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ABSTRACT. With competing risks data, one often needs to assess the treat-

ment and covariate effects on the cumulative incidence function. Fine and Gray

proposed a proportional hazards regression model for the subdistribution of a

competing risk with the assumption that the censoring distribution and the co-

variates are independent. Covariate-dependent censoring sometimes occurs in

medical studies. In this paper, we study the proportional hazards regression

model for the subdistribution of a competing risk with proper adjustments for

covariate-dependent censoring. We consider using a covariate-adjusted weight

function by fitting the Cox model for the censoring distribution and using the

predictive probability for each individual. Our simulation study shows that the

covariate-adjusted weight estimator is basically unbiased when the censoring

time depends on the covariates, and the covariate-adjusted weight approach

works well for the variance estimator as well. We illustrate our methods with

bone marrow transplant data from the Center for International Blood and Mar-

row Transplant Research (CIBMTR). Here cancer relapse and death in complete

remission are two competing risks.

key words: competing risks; cumulative incidence function; proportional hazards model; sub-

distribution; inverse probability of censoring weight
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1 Introduction

Biomedical research often involves competing risks in which each subject is at risk of failure

from K different causes. For competing risks data, one only observes the first event to occur

and precludes the occurrence of another event. Also, one often wishes to estimate and model

the cumulative incidence function (CIF), which is the marginal probability of failure of a

specific cause. The standard approach of modeling CIF is to model the cause-specific hazard

function for all causes. Let λk(t;Z) be the kth conditional cause-specific hazard (k = 1, 2

for simplicity), where Z is given set of covariates. The CIF of cause 1 given by Z is

F1(t;Z) = P (T̃ ≤ t, ε = 1|Z) =

∫ t

0

λ1(s;Z) exp

[
−
∫ s−

0

{λ1(u;Z) + λ2(u;Z)} du

]
ds,

where T̃ is the failure time and ε indicates the type of failure. Here, all cause-specific hazards

need to be modeled adequately and correctly. Prentice et al. (1978) and Cheng et al. (1998)

proposed using Cox (1972) proportional hazards model for all causes. Alternatively, Shen

& Cheng (1999) considered a special additive model, and Scheike & Zhang (2002, 2003)

proposed and studied a flexible Cox-Aalen model, which allows some of the covariates to

have time-varying effects. Since the cumulative incidence function of a specific cause is a

function of cause-specific hazards for all causes, it is difficult to summarize the covariate

effect (Zhang & Fine, 2008) and identify the covariate effect on the cumulative incidence

function. Recently, some new regression methods have been developed to directly model the

cumulative incidence function. Fine & Gray (1999) (FG) developed a regression method to

directly model the CIF by modeling the subdistribution hazard function through a Cox type

regression model, λ∗k(t;Z) = −d log{1−Fk(t;Z)}/dt = λ∗k0(t) exp{βT
kZ} based on early work

by Gray (1988a) and Pepe (1991). FG proposed using an inverse probability of the censoring

weighting (IPCW) technique to estimate the regression parameter β and cumulative baseline

subdistribution hazard function Λ∗
k0(t) =

∫ t
0
λ∗k0(s)ds. This approach has been implemented

in an R-package, cmprsk. FG’s model has been considered and used extensively in cancer

studies, epidemiological studies, and many other biomedical studies (Scrucca et al., 2007;

Wolbers et al., 2009; Kim, 2007; Lau et al., 2009). Let r(t) = I{C ≥ (T̃ ∧ t)} and GC(t) =
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P (C > t), where C is the censoring time. Fine and Gray’s approach is based on the fact

that E[r(t)/GC{(T̃ ∧ C) ∧ t}|Data] = 1 provided that censoring time is independent of the

covariates, and FG proposed using the Kaplan-Meier estimator to estimate the unknown

censoring distribution GC. However, in biomedical research studies, the censoring time may

depend on some of the covariates and the treatment group. In a clinical trial, patients may

be more likely to drop out with some specific value of covariate characteristics, and one

treatment group may have a higher dropout rate than the others (Mai, 2008). DiRienzo &

Lagakos (2001a,b) showed when the distribution of censoring depends on both treatment

group and the covariates, in general the null asymptotic distribution of the score test is

not centered at zero when the model is misspecified, the tests of treatment group effect can

be severely biased. Heinze et al. (2003) showed that if the censoring distributions are not

similar in the two comparison groups, the log-rank test and fitting a regression model, such

as fitting a proportional hazards model, may not be valid. For the competing risks data,

one can show that E[r(t)/GC{(T̃ ∧ C) ∧ t|Data}|Data] = 1, where GC{(T̃ ∧ C) ∧ t|Data}
is the conditional censoring distribution given by Data. Thus, parameter estimates using

the inverse probability of censoring weighting approach with the Kaplan-Meier estimator

may be biased when the censoring distribution depends on some of the covariates. To

adjust the IPCW when censoring distribution depends on some of the covariates, Fine &

