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APPENDIX

A. Introduction

Herein contains the Supplementary Materials to our article (Sparapani and others, 2020). In Ap-

pendix B, we review Cox proportional intensity models commonly employed for recurrent events.

In Appendix C, we describe the Sequential BART missing imputation method that was employed

in our motivating example. In Appendix D, we describe the simulation study we employed to

compare our new BART method vs. counting process Cox models for recurrent events. In Ap-
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pendix E, we provide an introduction to the BART R package. In Appendix F, we discuss how

to handle dependent censoring due to death. In Appendix G, additional details on the motivating

example are provided.

B. Recurrent events and Cox proportional intensity models

Recurrent events are often analyzed via Cox proportional intensity models (Kalbfleisch and Pren-

tice, 2002; Hosmer Jr and others, 2008). We will briefly outline four Cox models commonly em-

ployed. We adopt the following notation: (si, δi, ti,xi(t)) where i = 1, . . . ,m indexes subjects; si

is the length of the observation period; δi = 0 represents a censored event and δi = 1 is a death; Ni

is the number of events experienced during the observation period; ti = [ti1, . . . , tiNi
]
′
is a vector

of the event times; and xi(t) is vector of covariates that may be time-dependent. For single event

survival analysis, the notation collapses, si = ti and δi = Ni, and the general form of the Cox

proportional intensity model is the following: λ(t,xi(t)) = λ0(t) exp(β
′xi(t)) where λ(t,xi(t)) is

the intensity, λ0(t) is a nonparametric baseline intensity and exp(β′xi(t)) is a parametric multi-

plier that we call linear proportionality. The cumulative intensity is Λ(t,xi(t)) =
∫ t

0
λ(s,xi(s))ds

and the survival probability is S(t,xi(t)) = Pr(s > t|xi(t)) = exp(−Λ(t,xi(t))). The likelihood

contribution for each subject is λ(ti,xi(ti))
δiS(ti,xi(ti)). The four Cox models we present differ

in how they adapt the single event Cox model to the recurrent events setting.

B.1 Counting process Cox model of time (CPC)

In the counting process model of time, each subject’s experience is broken up into independent

observation time intervals: (0, ti1], . . . (tiNi−1, tiNi
], (tiNi

, si] (which collapses to a single interval

(0, si] for a subject having no events). Each of these intervals is associated with a corresponding

event indicator, δij . Note that only the first interval starts at time zero; therefore, the remaining

intervals are left truncated, i.e., delayed entry. This arrangement results in the following likeli-
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hood contribution for each subject:

λ(ti1,xi(ti1))
δi1S(ti1,xi(ti1))

[∏Ni

j=2 λ(tij ,xi(tij))
δij S(tij ,xi(tij))

S(tij−1,xi(tij−1))

]
S(si,xi(si))
S(tij ,xi(tij))

that simplifies to

S(si,xi(si))
∏Ni

j=1 λ(tij ,xi(tij))
δij . This model employs a robust variance that goes by various

names such as the Huber sandwich estimator. So, this is one way to adapt the recurrent events

data into something akin to a single event survival analysis.

B.2 Counting process Cox model of time stratified by prior events

The counting process model of time stratified by prior events is a simple extension of the previous

model. The only difference is that the baseline intensity varies by the number of prior events, i.e.,

redefine λ(t,xi(t)) = λ0j(t) exp(β
′xi(t)) where j = Ni(t−) and Ni(t−) is the counting process

of prior events for subject i just prior to time t. This model employs a robust variance via the

Huber sandwich estimator.

B.3 Counting process Cox model of sojourn time stratified by prior events

The counting process model of sojourn time stratified by prior events is similar to the previous

model. The only difference is in how the baseline intensity is parameterized with respect to

time. The baseline intensity is constructed as a function of the sojourn time rather than time,

i.e., redefine λ(t,xi(t)) = λ0j(vi(t)) exp(β
′xi(t)) where the sojourn time is vi(t) = t − tij and

j = Ni(t−). This model employs a robust variance via the Huber sandwich estimator.

B.4 Marginal Cox model of time

The marginal model is a departure from the previous Cox models. We represent the maximum

number of events experienced by any subject as κ = maxi Ni. We assume that every subject is

followed from time zero and has κ + 1 observation periods as follows: an event for the each of

intervals (0, ti1], . . . , (0, tiNi
] with respective strata j = 0, . . . , Ni − 1; and κ + 1 − Ni repeated
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non-events for the interval (0, si] for strata h = Ni, . . . , κ. This model employs a robust variance

via the Huber sandwich estimator.

B.5 Cox model summary

By no means is this an exhaustive list of the types of Cox models that might be considered for

recurrent events. In our view, this is one of the issues with using Cox models for recurrent events,

i.e., how should we decide which model to use with real data?

C. Handling missing data with BART

BART can handle missing data (Kapelner and Bleich, 2016; Xu and others , 2016). We utilize the

missing data framework developed by Xu and others (2016) which they call Sequential BART

(coincidentally, they applied it to a study of hyperglycemia with EHR). Sequential BART assumes

that the missing covariates are missing at random, i.e., missingness only depends on what has

been observed. Specifically, Sequential BART assumes that a missing covariate can be imputed

by BART from the rest of the covariates, and so on, sequentially for all missing covariates.

A brief description of this method follows where we assume that all missing covariates are

continuous (which is adequate for this study, although, Sequential BART can be extended to

binary and categorical covariates as well).

Suppose the covariates that are always observed for all subjects are denoted by xobs
i and the

covariates that may be missing by xmis
i = (xmis

i1 , . . . , xmis
iK ) where xmis

ik are ordered from the least

missing overall, k = 1, to the most missing, k = K, for computational convenience. If for subject

i the covariate xmis
ik is missing, then its value can be imputed by Metropolis-Hastings sampling
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(Hastings, 1970) at the lth step as follows.

x∗
ik|xobs

i , xmis
i1 , . . . , xmis

i(k−1), fk, σ
2
k ∼ N

(
fk(x

obs
i , xmis

i1 , . . . , xmis
i(k−1)), σ

2
k

)
(C.1)

where θk = (fk, σ
2
k) ∼ BART(ψ, μ, κ, α, β; ν, λ, q)

αk(l) =

[
xmis
i(k+1)|xobs

i , xmis
i1 , . . . , x∗

ik,θk+1

]
· · ·

[
xmis
iK |xobs

i ,xmis
i(−k,−K), x

∗
ik,θK

]
[
xmis
i(k+1)|xobs

i , xmis
i1 , . . . , x

(l−1)
ik ,θk+1

]
· · ·

[
xmis
iK |xobs

i ,xmis
i(−k,−K), x

(l−1)
ik ,θK

]

Sample x∗
ik from the proposal density, (C.1), and accept the proposal with the probability

min(αk(l), 1). For more details, see (Xu and others, 2016).

