84.99(33.60)
0.5 2 136.99(13.84) 158.68(62.09) 158.69(62.08) 147.03(56.55)
0.25 1 50.08(9.89) 58.99(28.36) 61.11(26.50) 54.06(29.26)
0.25 1.5 109.18(14.39) 128.22(59.05) 128.26(58.97) 120.27(58.77)
0.25 2 184.04(18.60) 222.00(95.56) 222.00(95.56) 206.66(95.59)
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Measurements of prostate-specific antigen (PSA) levels are widely used for
screening and diagnosing prostate cancer. PSA levels are known to be as-
sociated with measures of disease aggressiveness such as tumor stage as
well as demographic characteristics predictive of screening behavior such as
race/ethnicity, marital status, etc. A (hypothetical) investigator in Atlanta,
GA wishes to conduct a study to evaluate whether the effect of Black ver-
sus White race on PSA levels is the same for localized versus regionally or
distantly extended tumors. In practice he or she would turn to the SEER
cancer registry, as we will for the source of data, but for the sake of the
example let’s assume that the information of interest is not available in the
registry. In fact, PSA levels were not available in SEER until recently.

The specific goal of the study is to test the interaction effect of race
(White vs Black) and tumor stage (localized vs others) on ln(PSA) values
controlling for the effect of marital status (married vs others) and ethnicity
(Hispanic vs others).

We use the linear regression model

ln(PSAi) = β0 + β1 ·Wi + β2 · Li + β3 ·Wi · Li + β4 ·Mi + β5 ·Hi + ǫi, (10)

where Wi, Li, Mi, and Hi are, respectively, indicators of White race, localized
tumor, married status, and Hispanic ethnicity of the ith subject. The random
noise ǫi is assumed to follow a normal model with the zero mean and a
finite unknown variance σ2. We formulate the research question about the
interaction via H0 : β3 = 0 and wish to design a study that would have 80%
power to detect a 1.5-fold difference in the race effect among the localized
versus non-localized tumors, corresponding to β3 = ln(1.5).

To calculate the study sample size we use the formula proposed by Hsieh
et al [6]. If X represents the predictor of interest and Z stands the other
predictors, then the sample size required to detect an effect with a partial
regression coefficient of δ with power 100(1−β)% at a two-sided significance
level α is

N =

(

zα/2 + zβ

)2
φ−2(r) + 3

1 − R2
X.Z

, (11)

where r = δσX/σ, R2
X.Z is the multiple correlation coefficient of X and Z,

and φ(r) = 1
2
ln((1 + r)/(1 − r)) is Fisher’s z-transform. As typical, this

expression includes multiple nuisance parameters that are difficult to obtain
a priori.
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Table 6: Linear regression on internal pilot data, n1 = 100.
Estimate Std.Error t value p value

Intercept (β̂0) 5.4036 0.7208 7.497 <0.0001

White (β̂1) -1.2507 0.6519 -1.918 0.0581

Localized (β̂2) -1.4274 0.4916 -2.904 0.0046

Hispanic (β̂4) 0.1849 0.5394 0.343 0.7326

Married (β̂5) -0.0928 0.2122 -0.437 0.6629

White × Localized (β̂3) 1.4046 0.6822 2.059 0.0423

To simulate the conduct of the study we extracted a sample of 8142
prostate cancer cases from the Atlanta Metropolitan area SEER registry.
Our inclusion criteria limited our scope to records with black or white races,
year of diagnosis 2004-2008, and observed PSA values. The data were sorted
by year and month of diagnosis to mimic a prospective study. The results of
internal pilot based on first n1 = 100 observations are reported in Table 6.

To update α we performed 30, 000 internal resamplings. At the kth iter-
ation of this resampling, we performed the following steps:

1. used nonparametric bootstrap to resample the joint distribution of the

predictors
(

B
(k)
i , R

(k)
i , M

(k)
i , H

(k)
i

)

, i = 1, ..., n1;

2. generated simulated ln(PSA
(k)
i ) values under the null hypothesis (β3 = 0)

from the conditional normal distribution

N
(

β̂0 + β̂1 · B(k)
i + β̂2 · R(k)

i + β̂4 · M (k)
i + β̂5 · H(k)

i , σ̂2
)

, (12)

where σ̂2 is the internal pilot estimate of σ2;

3. fitted the regression model (10) on the kth internal pilot resample;

4. estimated the total sample size N (k) using (11);

5. generated additional N (k) − n1 observations from the conditional dis-
tribution (12);