Gray (1999) suggested using a stratified Kaplan-Meier estimator for the discrete covariates

and assuming the Cox model for the continuous covariates. In this study, we considered a

regression model for the censoring distribution, such as a Cox proportional hazards model,

and using predicted the censoring probability for each individual subject for the weight

function. With the Cox model adjusted weight, we derived an efficient variance estimator,

and we performed a simulation study to examine the bias that would arise without adjusting

covariates for estimating the censoring distribution, potential bias reduction and robustness

of using the Cox model for the censoring distribution. Furthermore, Fine and Gray proposed

using a stabilized factor ĜC(t) with inverse weight r(t)ĜC(t)/ĜC{(T̃ ∧C)∧t}. Our simulation

indicates that this stabilized weight improves the efficiency and reduces the bias, but not

enough. With the Cox model adjusted weight function, we also considered using a stabilized

weight r(t)ĜC(t|X)/ĜC{(T̃ ∧ C) ∧ t|X} to improve efficiency and to reduce bias, where X

is the covariates, which is associated with the censoring distribution and could be a subset

covariates of Z.

The outline of the remainder of the paper is as follows. In Section 2 we describe the
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competing risks data structure. We introduce a regression-adjusted inverse weighted estima-

tion for the proportional subdistribution hazards model and present the asymptotic results

that can be used for inference. Simulation studies are provided in Section 3. In Section 4

we analyze two real data sets, which were originally studied by Kumar et al. (2012) and

by Ringdén et al. (2012) using data from the Center for International Blood and Marrow

Transplant Research (CIBMTR). Concluding remarks are provided in Section 5.

2 Data and covariate adjusted censoring weight

Let T̃i and Ci be the event time and right censoring time for ith individual, respectively.

εi ∈ {1, . . . , K} indicates the cause of failure. For simplicity, we assume K = 2 in this

study. Let Ti = min(T̃i, Ci) and ∆i = I(T̃i ≤ Ci). We observe n independent and identically

distributed (i.i.d.) data {Ti,∆i,∆iεi,Zi} for i = 1, . . . , n, where Zi = (Zi1, . . . , Ziq)
T are

associated covariates. We assume that (T̃i, εi) are independent of Ci given covariates of

Zi. We are interested in modeling the cumulative incidence function of cause 1, F1(t;Z).

Based on Gray (1988b) subdistribution hazard technique, Fine & Gray (1999) proposed a

proportional subdistribution hazards model

λ∗1(t;Z) =
−d log{1− F1(t;Z)}

dt
= λ∗10(t) exp

{
βT

0Z
}
. (2.1)

There is a direct relationship between the CIF and subdistribution hazard function:

F1(t;Z) = 1− exp

{
−
(∫ t

0

λ∗10(u)du

)
eβ

T

0Z
}
.

Let N1
i (t) = I(T̃i ≤ t, εi = 1) be the underlying counting process associated with cause

1. For right censored competing risks data, N1
i (t) and Y 1

i (t) = 1 − N1
i (t−) are not fully

observed. For a censored individual, it is only observed up to the censoring time Ci. Define

ri(t) = I{Ci ≥ (T̃i ∧ t)}. Then, ri(t)N
1
i (t) and ri(t)Y

1
i (t) are computable for all time t. Let
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GC(t;Z) = P (C ≥ t|Z) be the conditional censoring distribution. Based on

E

{
ri(t)N

1
i (t)

GC(Ti ∧ t;Zi)

}
= E

[
E

{
ri(t)N

1
i (t)

GC(Ti ∧ t;Zi)

∣∣∣∣Zi

}]
= E

{
N1
i (t)|Zi

} E{ri(t)|Zi}
GC(Ti ∧ t;Zi)

= F1(t;Zi)

FG proposed using an inverse probability of the censoring weighting (IPCW) approach to fit

the model (2.1) and proposed an IPCW weight function wKM
i (t) = ri(t)Ĝ

KM
C (t)/ĜKM

C (Ti ∧ t),
where ĜKM

C (t) is the Kaplan-Meier estimator for the unknown censoring distribution. FG

proposed estimating the unknown regression coefficient β by solving the score equation