D. Simulated data set scenarios

To demonstrate the effectiveness of BART in recurrent events, we have developed simulated

data set scenarios of known provenance. To perform BART, we use the BART R package (Mc-

Culloch and others , 2018). For Cox models, we use the survival R package (Therneau, 2017).

Based on these scenarios, we will evaluate BART’s performance; and, in the proportional case,

we will compare BART’s performance to that of Cox models. Since our BART method is based

on discrete-time survival analysis (Fahrmeir, 1998), these data set scenarios are also based on

discrete-time survival analysis where tied event times are allowed. However, this creates a chal-

lenge to find a reasonable comparison.

In general, Cox models are based on continuous-time survival analysis that assume tied event

times are non-existent. For discrete-time survival analysis where there are ties by design, the Cox

partial likelihood is equivalent to matched logistic regression; however, for even the moderate

sample sizes envisioned here, N = 250, this approach is computationally infeasible. Paraphrasing

Therneau (2017) on the computational challenges: “Suppose 6 of 250 subjects had an event at

month 9, then the calculation needs to compute sums over all
(
250
6

)
possible subsets that number

more than 300 billion! Although, there is an efficient recursive algorithm, with counting process

data, it is much worse since the recursion needs to start anew for each unique interval start time.”
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Therefore, we are forced to abandon discrete-time Cox models for comparison. Instead, we

will use continuous-time, counting-process Cox models and employ a tied event time correction

due to Efron (1977) that is a compromise between the discrete-time and continuous-time partial

likelihoods. Efron’s method will be at a slight disadvantage because of a loss of efficiency due to

tied discrete event times, but it is a reasonable compromise.

D.1 Settings

These scenarios bear some resemblance to the motivating data example. As mentioned above, we

set the sample size at N = 250 that is roughly the size of the validation and training cohorts.

There is no censoring due to death; all patients are followed for 60 30-day months and discrete

event times correspond to this monthly grid. Many patients do not experience any events while

some patients will be responsible for the majority of events. There are 20 baseline covariates

(which are known at time zero), 10 binary and 10 continuous, but only one binary and one

continuous covariate have any bearing on the outcome. In addition, the number of previous events,

N(t−), is an active covariate. We simulate 400 training data sets from both a proportional and

a nonproportional setting; of course, the nonproportional setting depends on time as well. In

addition, to the 400 in-sample training data sets, we simulate one out-of-sample validation data

set to evaluate out-of-sample prediction based on all 400 trained fits. Performance is assessed

based on estimates of the cumulative intensity function for the monthly grid in comparison to

the known true values. These appear to be simple settings with only 3 or 4 active covariates.

However, note that the cumulative intensity is substantially non-linear with respect to time in

both the proportional and nonproportional settings; therefore, BART’s nonparametric flexibility

is essential to fitting the cumulative intensity via time and the covariates.

In both settings, we hand-picked moderate to strong coefficients to arrive at admission scenar-

ios that are similar to our motivating example; especially, with respect to censoring: the subjects



Nonparametric recurrent events analysis with BART 7

of the example experienced 63.0% whereas the proportional (nonproportional) censoring is 50.9%

(65.2%) on average; see Table 2 for a comparison. Although, we did not pick these settings based

on the subsequent results of the simulations themselves, we also did not explore a wider space of

parameter settings. Therefore, this is a limitation of the simulation study.

D.1.1 Proportional Setting In the proportional setting, the relative intensity is constant with

respect to time given the covariates, x̃(t(j)), which are constant in the time interval (t(j−1), t(j)].

There are two factors that contribute to the probability of an event in a given time interval: the

length of the interval and the strength of the intensity itself. As mentioned above, without loss

of generality, we fix the length of the intervals in our time grid at 30 days. This leads us to the

following proportional intensity for the Exponential distribution with rate αP (x̃(t(j))) where the

only active covariates are N(t−), x1 and x11 among x̃(t(j)) =
[√

N(t(j−1)), v(t(j)), x1, . . . , x20

]′
(N.B. we have replaced N(t−) with

√
N(t−) so that the intensity grows more slowly).

αP (x̃(t(j))) = 0.0001 exp
(
x̃(t(j))

′β
)

where xh
iid∼ U(0, 1) , h = 1, . . . , 10, xl

iid∼ B(0.5) , l = 11, . . . , 20

and β = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0]
′

The intensity unit of time is days so the baseline intensity (where all covariates are set at zero) is

0.0001 that corresponds to one hospital admission in 27 years, i.e., a relatively low admission rate

with only a 0.003 probability of experiencing a hospitalization within one month or 30 days. The

relative intensities are moderate to strong as they are in our motivating example, i.e., e1.5 = 4.48

for x1 and e1 = 2.72 for x11 and
√
N(t−). So, for each 30 day interval, the probability of an

event is pj(x̃(t(j))) = Pr
(
t = t(j)

)
=

[
1− exp

(−30αP (x̃(t(j)))
)]
. Now, we can calculate the true
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cumulative intensity as follows.

Λ(t, x̃(t)) =

k∑
j=1

wj(t)pj(x̃(t(j))) where k = argmin
j

(t � t(j))

and wj(t) =
min(t, t(j))− t(j−1)

t(j) − t(j−1)

See Figure 1 where we display the cumulative intensity for a simulated data set and the corre-

sponding estimates from our model.

D.1.2 Nonproportional Setting In the nonproportional setting, the relative intensity varies

with respect to time, and, as before, the covariates, x̃(t(j)), are constant in the time interval

(t(j−1), t(j)]. As mentioned above, without loss of generality, we fix the length of the intervals in

our time grid at 30 days. Therefore, we will simulate from the following nonproportional intensity

for the Exponential distribution with rate αN (t(j), x̃(t(j))).

αN (t(j), x̃(t(j))) = 0.0001 exp

(
x̃(t(j))

′β × 2
N(t(j−1)) + 1√

j

)

where xh
iid∼ U(0, 1) , h = 1, . . . , 10, xl

iid∼ B(0.5) , l = 11, . . . , 20

and β = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0]
′

These settings lead to a more complex relationship than the proportional setting. Mainly, there

is a departure from proportionality via the intensity’s dependence on time through the
√
j term,

i.e.,
√
t(j)/30 =

√
j. And, most importantly, the probability of an event for each 30 day interval

is pj(x̃(t(j))) = Pr
(
t = t(j)

)
=

[
1− exp

(−30αN (t(j), x̃(t(j)))
)]
. So, we can calculate the true

cumulative intensity as above. See Figure 2 where we display the cumulative intensity for a

simulated data set and the corresponding estimates from our model.

D.2 Comparisons

We propose two main comparisons. First, we compare our new BART model to a Counting

Process Cox (CPC) model with Efron’s correction for ties via simulated data sets for the pro-
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portional setting. For the proportional setting, the CPC is the correct model since it assumes

proportionality so this is a fair comparison; although, the CPC is at somewhat of a disadvantage

because Efron’s correction is not meant for discrete-time events. Furthermore, the CPC model

receives the advantage of the true covariates that generated the data:
(√

N(t(j−1)), x1, . . . , x20

)
.