6. refitted the model (10) to the kth resample with N (k) elements and
tested H0 with the P-value of the estimate of β3.
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Table 7: Regression model for the total sample, N = 1837.
Estimate Std.Error t value p value

Intercept (β̂0) 4.8725 0.1923 25.333 <0.0001

White (β̂1) -0.1577 0.1267 -1.245 0.2134

Localized (β̂2) -0.4670 0.0989 -4.721 <0.0001

Hispanic (β̂4) -0.0148 0.1706 -0.086 0.9311

Married (β̂5) -0.1396 0.0445 -3.136 0.0017

White × Localized (β̂3) 0.0766 0.1333 0.575 0.5653

Note that in Step 3 it is possible that some of the regression parameters
are inestimable due to singularity of the design matrix. In our example, non-
localized disease is rare, with only a few cases present in the pilot sample, the
resampling Step 1 occasionally leads to a zero vector W ·L in the resampled
design matrix. The treatment of such “exceptions” should be specified in the
design of the study, which should include provisions for the situation that the
internal pilot sample results in a non-full rank design matrix. The interim
resampling procedure should follow the same rules. In this example, we
assume that the investigator pre-planned to resolve this exception by setting
the total sample size to the prespecified maximal value of nmax = 3, 000.

The above 30, 000 iterations allow us to estimate α̂ with a standard error
of 0.0013 and calculate αnew. In this example, αnew = 0.0492.

A similar resampling scheme emulating the design behavior under H1

leads to a new power 1−βnew = 0.7815 and the final total sample size of 1837.
The results of model fit on 1837 observations are reported in Table 7. We fail
to reject the null hypothesis that there is no interaction (0.5653 > 0.0491).
While it is unknown whether it is a correct decision, an analysis of all 8142
cases leads to a similar conclusion.

5 Discussion

In this manuscript we suggested considering the interim sample size recal-
culation from the prospective of internal design resampling. The proposed
approach is very flexible, and can be applied for a wide variety of situa-
tions, including prospective clinical trials, observational, and retrospective
studies. We defined a study design as a set of rules for sample size cal-
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culation/recalculation, the chosen test statistic, and a course of actions for
dealing with rare but possible situations such as singularity of a design ma-
trix, etc. Ultimately the design is the ability to make a decision for all
possible realizations of a random variable.

The use of internal design-resampling allows elimination of the formal
dependence of a design on nuisance parameters and lowers their notorious
effect on type I and II errors. We adjusted the type I error α and the power
1 − β using information from the internal pilot data. The adjusted type
I error, αnew, and the adjusted power, 1 − βnew, are used for sample size
re-estimation at the interim analysis.

We emphasize that it is critical to have a clearly defined per-protocol
design for all possible samples. Otherwise, internal design resampling may
generate “impossible” sampling situations bringing additional uncertainty
into the adjustment.

The internal resampling can be computationally challenging especially
when a Monte-Carlo study is used. We implemented and performed three
designs for internal sample size recalculation: the paired data t-test, the
independent samples t-test with a pre-defined allocation ratio, and the inde-
pendent sample t-test with random allocation. To speed up the Monte-Carlo
simulations we used C code pre-compiled into a shared object for internal
resampling part, and R code for the rest of the program.

Our simulation studies clearly show that our resampling methodology
leads to a generally better control of type I and II error than the naive inter-
nal pilot design across all considered scenarios. For the simulation scenarios
for the two-sample t-tests, the comparisons with Stein’s, the naive, and the
restricted Wittes and Brittain approaches, the internal design resampling
also often keeps a better control for type I and II errors and has a smaller
mean sample size.

We deliberately considered small internal pilot sample sizes (5 or 10 per
group) since moderate to large sample sizes generate relatively accurate esti-
mates of nuisance parameters and all considered methods would show similar
performance. However our regression example shows that in situations with
a larger number of nuisance parameters even 100 internal pilot samples might
not be sufficient to assume no inflation of error rates.

The internal design resampling requires the defined in the study protocol
internal pilot sample size (n1) and the largest possible (nmax) sample sizes.
If the tails of the distribution of the sample size obtained from the internal
pilot heavily spill over these two lower and upper bounds for the sample size,
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then the control for type I and II error becomes more problematic.
Overall, we strongly recommend researchers to clearly define their designs

for all possible situation and incorporate internal sample size recalculation
in their study designs. This may substantially improve the use of their
resources, better control type I and II errors, and protect against nuisance
parameters misspecification.
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