UKM(β) =
∑
i

∫ τ

0

{
Zi −

∑
j w

KM
j (u)Y 1

j (u)Zj exp{βTZj}∑
j w

KM
j (u)Y 1

j (u) exp{βTZj}

}
wKM
i (u)dN1

i (u) = 0,

where τ is end of the study time point, and denote the estimate as β̂KM. FG showed

that under the regularity conditions and the condition that the censoring distribution is

independent of covariates, β̂KM is consistent for β0 and derived large sample properties for
√
n
(
β̂KM − β0

)
and
√
n
{

Λ̂KM
10 (t)− Λ∗

10(t)
}

, where the cumulative baseline subdistribution

hazard Λ∗
10(t) =

∫ t
0
λ∗10(u)du is estimated by

Λ̂KM
10 (t) =

∑
i

∫ t

0

wKM
i (u)dN1

i (u)∑
j w

KM
j (u)Y 1

j (u) exp
{
β̂

T

KMZj

} .
It has been shown that in biomedical research studies the censoring time may depend on

some of the covariates and the treatment group. To have asymptotically unbiased inferences,

we needed to model the censoring distribution. In this study, as suggested by Fine & Gray

(1999), we considered the most commonly used Cox proportional hazards model for the

censoring distribution,

λC(t;X) = λC0(t) exp
{
γT

0X
}
,

where X is the covariates associated with the censoring distribution, which could be a subset

covariates of Z. For a given X, we estimated the predicted censoring survival probability
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GC(t;X) = P (C > t|X) by

ĜCOX
C (t;X) = exp

{
−Λ̂C0(t) exp

(
γ̂TX

)}
, (2.2)

where γ̂ is a maximum partial likelihood estimate for γ0 and Λ̂C0(t) is a standard Nelson-

Aalen type estimator for the cumulative baseline censoring hazard ΛC0(t) =
∫ t

0
λC0(u)du. In

this study, we considered a covariates-adjusted IPCW weight function

wCOX
i (t) = ri(t)Ĝ

COX
C (t;X i)/Ĝ

COX
C (Ti ∧ t;X i).

We estimated β in model (2.1) by solving the score equation

UCOX(β) =
∑
i

∫ τ

0

{
Zi −

∑
j w

COX
j (u)Y 1

j (u)Zj exp{βTZj}∑
j w

COX
j (u)Y 1

j (u) exp{βTZj}

}
wCOX
i (u)dN1

i (u) = 0,

and denoted the estimate as β̂COX. Then we estimated Λ∗
10(t) by

Λ̂COX
10 (t) =

∑
i

∫ t

0

wCOX
i (u)dN1

i (u)∑
j w

COX
j (u)Y 1

j (u) exp
{
β̂

T

COXZj

} .
Under regularity conditions, it can be shown that

√
n
(
β̂COX − β0

)
converges in distribution

to a mean zero Gaussian distribution with an asymptotic variance that can be estimated by

Σ̂COX

β = n
∑
i

(
Ŵ

COX

β,i

)⊗2

= n
{
ICOX

(
β̂COX

)}−1
{∑

i

(
ξ̂
COX

i + ψ̂
COX

i

)⊗2
}{

ICOX

(
β̂COX

)}−1

,

where a⊗2 = aaT for a column vector a, ICOX(β) = −∂{UCOX(β)}/∂β, and explicit ex-

pressions for ξ̂
COX

i and ψ̂
COX

i are given in the Appendix. Similarly,
√
n
{

Λ̂COX
10 (t)− Λ∗

10(t)
}

converges in distribution to a mean zero Gaussian process with asymptotic variances, which

can be estimated by

Σ̂COX
Λ10

= n
∑
i

{
Ŵ COX

Λ,i (t)
}2

,

where an expression for Ŵ COX
Λ,i (t) can be found in the Appendix.

For a given set value of covariates, Z, the predicted CIF of cause 1 can be estimated by
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F̂KM
1 (t;Z) = 1−exp

{
−Λ̂KM

10 (t) exp
(
β̂

T

KMZ
)}

or F̂ COX
1 (t;Z) = 1−exp

{
−Λ̂COX

10 (t) exp
(
β̂

T

COXZ
)}

,

respectively. Fine & Gray (1999) derived the large sample property for
√
n
{
F̂KM

1 (t;Z)− F1(t;Z)
}

when the censoring distribution is independent of the covariates. When the censoring distri-

bution depends on the covaraites through a Cox model, by functional Delta method, we can

show that
√
n
{
F̂ COX

1 (t;Z)− F1(t;Z)
}

converges in distribution to a Gaussian process with

asymptotic variances, which can be estimated by

n
{

1− F̂ COX
1 (t;Z)

}2∑
i

{
Ŵ COX
F1,i

(t;Z)
}2

,

where

Ŵ COX
F1,i

(t;Z) = exp
(
β̂

T

COXZ
){

Λ̂COX
10 (t)

(
Ŵ

COX

β,i

)T
Z + Ŵ COX

Λ,i (t)

}
.