Meanwhile, the BART model receives no such favoritism; rather, it is provided the covariates

per the conditional independence assumption, i.e.,
(
t(j), N(t(j−1)), v(t(j)), x1, . . . , x20

)
. This puts

BART at the added disadvantage of two extra noise variables, t(j) and v(t(j)), as well as having

to discern the correct functional form of N(t(j−1)). Also, we use BART with its default prior set-

tings, i.e., no attempt is made to pick optimal settings via cross-validation. This first comparison

is restricted to in-sample performance. Second, we compare the BART model’s in-sample and

out-of-sample performance for both the proportional and nonproportional settings. Since BART

is in the class of ensemble predictive models, theoretically, BART’s performance on in-sample vs.

out-of-sample predictions should be quite similar.

The focus of these comparisons is the cumulative intensity that is central to the recurrent

events framework. For each method, we estimate the cumulative intensity and compare it to the

known true cumulative intensity. Our metrics of choice are root mean square error (RMSE), bias

and 95% interval coverage. We also measure the 95% interval length, but it is mainly descriptive

since a shorter or longer interval is not necessarily of interest except under equivalent coverage.

N.B. technically, comparing the frequentist 95% confidence intervals from the CPC model with

the Bayesian 95% credible intervals from the BART model is not an apples to apples compar-

ison. However, as a practical matter, these comparisons are often done, and, we believe, they

provide useful insights into the two methods. Furthermore, with respect to interval coverage, this

comparison is warranted.

Since the cumulative intensity is a function of time, for each subject, we compare it at a set of

discrete-time grid points, i.e., a monthly grid of 60 months each 30 days apart for 250×60 = 15000
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values. Note that the variance of the cumulative intensity increases with time. This presents a

challenge to summarize our findings since the scale at month 12 can be vastly different than at

month 48; similarly, at 12 months, a low risk vs. a high risk subject can have very different profiles.

So, we divide the results into 6 realms per the quantiles of the true cumulative intensity: [0.00,

0.10); [0.10, 0.25); [0.25, 0.50); [0.50, 0.75); [0.75, 0.90) and [0.90, 1.00]. And, to make comparisons

of bias between realms, we also present the bias divided by the corresponding RMSE.

D.3 Results of comparisons

Here, we provide a brief summary. We examined single data sets seeking convergence with BART.

Based on these diagnostics (further described in Section E), the thinning parameter is set accord-

ingly for all data sets. In the proportional setting, BART and CPC performance are generally

consistent with a few exceptions in BART’s favor; the main point is that BART’s 95% interval

coverage attains nominal levels, see Table 3 for a numerical summary. We summarize the per-

formance via graphical summaries: RMSE in Figure 3, bias in Figure 4, bias/RMSE in Figure

5, interval coverage in Figure 6 and interval length in Figure 7. Also in the proportional set-

ting, BART’s in-sample vs. out-of-sample performance was comparable; the main point being

that BART’s 95% interval coverage for both attains nominal levels, see Table 3 for a numerical

summary. The graphical summaries are provided below: RMSE in Figure 8, bias in Figure 9,

bias/RMSE in Figure 10, interval coverage in Figure 11 and interval length in Figure 13. In the

nonproportional setting, BART’s in-sample vs. out-of-sample performance was comparable with

a slight edge to in-sample that is understandable; the main point is that BART’s 95% interval

coverage for both attains nominal levels with the exception of the last realm, see Table 3 for a

numerical summary. The graphical summaries are provided below: RMSE in Figure 15, bias in

Figure 16, bias/RMSE in Figure 17, interval coverage in Figure 18 and interval length in Figure

19.
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E. The BART R package

Along with our partners in BART computing, we have created an R package called BART

for continuous, dichotomous, categorical and time-to-event outcomes including survival analysis,

competing risks and recurrent events. BART is open source, free software now available from

the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=BART

(McCulloch and others , 2018). However, due to CRAN policy limiting the file archive size, the

BART package only contains a roughly 20% random sample of our motivating example data: 50

patients from the training set and 50 patients form the validation set. The complete data set can

be found online at

http://www.mcw.edu/FileLibrary/Groups/Biostatistics/TechReports/TechReports5175/tr064.tar .

To install the BART package, follow these steps.

> options(repos=c(CRAN="https://cran.r-project.org"))

> install.packages("BART", dependencies=TRUE) ## depends on the Rcpp package

The BART package contains several examples that are useful in understanding how BART

and BART with recurrent events works. These examples can be found in the BART package

demo directory and you can locate the recurrent events examples with this snippet of R code.

> ## Data construction for recurrent events with BART

> system.file(’demo/data.recur.pre.bart.R’, package=’BART’)

> ## Proportional intensity for recurrent events with BART

> system.file(’demo/exp.recur.bart.R’, package=’BART’)

> ## Nonproportional intensity for recurrent events with BART

> system.file(’demo/np.recur.bart.R’, package=’BART’)

> ## Interval coverage calibration for recurrent events with BART

> system.file(’demo/cal.recur.bart.R’, package=’BART’)
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> ## Geweke diagnostics for recurrent events with BART

> system.file(’demo/geweke.recur.bart.R’, package=’BART’)

> ## Diabetes and hospital admission example

> system.file(’demo/dm.recur.bart.R’, package=’BART’)

> ## Bladder cancer example for recurrent events with BART

> system.file(’demo/bladder.recur.bart.R’, package=’BART’)

As described, in Section 2.1, BART for dichotomous outcomes relies on either the probit

BART model with Normal latents (Albert and Chib, 1993; Robert, 1995); or the logistic BART

model with Logistic latents (Holmes and Held, 2006; Gramacy and Polson, 2012). BART for

time-to-event outcomes takes the discrete-time approach and, therefore, recasts the problem

as dichotomous outcomes. By default, BART for recurrent events utilizes Normal latents for

computational efficiency. However, BART with Normal latents may have more difficulty than

Logistic latents in estimating probabilities vary close to zero or one since the Normal distribution

has relatively thinner tails. Therefore, BART with Logistic latents is available as an option by

specifying type=’lbart’.

Whether you are using Normal or Logistic latents, you may have a data set where the calcula-

tions involved may be time-consuming especially large data sets (such as the motivating example

complete data set). Therefore, we provide both serial and parallel versions of some functions that

utilize the parallel R package function mcparallel. However, note that the mcparallel function

depends on operating system support for forking to perform parallel processing, e.g., this sup-

port is available on macOS and UNIX/Linux, but not available on Windows. The serial (parallel)

version of the function for BART with recurrent events is recur.bart (mc.recur.bart).