Resampling techniques can be used to construct confidence bands for Λ∗
10(t) and F1(t;Z)

(Lin et al., 1994; Scheike et al., 2008).

3 Simulations

We compared the finite-sample performance of the estimator using the covariate-adjusted

censoring weight to the unadjusted estimator using the Kaplan-Meier estimator for the cen-

soring distribution. Two simulation studies were considered to examine the potential bias

reduction with the covariate-adjusted censoring weight estimator. For the first study, we

had one binary covariate. For the second study, we considered one binary covariate and one

continuous covariate. In both studies, we compared the performances of estimators using

two weights, wKM
i (t) and wCOX

i (t), respectively.

3.1 Study 1

The regression model below has one binary covariate Z. Given Z, the cumulative incidence

functions are given by

F1(t;Z) = 1−
{

1− p
(
1− e−t

)}exp(βZ)

and

F2(t;Z) = (1− p)exp(βZ)
{

1− e−t exp(βZ)
}
,
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where p = F1(∞|Z = 0). We let p = 0.66 and Z be a Bernoulli random variable, with a

value 1 for half of the sample and 0 for the other half. We set β = 1 and considered the

following three simulation scenarios.

Scenario 1 Censoring times are independent of Z:

Generate censoring times from an exponential distribution ∼ exp(λC)

Set λC = 0.556 for 30% censoring, λC = 1.342 for 50% censoring

Scenario 2 Censoring times depend on Z by a Cox model:

Generate censoring times from a Cox model, λC(t|Z) = λC exp(βCZ)

Set βC = 2.5 and λC = 0.137 for 30% censoring

Set βC = 2.5 and λC = 0.391 for 50% censoring

Scenario 3 Censoring times depend on Z, not by a Cox model:

C ∼ U(0.25, 4.00), if Z = 0, C ∼ U(0.07, 1.12), if Z = 1 for 30% censoring

C ∼ U(0.25, 2.00), if Z = 0, C ∼ U(0.06, 0.46), if Z = 1 for 50% censoring

For each setting, we simulated 10,000 replicates with sample size of n = 100 and 300,

respectively. The regression coefficient β was estimated by the methods described in Section

2. We report the average of bias (Bias), the sample standard deviation of β̂ (SD), the average

of estimated standard error
(
¯̂σ
)
, average of standardized bias (Std-B = E{|β̂ − β|/σ̂}), the

coverage probability of β, and mean squared error (MSE). Table 1 shows the simulation

results. We also examined the potential bias of estimating the cumulative baseline subdistri-

bution hazard, Λ∗
10(t), using both weights at a set of time points, t = (0.25, 0.5, 0.75, 1.00)T.

Figure 1 shows the simulation results.

The simulation results show that when the censoring time depends on the covariate

(scenario 2 and 3), the unadjusted estimator produces significant biased results, and the

estimator using the covariates-adjusted censoring weight provides satisfactory results where

the biases are all close to zero. Both estimators give satisfactory variance estimate and have

almost identical sample standard deviations (see scenario 2 and 3 in Table 1). Regarding the

cumulative subdistribution hazard estimators, estimates using the Cox model adjusted weight

have smaller biases compared to those using the unadjusted Kaplan-Meier weight at almost

all time points (see Figure 1). Simulation results also indicated that the estimator using the

Cox model adjusted weight provides satisfactory results when the Cox model is not the true

model for the censoring distribution (see scenario 3 in Table 1 and Figure 1). In scenario

1, where the censoring distribution is independent of covariate Z, both estimators provide

8



satisfactory results in estimating the covariate effect and cumulative baseline subdistribution

hazard function. Both estimators also have almost identical sample standard deviation and

similar MSE, which indicate that the potential efficiency losses are minimum when using

covariate-adjusted censoring weight.

3.2 Study 2

The regression models below have one binary covariate Z1 and one continuous covariate Z2.

Given Z1 and Z2, the cumulative incidence functions are given by

F1(t;Z1, Z2) = 1−
{

1− p
(
1− e−t

)}exp(β1Z1+β2Z2)

and

F2(t;Z1, Z2) = (1− p)exp(β1Z1+β2Z2)
{

1− e−t exp(β1Z1+β2Z2)
}
.

We let p = 0.66, and Z1 is a Bernoulli random variable, with a value 1 for half of the sample

and 0 for the other half. Z2 is a N(0, 1) random variable. We set β1 = 1, β2 = 0.5 and

considered the following four scenarios.

Scenario 1 Censoring times are independent of Z1 and Z2

Generate censoring times from an exponential distribution ∼ exp(λC)

Set λC = 0.547 for 30% censoring, λC = 1.352 for 50% censoring

Scenario 2 Censoring times depend on Z1 by a Cox model

Generate censoring times from λC(t|Z) = λC exp(βC1Z1)

Set βC1 = 2.5. Set λC = 0.137 for 30% censoring,

λC = 0.397 for 50% censoring

Scenario 3 Censoring times depend on Z1 and Z2 by a Cox model

Generate censoring times from λC(t|Z) = λC exp(βC1Z1 + βC2Z2)

Set βC1 = 2.5, βC2 = 2.5. Set λC = 0.082 for 30% censoring,

λC = 0.389 for 50% censoring

Scenario 4 Censoring times depend on Z1, not by a Cox model

C ∼ U(0.25, 4.00), if Z1 = 0, C ∼ U(0.07, 1.14), if Z1 = 1 for 30% censoring

C ∼ U(0.25, 2.00), if Z1 = 0, C ∼ U(0.06, 0.438), if Z1 = 1 for 50% censoring
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For each setting, we simulated 10,000 replicates with n = 100 and 300. The regression

coefficients β1 and β2 were estimated by the methods described in Section 2. Table 2 shows

the simulation results. We also examined the potential bias of estimating the cumulative

baseline subdistribution hazard, Λ∗
10(t), using both weights at a set of time points t =

(0.25, 0.5, 0.75, 1.00)T for selected scenarios. Figure 2 shows the simulation results.

This simulation study shows similar results as in study 1. The unadjusted estimator

produces biased results when the censoring distribution depends on the covariates (scenario

2 to 4), and the estimator using the Cox model adjusted weight provides a good bias reduc-

tion. Both estimators give satisfactory variance estimates for both parameters. Regarding

the cumulative baseline subdistribution hazard estimates, estimates using the Cox-adjusted

weight have smaller biases at almost all points (see Figure 2).

Both simulation studies show that the unadjusted estimator produces significant biased

results when the censoring time depends on the covariates and the proposed estimator using

covariate adjusted weight works well in bias reduction.

4 Real data examples

4.1 Example 1

We considered data from multiple myeloma patients treated with allogeneic stem cell trans-

plantation from the Center for International Blood and Marrow Transplantat Research

(CIBMTR) (Kumar et al., 2012). The CIBMTR is comprised of clinical and basic scientists

who share data on their blood and bone marrow transplant patients with the CIBMTR Data

Collection Center located at the Medical College of Wisconsin. The CIBMTR has a reposi-

tory of information regarding the results of transplants at more than 450 transplant centers

worldwide. The data used in this paper consist of patients transplanted from 1995 to 2005,

and we compared the outcomes between transplant periods: 2001-2005 (N=488) versus 1995-

2000 (N=375) (Kumar et al., 2012). Two competing events are multiple myeloma relapse and

treatment-related mortality (TRM) defined as death without relapse. The CIBMTR study

(Kumar et al., 2012) identified that donor type and prior autologous transplantation were

associated with relapse or TRM. The variables considered in this example are transplant time

period (GP (main interest of the study): 1 for transplanted in 2001-2005 versus 0 for trans-

planted in 1995-2000), donor type (DNR: 1 for Unrelated or other related donor (N=280)
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versus 0 for HLA-identical sibling (N=584)), and prior autologous transplant (PREAUTO: 1

for Auto+Allo transplant (N=399) versus 0 for allogeneic transplant alone (N=465)).

First, we fit a Cox model for the censoring distribution where relapsed or dead individuals

are considered as censoring subjects. The hazard ratios (HR) are: HR(GP)=6.42 (P <

0.0001); HR(DNR)=0.48 (p = 0.0018); HR(PREAUTO)=1.73 (p = 0.0013). These results

indicate that the censoring distribution depends on the transplant time period, donor type

and prior autologous transplantation. Next, we fit a proportional subdistribution hazards

model (2.1) with the Kaplan-Meier estimated unadjusted weight and the Cox model adjusted

weight, and we computed the predicted cumulative incidence probability for a patient who

received an HLA-identical sibling donor allogeneic transplantation in 1995-2000 or in 2001-

2005 (see results in Table 3-4 and Figure 3). Both weights give similar estimates for TRM.