As mentioned in Section 2.1, BART is a Bayesian nonparametric method that relies on MCMC

to generate samples of f from the posterior. BART with recurrent events often requires large data

sets that can present challenges for convergence. The convergence diagnostics example explores
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the first data set in the simulation study to determine the settings necessary to achieve conver-

gence. But, how do you perform convergence diagnostics for BART? For continuous outcomes,

convergence can easily be determined from the trace plots of the the error variance, σ2. However,

for probit BART with Normal latents, the error variance is fixed at 1 so this is not an option.

Therefore, we adapt traditional MCMC diagnostic approaches to BART. We perform graphical

checks via auto-correlation, trace plots and an approach due to Geweke (1992).

Geweke diagnostics is based on earlier work that characterizes MCMC as a time series

(Hastings, 1970). Once this transition is made, auto-regressive, moving-average (ARMA) pro-

cess theory is employed (Silverman, 1986). Generally, we define our Bayesian estimator as θ̂M =

M−1
∑M

m=1 θm. We represent the asymptotic variance of the estimator by σ2
θ̂
= limM→∞ Var

(
θ̂M

)
.

If we suppose that θm is an ARMA(p, q) process, then the spectral density of the estima-

tor is defined as γ(w) = (2π)−1
∑∞

m=−∞ Var(θ0, θm) eimw where eitw = cos(tw) + i sin(tw).

This leads us to an estimator of the asymptotic variance that is σ̂2
θ̂
= γ̂2(0). We divide our

chain into two segments, A and B, as follows: m ∈ A = {1, . . . ,MA} where MA = aM ; and

m ∈ B = {M − MB + 1, . . . ,M} where MB = bM . Note that a + b < 1. Geweke suggests

a = 0.1, b = 0.5 and recommends the following Normal test for convergence.

θ̂A = M−1
A

∑
m∈A

θm θ̂B = M−1
B

∑
m∈B

θm

σ̂2
θ̂A

= γ̂2
m∈A(0) σ̂2

θ̂B
= γ̂2

m∈B(0)

ZAB =

√
M(θ̂A − θ̂B)√

a−1σ̂2
θ̂A

+ b−1σ̂2
θ̂B

∼ N(0, 1)

In our BART package, we supply R functions adapted from the coda R package (Plummer

and others , 2006) to perform Geweke diagnostics: spectrum0ar and gewekediag. But, how do

we apply Geweke’s diagnostic to BART? We can check convergence for any estimator of the form
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θ = h(f(x)), but often setting h to the identify function will suffice, i.e., θ = f(x). However,

BART being a Bayesian nonparametric technique means that we have many potential estimators

to check, i.e., one estimator for every possible choice of x.

We have supplied Figure 20 generated by the example geweke.recur.bart.R for the first

data set from the proportional setting of the simulation study. Based on reviewing figures like

these, we chose a thinning parameter of 100 that is depicted here. In the upper left quadrant, we

have plotted Friedman’s partial dependence function for f(x1) vs. x1 for 10 values of x1. This

is a check that can’t be performed for real data, but it is informative in this case. Notice that

f(x1) vs. x1 is directly proportional as expected. In the upper right quadrant, we plot the auto-

correlations of f(t(j),xi) for 10 randomly selected t(j) and xi combinations where i (j) indexes

subjects (time points). Notice that there is a combination that has fairly high auto-correlation,

but the rest are quite reasonable. In the lower left quadrant, we display the corresponding trace

plots for these same combinations. The traces demonstrate that samples of f(t(j),xi) appear to

adequately traverse the sample space. In the lower right quadrant, we have selected 10 subjects

and we plot their corresponding Geweke ZAB statistics over the time points. Notice that only 2

or 3 subjects ever reach the 95% boundaries and only rarely; given the number of comparisons,

600, this seems reasonable as well.

Now, we explore this single data set with respect to coverage calibration. You can find this

example in the file exp.recur.bart.R. As we have seen in the simulation study, often the out-of-

sample interval coverage is slightly higher than the nominal level; and, furthermore, these interval

lengths are wider than the corresponding in-sample intervals. With real data, we can perform out-

of-sample interval calibration via cross-validation. In this case, we use five-fold cross-validation,

i.e., divide our data set into five roughly equal blocks. Then, perform five fits each time holding

out one of the blocks for the out-of-sample validation. Based on these five fits, determine the

equal-tail quantiles required to arrive at a 1-α level credible interval. With this data set, we
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determine that a roughly 95% out-of-sample coverage is obtained via a 90% interval constructed

from the 5% and 95% quantiles (rather than 2.5% and 97.5% for a 95% interval). You can compare

these two settings with respect to interval coverage in Figures 11 and 12; and interval length in

Figures 13 and 14.

Let’s return to the vignette (see Figure 22 and Section 2.2, display (2.3) which is copied below)

that we re-iterate for convenience. Suppose that we have two subjects with the following values:

N1 = 2, s1 = 9, t11 = 3, u11 = 7, t12 = 8, u12 = 8 ⇒ y11 = 1, y12 = y13 = 0, y14 = 1, y15 = 0 (2.3)

N2 = 1, s2 = 12, t21 = 4, u21 = 7 ⇒ y21 = 0, y22 = 1, y23 = y24 = y25 = y26 = 0

which creates the grid of times (3, 4, 7, 8, 9, 12). For subject 1 (2), notice that y12 = y13 = 0

(y23 = 0) as it should be since no event occurred at times 4 or 7 (7). However, no events

could occur since their first event had not ended yet, i.e., these time points do not contribute to

the likelihood since these subjects are not currently at risk for an event. The BART package

provides the recur.pre.bart function that you can use to construct the corresponding data

set. Here is a short demonstration of its capabilities applied to the vignette data (adapted from

data.recur.pre.bart.R).

> library(BART)

> times <- matrix(c(3, 8, 9, 4, 12, 12), nrow=2, ncol=3, byrow=TRUE)

> tstop <- matrix(c(7, 8, 0, 7, 0, 0), nrow=2, ncol=3, byrow=TRUE)

> delta <- matrix(c(1, 1, 0, 1, 0, 0), nrow=2, ncol=3, byrow=TRUE)

> recur.pre.bart(times=times, delta=delta, tstop=tstop)

$y.train $tx.train $tx.test

[1] 1 1 0 0 1 0 0 0 t v N t v N

$times [1,] 3 3 0 [1,] 3 3 0

[1] 3 4 7 8 9 12 [2,] 8 5 1 [2,] 4 1 1
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$K [3,] 9 1 2 [3,] 7 4 1

[1] 6 [4,] 3 3 0 [4,] 8 5 1

[5,] 4 4 0 [5,] 9 1 2

[6,] 8 4 1 [6,] 12 4 2

[7,] 9 5 1 [7,] 3 3 0

[8,] 12 8 1 [8,] 4 4 0

[9,] 7 3 1

[10,] 8 4 1

[11,] 9 5 1

[12,] 12 8 1

Notice that $tx.test is not limited to the same time points as $tx.train, i.e., we often

want/need to estimate f at counter-factual values not observed in the data.

F. Recurrent events, dependent censoring, competing risks and BART

As has been described, dealing with dependent censoring in the recurrent events framework is

challenging (Cook and Lawless, 1997; Ghosh and Lin, 2000; Wang and others , 2001; Ghosh and

Lin, 2003). Our approach is to combine the recurrent events and competing risks paradigms. Typ-

ically, competing risks (Fine and Gray, 1999; Kalbfleisch and Prentice, 2002) deal with events

that are mutually exclusive, say, death from cardiovascular disease vs. death from other causes,

i.e., a patient experiencing one of the events is prevented from experiencing another. Our appli-

cation is slightly different in that we have two events, death and hospital admission, which are

not mutually exclusive. Suffering death prevents a patient from experiencing a future hospital

admission, but the converse is not true, i.e., a hospital admission does not prevent a future death.

So, technically, we have what are termed semi-competing events, yet the competing events frame-

work is sufficient for our needs. For the simplicity of this exposition, we assume that the hospital
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admissions are instantaneous, i.e., hospital stays are of length zero.

We create a single grid of time points for the ordered distinct times based on either type

of event or censoring. To accommodate competing risks, we adapt our notation slightly: (si, δi)

are death times, δi = 1, or censoring times, δi = 0. We model the probability of event 1 that is

death: p1(t(j),xi). Next, we model event 2, hospital admission, which is necessarily conditioned

on patient i being alive at time t(j): p2(t(j),xi). Now, we can estimate the survival function and

the cumulative incidence functions as follows.

S(t,xi) = 1− F (t,xi) =

k∏
j=1

(1− p1(t(j),xi))(1− p2(t(j),xi)) where k = argmax
j

[
t(j) � t

]

F1(t,xi) =

∫ t

0

S(u−,xi)λ1(u,xi)du =

k∑
j=1

S(t(j−1),xi)p1(t(j),xi)

F2(t,xi) =

∫ t

0

S(u−,xi)λ2(u,xi)du =

k∑
j=1

S(t(j−1),xi)(1− p1(t(j),xi))p2(t(j),xi)

G. The motivating example and the EHR

In this section, additional details of the motivating example are provided related to the source

of data from the EHR. Specifically, we discuss anti-diabetic therapy; health care charges and

relative value units (RVU); handling of missing data; and the coded conditions considered that

are either comorbidities or procedures/surgeries.

For insulin, metformin and sulfonylurea, we only had access to prescription orders (rather

than prescription fills) and self-reported current status of prescription therapy during clinic office

visits. Generally, orders are only required after every three fills, and each fill can be for up to 90

days, so we define insulin, metformin and sulfonylurea as binary indicators that are one if there

exists an order or current status indication within the prior 270 days; otherwise zero.

Health care charges and relative value units (RVU) are measures related to the services and
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procedures delivered. RVUs (Federal Register, 2010) are dictated by the US Medicare national

health insurance program for reimbursement purposes. An RVU represents the relative clinical

input (time, intensity, training, etc.) necessary to provide a given service; a service with a higher

RVU is reimbursed at a higher rate. Since we are interested in preventive opportunities, very

recent charges/RVUs are too closely related to services and procedures to be practically useful.

Therefore, we investigate chronologically distant previous charges/RVUs that are the sum total

of the following moving windows of days prior to any given date: 31 to 90, 91 to 180, 181 to 300.

For some patients, their signs were not available on a given date so they were set to missing;

similarly, if a sign was not observed within the last 180 days, then it was set to missing (except

height never expires, weight extended to 365 days and body mass index is a deterministic function

of the two). We used the Sequential BARTmissing imputation method as described in Appendix C

of the Supplement. However, instead of creating several imputed data sets, we imputed a new

sign at each date when it was missing, i.e., in order to address uncertainty with one data set, a

new value was imputed for each date that it was missing and never carried forward.

Conditions are binary indicators that are zero until the date of the first coding and then

they are one from then on (see Table 1 of the Supplement for the codes utilized). Based on

clinical rationale, we identified 26 conditions (23 comorbidities and 3 procedures/surgeries) that

are potential risk factors for a hospital admission and/or possible complications of diabetes;

besides clinical merit, these conditions are chosen since they are present in more than just a

few subjects so that they may be informative. Similarly, we employed 15 general conditions

known as the Charlson diagnoses (Charlson and others , 1987; Quan and others , 2005) and 18

general conditions from the RxRisk adult diagnoses defined by prescription orders (Fishman and

others, 2003; Johnson and others, 2006). Seven conditions are a composite of diagnosis codes and

prescription orders: these codes are denoted by an asterisk in Table 1 of the Supplement. Notice

that the conditions are not independent; for example, renal disease is a superset of chronic kidney
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disease that is a superset of kidney failure. These hierarchical definitions are intentional since we

would like to identify the narrowest risk factor definition wherever possible. And, the following

conditions are mutually exclusive so necessarily dependent: mild liver disease vs. moderate/severe

liver disease; and malignancy vs. metastatic solid tumor.
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Table 1. Codes for conditions (* diagnostic codes and prescription orders combined)

Category Conditions (ICD-9-CM/HCPCS Code(s))

Acute metabolic Hyperinsulinism (962.3), Hypoglycemia (250.8x), Ketoacidosis (250.1x)
Circulatory Atrial fibrillation (427.31), Cardiomyopathy (425.4),

Coronary artery disease (414.0x), Gangrene (785.4), Hypertension* (401.x)
Eye Blindness (369.xx), Retinopathy (362.0x)
Kidney Chronic kidney disease (585.x, E11.22), Dialysis (V45.1, V56.x, 90935:90937),

Kidney failure (585.5, 585.6), Kidney transplant (V42.0, 50360, 50365),
Nephropathy (583.81)

Neurologic Depression* (300.4, 311), Diabetic foot (713.5), Encephalopathy (348.30),
Neuropathy (250.6x, 354.x, 355.x, 337.1, 353.5, 357.2, E11.40)

Procedure/Surgery Bariatric surgery (V45.86, 43775, 46344, 43846),
CABG (V45.81, 33503:33505, 33510:33516, 4110F),
PTCA (V45.82, 92982:92984, 92920, 92921)

Other Diabetic bone changes (731.8), Diabetic ulceration (707.1x, 707.8, 707.9),
Medical nutrition therapy (97802, 97803),
Sleep apnea (327.2x, 770.81, 770.82, 780.51, 780.53, 780.57, 786.03)

Charlson Diagnosis Conditions ICD-9-CM Code(s)

Cerebrovascular disease 362.34, 430.xx:438.xx
Chronic pulmonary disease 416.8, 416.9, 490.x:496.x, 500.x:505.x, 506.4, 508.1, 508.8
Congestive heart failure 398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13,