However, for cancer relapse, the regression estimate of the main treatment effect are β̂ = 0.38

and β̂ = 0.54 by unadjusted weight and Cox model adjusted weight, respectively. At three

years after transplant, the differences in cumulative incidence of relapse between late and

early transplant (TX) patients are 0.09 (CIF=0.34 for the late TX versus CIF=0.25 for

the early TX) and 0.13 (CIF=0.35 for the late TX versus CIF=0.22 for the early TX) by

unadjusted weight and Cox model adjusted weight, respectively. The unadjusted weight

underestimates the effect size of CIF of relapse by 4% compared to the point estimate using

the Cox model adjusted weight (Table 4). Underestimated effect size counts about 14%

(0.04/((0.22+0.35)/2)) of estimated average CIF, which leads to quite a large relative bias.

4.2 Example 2

We considered another CIBMTR study data set (Ringdén et al., 2012) that consists of 177

myeloma patients who received a reduced-intensity conditioning allogeneic transplantation.

Cancer relapse and TRM were two competing risks in this study. 105 patients received

prior autologous transplant, and 72 patients received allogeneic transplant alone. We were

interested in transplant type effect on relapse and TRM. Let PREAUTO be the indicator of

transplant type (1 for Auto+Allo transplant versus 0 for Allogeneic transplant alone). Here

the censoring distribution depends on the transplant type (p = 0.0047). We fit a proportional

subdistribution hazards model (2.1) for PREAUTO with unadjusted weight and Cox model

adjusted weight, respectively. For relapse, we have β̂COX = −0.34(σ̂ = 0.25); exp
(
β̂COX

)
=

0.71 and β̂KM = −0.41(σ̂ = 0.25); exp
(
β̂KM

)
= 0.66. Here the Cox model adjusted weight
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reduces a relative bias of 17% ((0.41− 0.34)/0.41).

5 Concluding remarks

We have shown that the estimator using the Kaplen-Meier estimated unadjusted inverse

probability of censoring weight is not asymptotically unbiased when the censoring distribu-

tion depends on the covariates and the biases could be significant for fixed sample sizes.

We considered a regression model for the censoring distribution, and we considered using

the Cox proportional hazards model and predicted censoring weight for each individual. We

have illustrated that the Cox model adjusted weight works well when censoring distribution

depends on the covariates, and potential efficiency losses are minimal for both independent

and dependent censoring cases. With the transplant data, we determined that the covariate-

adjusted weight can be adopted to reduce bias. We are working on an R package, which will

be available to the public.

In this study, we only considered using the most common Cox proportional hazards

model for the censoring distribution. The Cox model requires a proportional effect (constant

effect) for each covariate. However, the proportionality assumption may not be true for

some of the covariates. When the Cox model does not fit the data well, one may consider

alternative regression models for the censoring distribution. An alternative model-based

weight function needs be considered, an efficient variance estimator needs to be derived,

potential bias reduction needs to be studied, and a computing package needs to be further

developed as well.

Recently, the inverse probability of censoring weighting (IPCW) technique (Robins &

Rotnitzky, 1992) has been used extensively for right-censored survival data and, specifically,

for completing risks data. It has been shown that regression modeling of the censoring

distribution can be used to improve the efficiency of the IPCW technique (Bickel et al.,

1993; Van der Laan & Robins, 2003; Scheike et al., 2008) even if the censoring distribution

is independent of the covariates. In this study, we showed that the covariate-adjusted IPCW

technique can be used to reduce bias for modeling the subdistribution hazard function when

censoring depends on the covariates. In general, the covariate-adjusted IPCW technique

should be considered to improve efficiency and reduce bias.
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6 Appendix

Here we give a brief derivation for the variance estimation for
√
n
(
β̂COX − β0

)
and

√
n
(

Λ̂COX
10 (t)− Λ∗

10(t)
)

, and give explicit expressions for ξ̂
COX

i , ψ̂
COX

i and Ŵ COX
Λ,i (t). Let

M1
i (t) = N1

i (t)−
∫ t

0

Y 1
i (u) exp

(
βT

0Zi

)
dΛ∗

10(u)du, which is a zero mean martingale for com-

plete data. Assuming the censoring distribution depends on covariates X through a Cox

proportional hazards model where X could be a subset covariates of Z,

λC(t;X) = λC0(t) exp{γT
0X}.