404.91, 404.93, 425.4x, 425.5x, 425.7x:425.9x, 428.xx
Dementia 290.xx, 294.1x, 331.2x
Diabetic chronic complications 250.4x:250.6x
Hemiplegia or paraplegia 334.1, 342.x, 343.x, 344.0:344.6, 344.9
Malignancy* 140.x:172.x, 174.x:195.8, 200.x:208.x, 238.6
Metastatic solid tumor 196.xx:199.xx
Mild liver disease 070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.6,

070.9, 570.x, 571.x, 573.3, 573.4, 573.8, 573.9, V42.7
Moderate/severe liver disease 456.0:456.2, 572.2:572.8
Myocardial infarction 410.xx, 412
Peptic ulcer disease* 531.x:534.x
Peripheral vascular disease* 093.0x, 437.3x, 440.xx, 441.xx, 443.1x:443.9x, 447.1x, 557.1x, 557.9x, V43.4
Renal disease* 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 404.93,

582.x, 583.0:583.7, 585.x, 586.x, 588.0, V42.0, V45.1, V56.x
Rheumatic disease* 446.5, 710.0:710.4, 714.0:714.2, 714.8, 725.x

Adult RxRisk Conditions (Medi-Span pharmaceutical class)

Anxiety and tension (57), Asthma (44), Cardiac disease (35),
Peripheral vascular disease* (83), Depression* (58), Epilepsy (72),
Peptic ulcer disease* (49), Gout (68), Heart disease (32, 33, 34),
Hyperlipidemia (39), Hypertension* (36), Malignancy* (21, 50),
Parkinson’s disease (73), Psychosis (59), Renal disease* (82),
Rheumatic disease* (66), Thyroid disorder (28), Tuberculosis (9)

CABG: Coronary Artery Bypass Grafting; HCPCS: Healthcare Common Procedure Coding System;
ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification;
PTCA: Percutaneous Transluminal Coronary Angioplasty.

We identify a cohort of patients suffering diabetes via their collected Electronic Health Records (EHR)
to determine which covariates are related to the risk of hospital admission. Herein, we provide the codes
utilized to define covariates related to comorbidities and procedures/surgeries.
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Table 2. Actual values compared to simulation settings summarized over 400 data sets

Hospital Admissions Cohort % Proportional % Nonproportional %

0 63.0 50.9 65.2
1 16.2 15.5 18.4
2-3 10.3 13.4 5.8
4-6 7.6 7.9 0.9
7+ 2.9 12.3 9.7

We identify a cohort of patients suffering diabetes via their collected Electronic Health Records (EHR)
to determine which covariates are related to the risk of hospital admission. Based on this cohort, we
have developed a study of simulated data sets where the hospital admission profile bears a resemblance
to the cohort. These simulated data sets are constructed under two scenarios: a proportional setting
and a nonproportional setting. Herein, we summarize hospital admissions in the cohort as well as in the
proportional and the nonproportional settings.

Xu, D, Daniels, MJ and Winterstein, AG. (2016). Sequential BART for imputation of

missing covariates. Biostatistics 17, 589–602.
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Supplementary Figure 1. Proportional setting: we simulated a data set conforming to proportionality of
the covariates and then we estimated the corresponding cumulative intensity by recurrent events with
BART. In the left (right) figure, we display the known values (estimates) of the cumulative intensity.
The R2 between known values and estimates is 0.984.
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Supplementary Figure 2. Nonproportional setting: we simulated a data set not conforming to propor-
tionality of the covariates and then we estimated the corresponding cumulative intensity by recurrent
events with BART. In the left (right) figure, we display the known values (estimates) of the cumulative
intensity. The R2 between known values and estimates is 0.999.
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Supplementary Figure 3. Proportional setting RMSE: we performed a simulated data study conforming
to proportionality of the covariates and then we estimated the corresponding cumulative intensity with
a counting process Cox (CPC) model and recurrent events with BART. Here, we summarize the results
for the root mean square error (RMSE): BART (B in blue) vs. CPC (C in red). RMSE is summarized
over realms for the quantiles of the true cumulative intensity labeled a-f. Generally, BART and CPC are
equivalent. The exception is the last realm where BART is superior.
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Supplementary Figure 4. Proportional setting Bias: we performed a simulated data study conforming to
proportionality of the covariates and then we estimated the corresponding cumulative intensity with a
counting process Cox (CPC) model and recurrent events with BART. Here, we summarize the results for
the Bias: BART (B in blue) vs. CPC (C in red). Bias is summarized over realms for the quantiles of the
true cumulative intensity labeled a-f. Generally, BART and CPC are equivalent. The exceptions are in
the latter realms that are more challenging: [0.75, 0.90) and [0.90, 1.00]. In fact, the CPC performance
in the last realm is so poor that its boxplot is out of range of the figure so it is not shown.
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Supplementary Figure 5. Proportional setting Bias/RMSE: we performed a simulated data study con-
forming to proportionality of the covariates and then we estimated the corresponding cumulative intensity
with a counting process Cox (CPC) model and recurrent events with BART. Here, we summarize the
results for the Bias/RMSE: BART (B in blue) vs. CPC (C in red). Bias/RMSE is summarized over realms
for the quantiles of the true cumulative intensity labeled a-f. Generally, BART and CPC are equivalent.



SUPPLEMENTARY REFERENCES 29

●

●

●

●

●●

●
●
●

●●

●
●

●

●●
●
●●●
●●●●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●
●
●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●
●
●
●
●
●
●
●●
●●●●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

B.a C.a B.b C.b B.c C.c

0.
5

0.
7

0.
9

95
%

 In
te

rv
al

 C
ov

er
ag

e

0.95

a: [0.00, 0.10)
b: [0.10, 0.25)
c: [0.25, 0.50)

●●●●
●●●●●●

●

●

●●
●●

●

●
●

●

●●●●●●
●●

●

●

●

●●
●
●

●●

●

●●

●
●
●
●

B.d C.d B.e C.e B.f C.f

0.
5

0.
7

0.
9

95
%

 In
te

rv
al

 C
ov

er
ag

e

0.95

d: [0.50, 0.75)
e: [0.75, 0.90)
 f: [0.90, 1.00]

Supplementary Figure 6. Proportional setting 95% Interval Coverage: we performed a simulated data
study conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity with a counting process Cox (CPC) model and recurrent events with BART. Here, we summarize
the results for the 95% Interval Coverage: BART (B in blue) vs. CPC (C in red). 95% Interval Coverage
is summarized over realms for the quantiles of the true cumulative intensity labeled a-f. Generally, BART
coverage is nominal. However, surprisingly, CPC coverage does not approach nominal levels in the latter
realms: [0.50, 0.75); [0.75, 0.90) nor [0.90, 1.00]. Perhaps, the poor CPC coverage performance is the
result of the discrete-time nature of the data and the computational infeasibility of performing a proper
correction for tied event times.
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Supplementary Figure 7. Proportional setting 95% Interval Length: we performed a simulated data study
conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity with a counting process Cox (CPC) model and recurrent events with BART. Here, we summarize
the results for the 95% Interval Length: BART (B in blue) vs. CPC (C in red). 95% Interval Length is
summarized over realms for the quantiles of the true cumulative intensity labeled a-f. Generally, BART
interval length is longer that partially explains its better interval coverage. The only exception is in the
last realm, [0.90, 1.00], where the CPC results are poor across all metrics.
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Supplementary Figure 8. Proportional setting RMSE: we performed a simulated data study conforming
to proportionality of the covariates and then we estimated the corresponding cumulative intensity by
recurrent events with BART. Here, we summarize the results for the root mean square error (RMSE):
BART In-sample (I in blue) vs. Out-of-sample (O in red). RMSE is summarized over realms for the
quantiles of the true cumulative intensity labeled a-f. In-sample and Out-of-sample performance are gen-
erally consistent in the lower half of the realms where Out-of-sample is only slightly larger as anticipated.
However, in the upper half of the realms, Out-of-sample is noticeably larger.
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Supplementary Figure 9. Proportional setting Bias: we performed a simulated data study conforming
to proportionality of the covariates and then we estimated the corresponding cumulative intensity by
recurrent events with BART. Here, we summarize the results for the Bias: BART In-sample (I in blue)
vs. Out-of-sample (O in red). Bias is summarized over realms for the quantiles of the true cumulative
intensity labeled a-f. In-sample and Out-of-sample performance are generally consistent in the lower half
of the realms where Out-of-sample is only slightly worse as anticipated. However, in realms, [0.50, 0.75)
and [0.75, 0.90), Out-of-sample is noticeably worse while in the last realm, [0.90, 1.00], the opposite is
the case.
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Supplementary Figure 10. Proportional setting Bias/RMSE: we performed a simulated data study con-
forming to proportionality of the covariates and then we estimated the corresponding cumulative intensity
by recurrent events with BART. Here, we summarize the results for the Bias/RMSE: BART In-sample
(I in blue) vs. Out-of-sample (O in red). Bias/RMSE is summarized over realms for the quantiles of the
true cumulative intensity labeled a-f. In-sample and Out-of-sample performance are generally consistent
in the lower half of the realms where Out-of-sample is only slightly worse as anticipated. However, in
realms, [0.50, 0.75) and [0.75, 0.90), Out-of-sample is more noticeably worse while in the last realm, [0.90,
1.00], the opposite is the case.
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Supplementary Figure 11. Proportional setting 95% Interval Coverage: we performed a simulated data
study conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity by recurrent events with BART. Here, we summarize the results for the 95% Interval Coverage:
BART In-sample (I in blue) vs. Out-of-sample (O in red). 95% Interval Coverage is summarized over
realms for the quantiles of the true cumulative intensity labeled a-f. In-sample performance is generally
nominal while Out-of-sample exceeds nominal levels.
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Supplementary Figure 12. Proportional setting 95% (90%) Interval Coverage for In-sample (Out-of-
sample): we performed a simulated data study conforming to proportionality of the covariates and then
we estimated the corresponding cumulative intensity by recurrent events with BART. Here, we summarize
the results for the In-sample 95% vs. Out-of-sample 90% Interval Coverage: BART In-sample (I in blue)
vs. Out-of-sample (O in red). Interval Coverage is summarized over realms for the quantiles of the true
cumulative intensity labeled a-f. In-sample 95% and Out-of-sample 90% Interval Coverage are roughly
nominal throughout. N.B. Out-of-sample 90% Credible Intervals were chosen as 95% nominal by cross-
validation calibration based on one data set; see Section E for more details.
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Supplementary Figure 13. Proportional setting 95% Interval Length: we performed a simulated data study
conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity by recurrent events with BART. Here, we summarize the results for the 95% Interval Length:
BART In-sample (I in blue) vs. Out-of-sample (O in red). 95% Interval Length is summarized over realms
for the quantiles of the true cumulative intensity labeled a-f. In-sample length is generally shorter than
Out-of-sample.
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Supplementary Figure 14. Proportional setting 95% (90%) Interval Length for In-sample (Out-of-sample):
we performed a simulated data study conforming to proportionality of the covariates and then we es-
timated the corresponding cumulative intensity by recurrent events with BART. Here, we summarize
the results for the In-sample 95% vs. Out-of-sample 90% Interval Length: BART In-sample (I in blue)
vs. Out-of-sample (O in red). Interval Length is summarized over realms for the quantiles of the true
cumulative intensity labeled a-f. In-sample 95% Interval Length is closer to Out-of-sample 90% than to
Out-of-sample 95%.
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Supplementary Figure 15. Nonproportional setting RMSE: we performed a simulated data study not
conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity by recurrent events with BART. Here, we summarize the results for the root mean square error
(RMSE): BART In-sample (I in blue) vs. Out-of-sample (O in red). RMSE is summarized over realms
for the quantiles of the true cumulative intensity labeled a-f. In-sample performance is generally better
than Out-of-sample except in the last realm, [0.90, 1.00].
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Supplementary Figure 16. Nonproportional setting Bias: we performed a simulated data study not con-
forming to proportionality of the covariates and then we estimated the corresponding cumulative intensity
by recurrent events with BART. Here, we summarize the results for the Bias: BART In-sample (I in blue)
vs. Out-of-sample (O in red). Bias is summarized over realms for the quantiles of the true cumulative
intensity labeled a-f. In-sample and Out-of-sample performance are generally consistent in the lower half
of the realms. However, in the upper half of realms, Out-of-sample is noticeably better.
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Supplementary Figure 17. Nonproportional setting Bias/RMSE: we performed a simulated data study
not conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity by recurrent events with BART. Here, we summarize the results for the Bias/RMSE: BART In-
sample (I in blue) vs. Out-of-sample (O in red). Bias/RMSE is summarized over realms for the quantiles
of the true cumulative intensity labeled a-f. Out-of-sample performance is generally better, but this is an
artifact of the Bias/RMSE metric since RMSE is worse for Out-of-sample in the lower half of the realms.
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Supplementary Figure 18. Nonproportional setting 95% Interval Coverage: we performed a simulated
data study not conforming to proportionality of the covariates and then we estimated the corresponding
cumulative intensity by recurrent events with BART. Here, we summarize the results for the 95% Interval
Coverage: BART In-sample (I in blue) vs. Out-of-sample (O in red). 95% Interval Coverage is summarized
over realms for the quantiles of the true cumulative intensity labeled a-f. In-sample (Out-of-sample)
performance are generally nominal (near nominal) throughout with the exception of In-sample in the
last realm, [0.90, 1.00].