By Taylor’s approximation,

√
n
(
β̂COX − β0

)
=
√
n
{
ICOX

(
β̂COX

)}−1

{UCOX(β0)}+ op(1), (6.1)

where

UCOX(β0) ≈p
∑
i

∫ τ

0

{Zi −ECOX(β0, u)}wCOX
i (u)dM1

i (u)

=
∑
i

∫ τ

0

{Zi −ECOX(β0, u)}ri(u)
GC(u;X i)

GC(Ti ∧ u;X i)
dM1

i (u) (6.2)

+
∑
i

∫ τ

0

(
ĜCOX

C (u;X i)

ĜCOX
C (Ti ∧ u;X i)

− GC(u;X i)

GC(Ti ∧ u;X i)

)
{Zi −ECOX(β0, u)}ri(u)dM1

i (u) (6.3)

ICOX(β) = −∂{UCOX(β)}/∂β (6.4)

and

S
(k)
COX(β, u) =

∑
i

wCOX
i (u)Y 1

i (u)Z⊗k
i exp{βTZi}, for k = 0, 1, 2

ECOX(β, u) =
S

(1)
COX(β, u)

S
(0)
COX(β, u)

.

It has been shown that for given covariates X i (Andersen & Gill, 1982),

13



ĜCOX
C (t;X i)−GC(t;X i) ≈p −GC(t;X i)

{
e

(
γ̂TX i

)
Λ̂C0(t)− e(γ

T
0X i)ΛC0(t)

}
≈p −ĜCOX

C (t;X i)
∑
j

Ŵ C
COX,j(t;X i)

where

Ŵ C
COX,j(t;X i) = ĥ(t;X i)

T{IC(γ̂)}−1

∫ τ

0

{Xj −EC(γ̂, u)}dM̂C
COX,j(u)

+

∫ t

0

e

(
γ̂TX i

)dM̂C
COX,j(u)

S
(0)
C (γ̂, u)

and

S
(k)
C (γ, u) =

∑
j

Yj(u)X⊗k
j exp{γTXj}, for k = 0, 1, 2

IC(γ) = −∂UC(γ)

∂γ
=
∑
j

∫ τ

0

{
S

(2)
C (γ, u)

S
(0)
C (γ, u)

−EC(γ, u)⊗2

}
dNC

j (u)

EC(γ, u) = S
(1)
C (γ, u)/S

(0)
C (γ, u)

ĥ(t;X i) =

∫ t

0

e

(
γ̂TX i

)
{X i −EC(γ̂, u)} dΛ̂C0(u)

dM̂C
COX,j(t) = dNC

j (t)− Yj(t) exp
{
γ̂TXj

}
dΛ̂C0(t)

Furthermore, we have that

ĜCOX
C (t;X i)

ĜCOX
C (Ti ∧ t;X i)

− GC(t;X i)

GC(Ti ∧ t;X i)

=
I(Ti < t)

ĜCOX
C (Ti;X i)GC(Ti;X i)

[
GC(Ti;X i)

{
ĜCOX

C (t;X i)−GC(t;X i)
}

− GC(t;X i)
{
ĜCOX

C (Ti;X i)−GC(Ti;X i)
}]

≈p −I(Ti < t)

{
ĜCOX

C (t;X i)

ĜCOX
C (Ti;X i)

}∑
j

{
Ŵ C

COX,j(t;X i)− Ŵ C
COX,j(Ti;X i)

}

14



Now, it follows that Equation (6.2) can be approximated by
∑

i ξ̂
COX

i , where

ξ̂
COX

i =

∫ τ

0

{
Zi −ECOX

(
β̂COX, u

)}
wCOX
i (u)dM̂1

COX,i(u)

dM̂1
COX,i(t) = dN1

i (t)− Y 1
i (t) exp

{(
β̂COX

)T
Zi

}
dΛ̂COX

10 (t)

and for Equation (6.3), it follows that

(6.3) ≈p
∑
i

∫ τ

0

{Zi −ECOX(β0, t)}TwCOX
i (t)dM1

i (t)I(Ti < t)
∑
j

{
Ŵ C

COX,j(Ti;X i)− Ŵ C
COX,j(t;X i)

}
≈p
∑
i

(∑
j

[∫ τ

0

{
Zj −ECOX(β̂COX, t)

}T {
Ŵ C

COX,i(Tj;Xj)− Ŵ C
COX,i(t;Xj)

}
× I(Tj < t)wCOX

j (t)dM̂1
COX,j(t)

])
=
∑
i

ψ̂
COX

i

Thus,

√
n
(
β̂COX − β0

)
≈p
√
n
{
ICOX

(
β̂COX

)}−1

UCOX(β0)