42 SUPPLEMENTARY REFERENCES

●●●●●●

●●
●
●
●
●●●●●

●●●●●●●●●●

●
●
●
●●
●●●●

●●●
●●●

●
●
●
●●
●●
●●

I.a O.a I.b O.b I.c O.c

0.
1

0.
2

0.
5

1.
0

2.
0

95
%

 In
te

rv
al

 L
en

gt
h

a: [0.00, 0.10)
b: [0.10, 0.25)
c: [0.25, 0.50)

●●●●●●

●
●●
●●●
●
●
●

●

●

●●
●
●
●●●
●
●●
●

●

●●

●

●

●

●●

●
●●●

●

I.d O.d I.e O.e I.f O.f

0.
5

1.
0

1.
5

2.
5

95
%

 In
te

rv
al

 L
en

gt
h

d: [0.50, 0.75)
e: [0.75, 0.90)
 f: [0.90, 1.00]

Supplementary Figure 19. Nonproportional setting 95% Interval Length we performed a simulated data
study not conforming to proportionality of the covariates and then we estimated the corresponding
cumulative intensity by recurrent events with BART. Here, we summarize the results for the 95% Interval
Length: BART In-sample (I in blue) vs. Out-of-sample (O in red). 95% Interval Length is summarized
over realms for the quantiles of the true cumulative intensity labeled a-f. Out-of-sample length is generally
longer (shorter) in the first four (last two) realms.
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Supplementary Figure 20. We applied convergence diagnostics to the first data set from the proportional
setting of the simulation study. Based on reviewing figures like these, we chose a thinning parameter of
100 that is depicted here. In the upper left quadrant, we have plotted Friedman’s partial dependence
function for f(x1) vs. x1 for 10 values of x1. This is a check that can’t be performed for real data, but it is
informative in this case. Notice that f(x1) vs. x1 is directly proportional as expected. In the upper right
quadrant, we plot the auto-correlations of f(t(j),xi) for 10 randomly selected t(j) and xi combinations
where i (j) indexes subjects (time points). Notice that there is a combination that has fairly high auto-
correlation, but the rest are quite reasonable. In the lower left quadrant, we display the corresponding
trace plots for these same combinations. The traces demonstrate that f(t(j),xi) appear to adequately
traverse the sample space. In the lower right quadrant, we have selected 10 subjects and we plot their
corresponding Geweke ZAB statistics over the time points. Notice that only 2 or 3 subjects ever reach the
95% boundaries and only rarely; given the number of comparisons, 600, this seems reasonable as well.
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Supplementary Figure 21. We studied a cohort of patients suffering diabetes to determine the covariates
related to the risk of hospital admissions. Based on a recurrent events analysis with BART, we determined
that there are three important risk agonists for a new hospital admission: peripheral vascular disease
(PVD), receiving insulin treatment and the number of previous hospital admissions. The effect of binary
covariates like PVD and insulin are relatively easily summarized. However, the number of previous
hospital admissions is more difficult because it is time-dependent. To explore these risk factors, we present
the estimated cumulative intensities, Λ(t), for three risk profiles: low (lower solid black), medium (middle
solid gray) and high risk (upper solid black). In these profiles, PVD and insulin are set to either present or
absent throughout the five year observation period. For low risk subjects, PVD and insulin are absent and
there are no hospital admissions. For medium risk subjects, PVD is absent, insulin is present and there
is one hospital admission at 24 months. For high risk subjects, PVD and insulin are present and they are
admitted to the hospital at 12, 24, 36 and 48 months. The estimated cumulative intensities displayed are
the effects of the risk profiles marginalizing over all other covariates with Friedman’s partial dependence
function. Notice that the cumulative intensities fall in the predetermined order from low, to medium, to
high risk. The estimated cumulative differential intensities, CDI(t), are also displayed for these profiles.
The medium vs. low (dashed gray) is CDIML(t) = Λ(t, xM )−Λ(t, xL). Similarly, the high vs. low (dashed
black) is CDIHL(t) = Λ(t, xH)−Λ(t, xL). The estimated cumulative differential intensities displayed are
the effects of the risk profiles marginalizing over all other covariates with Friedman’s partial dependence
function. Medium risk subjects will likely have 0.5 more hospital admissions over 5 years than low risk
subjects. Meanwhile, high risk subjects will likely have 2 more hospital admissions than low risk. The
dotted horizontal lines of 0 (black), 0.5 (gray) and 2 (black) are plotted for reference.
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Table 3. Summary of 95% Interval Coverage

Method CPC BART
Setting P P NP
Prediction I 95% I 95% O 95% O 90% I 95% O 95%

Overall 0.714 0.965 0.978 0.944 0.886 0.911
a 0.837 0.962 0.979 0.946 0.948 0.904
b 0.855 0.966 0.977 0.944 0.973 0.911
c 0.876 0.972 0.978 0.944 0.974 0.913
d 0.837 0.970 0.978 0.943 0.962 0.913
e 0.624 0.964 0.978 0.943 0.939 0.915
f 0.258 0.958 0.978 0.942 0.516 0.911

CPC:Counting Process Cox model.
P:Proportional, NP:Nonproportional.
I:In-sample, O:Out-of-sample.
a:[0.00, 0.10); b:[0.10, 0.25); c:[0.25, 0.50);
d:[0.50, 0.75); e:[0.75, 0.90) and f:[0.90, 1.00].
a-f are realms for the quantiles of the true cumulative intensity.

We identify a cohort of patients suffering diabetes via their collected Electronic Health Records (EHR)
to determine which covariates are related to the risk of hospital admission. Based on this cohort, we
have developed a study of simulated data sets where the hospital admission profile bears a resemblance
to the cohort. These simulated data sets are constructed under two scenarios: a proportional setting
and a nonproportional setting. We analyzed the proportional setting data sets with counting process
Cox models and our recurrent events BART model. However, discrete-time tied events are incompletely
controlled for diminishing the efficiency of the Cox model (given the sample sizes considered, an
adequate treatment is computationally infeasible). Therefore, we only provide in-sample results for the
Cox model while we provide both in-sample and out-of-sample for BART. Furthermore, we analyzed
the nonproportional setting data sets only with BART since Cox assumes proportionality and, given its
deficiency with discrete-time tied events, this comparison is unnecessary.
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Supplementary Figure 22. Risk set diagram. Time is on the horizontal axis; subjects, i, are on the vertical
axis. Suppose that we have two subjects with the following values:
N1 = 2, s1 = 9, t11 = 3, u11 = 7, t12 = 8, u12 = 8
N2 = 1, s2 = 12, t21 = 4, u21 = 7.
The grid of time points are dashed vertical lines; events are solid black dots; and the risk set, Ri, for each
subject is a solid black line while at risk, otherwise absent. Notice for subject 1 that they are not at risk
in the interval (t(1), t(3)); no events could occur in this interval since their first event had not ended yet,
i.e., these time points do not contribute to the likelihood since these subjects are not chronologically at
risk for an event.