≈p
√
n
{
ICOX

(
β̂COX

)}−1∑
i

(
ξ̂
COX

i + ψ̂
COX

i

)

where ξ̂
COX

i is the major term in the variance estimation. Next,

15



√
n
{

Λ̂COX
10 (t)− Λ∗

10(t)
}

=
√
n

∫ t

0


∑

iw
COX
i (u)dN1

i (u)

S
(0)
COX

(
β̂COX, u

) −
∑

iw
COX
i (u)dN1

i (u)

S
(0)
COX (β0, u)


+
√
n

∫ t

0

{∑
iw

COX
i (u)dN1

i (u)

S
(0)
COX (β0, u)

− dΛ∗
10(u)

}

≈p −
√
n

∫ t

0

ECOX(β0, u)T
∑

iw
COX
i (u)dN1

i (u)

S
(0)
COX(β0, u)

(
β̂COX − β0

)
+
√
n

∫ t

0

∑
iw

COX
i (u)dM1

i (u)

S
(0)
COX (β0, u)

≈p
√
n
∑
i

{
Ŵ COX

Λ,1,i (t)− Ŵ COX
Λ,2,i (t)

}
=
√
n
∑
i

Ŵ COX
Λ,i (t),

where

Ŵ COX
Λ,1,i (t) =

∫ t

0

wCOX
i (u)dM̂1

COX,i(u)

S
(0)
COX

(
β̂COX, u

) ,

Ŵ COX
Λ,2,i (t) =

∑
j

∫ t

0

ECOX(β̂COX, u)T
wCOX
j (u)dN1

j (u)

S
(0)
COX

(
β̂COX, u

) {ICOX

(
β̂COX

)}−1 (
ξ̂
COX

i + ψ̂
COX

i

)
.
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Table 3: Fit a proportional subdistribution hazards model.
Unadjusted weight Cox model adjusted weight

Variable β̂; exp(β) (95% CI); P β̂; exp(β) (95% CI); P
RELAPSE

GP 0.38; 1.47(1.16-1.86); 0.0017 0.54; 1.71(1.34-2.20); < 0.0001
DNR 0.39; 1.48(1.18-1.86); 0.0007 0.35; 1.42(1.13-1.78); 0.0027

PREAUTO 0.41; 1.51(1.19-1.91); 0.0007 0.42; 1.53(1.21-1.93); 0.0004
TRM

GP −0.59; 0.55(0.42-0.73); < 0.0001 −0.56; 0.57(0.43-0.75); < 0.0001
DNR 0.57; 1.76(1.38-2.25); < 0.0001 0.55; 1.73(1.35-2.20); < 0.0001

PREAUTO −0.38; 0.68(0.51-0.91); 0.0099 −0.37; 0.69(0.52-0.92); 0.0117

Table 4: Predicted CIF of relapse and TRM for a patient who received an HLA-identical
sibling donor and allogeneic along transplantation

Unadjusted Weight Cox model adjusted Weight
1995-2000 2001-2005 1995-2000 2001-2005

Time F̂1 (95% CI) F̂2 (95% CI) |F̂1 − F̂2| F̂1 (95% CI) F̂2 (95% CI) |F̂1 − F̂2|
RELAPSE

1 Year 0.16 (0.13-0.19) 0.23 (0.18-0.27) 0.07 0.15 (0.13-0.17) 0.24 (0.18-0.30) 0.09
3 Year 0.25 (0.20-0.29) 0.34 (0.28-0.40) 0.09 0.22 (0.20-0.25) 0.35 (0.28-0.42) 0.13
5 Year 0.29 (0.24-0.34) 0.40 (0.33-0.46) 0.11 0.26 (0.24-0.30) 0.41 (0.33-0.49) 0.15

TRM
1 Year 0.38 (0.32-0.43) 0.23 (0.18-0.28) 0.15 0.37 (0.34-0.41) 0.23 (0.17-0.29) 0.14
3 Year 0.42 (0.37-0.48) 0.26 (0.20-0.32) 0.16 0.42 (0.38-0.46) 0.27 (0.20-0.33) 0.15
5 Year 0.44 (0.38-0.49) 0.27 (0.21-0.33) 0.17 0.43 (0.39-0.47) 0.27 (0.21-0.34) 0.16
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Figure 1: Simulation results (1 covariate) for biases of cumulative baseline subdistribution
hazards at t = (0.25, 0.5, 0.75, 1)T.
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Figure 2: Simulation results (2 covariates) for biases of cumulative baseline subdistribution
hazards at t = (0.25, 0.5, 0.75, 1.00)T.
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Figure 3: Predicted cumulative incidence probability of relapse and TRM for a patient who
received an HLA-identical sibling donor allogeneic transplantation.
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