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1 Introduction

For generations, biostatisticians have doggedly pursued increasingly assumption-free regression method-
ology for time-to-event outcomes. Notable achievements along the way consist of such stalwarts of
modern applied frequentist methods as proportional hazards [Cox, 1972], accelerated failure time
(AFT) [Miller, 1976, Buckley and James, 1979, Aitkin, 1981, Koul et al., 1981, Miller and Halpern,
1982] and random survival forests [Ishwaran et al., 2008] that span from linear models to the modern
non-linear machine learning era. While we recognize these breakthroughs, herein we take an alter-
native approach based on Bayesian nonparametric methodology. Recently, due to modern advances
in computational hardware, there has been increasing interest in Bayesian nonparametric methods
such as that provided by Bayesian additive regression trees (BART) [Chipman et al., 2010] for time-
to-event outcomes: survival analysis [Bonato et al., 2011, Sparapani et al., 2016, Henderson et al.,
2020]. Rather than denigrating the previous work in this area, here we laud it by building upon
the past and pushing the envelope beyond its present boundaries as so many researchers have done
before us.

BART is a Bayesian nonparametric machine learning prior methodology that possesses attractive
properties for continuous, categorical and time-to-event outcomes. As the sum of a large number
of trees, BART falls within the class of ensemble models. Ensembles are the best known for out-
of-sample predictive performance [Baldi and Brunak, 2001, Kuhn and Johnson, 2013], e.g., BART
will not over-fit to the training data at the expense of hampering predictive performance for the
unseen validation data. And BART very naturally translates to high-dimensional data sets via the
incorporation of a sparse Dirichlet prior [Linero, 2018, Liu and Ročková, 2021].

With respect to survival analysis, current BART methods all suffer from one or more issues
that warrant improvement. The work of Bonato et al. [2011] implement methods for proportional
hazards, AFT and Weibull regression (all of which are restrictive assumptions); furthermore, these
lack the flexibility of nonparametric methods. Sparapani et al. [2016] take the discrete time approach
[Fahrmeir, 2014] which is relatively assumption-free; however, due to the expansion of the data along
a grid of time points, this method will struggle with increasingly larger sample sizes. AFT BART
was proposed by Henderson et al. [2020] taking an AFT approach extended by Dirichlet Process
mixtures (DPM) [Escobar and West, 1995] for a nonparametric random error distribution; however,
AFT is a precarious restrictive assumption that still remains. Most recently, Modulated BART is a
nonparametric model of the failure time as the first occurrence of a non-homogeneous Poisson process
[Linero et al., 2021]; however, a computational implementation is not readily available hampering
its use.
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All of the above mentioned deficiencies are largely resolved by our new, novel time-to-event
approach introduced here that we call nonparametric failure time (NFT) BART. NFT BART builds
on a Bayesian nonparametric foundation consisting of BART, heteroskedastic BART [Pratola et al.,
2020] and DPM. In particular, the ability to scale to larger sample sizes is important for many
applications. And, we provide convenient, user-friendly, computer software that is freely available
as a reference implementation.

This report is organized as follows. Section 2 describing the methodology of this article has
several parts. First, we introduce binary regression trees and BART in Section 2.1. Next, we
describe heteroskedastic BART (HBART) in Section 2.2. We introduce the AFT model in Section 2
and the AFT BART extension in Section 2.4. AFT BART and NFT BART are based on DPM and
constrained DPM which is introduced in Section 2.6. We introduce the novel NFT BART model in
Section 2.5. In Section 2.7, we discuss posterior inference. And, in Section 2.8, we discuss model
performance with Harrell’s c-index, model comparison via Pseudo-Bayes factors and Thompson
sampling variable selection. The results of this research are provided in Section 3 which has two
parts. A simulation study comparison of AFT BART with NFT BART appears in Section 3.1. We
put this research into perspective with a discussion in Section 4. And, finally, we demonstrate the
capabilities of the freely available reference software in the Appendix via an example.

2 Methods

2.1 Binary tree regression models and Bayesian additive regression trees

First, we introduce binary tree regression before moving on to BART. Binary tree regression for
continuous and categorical outcomes is often referred to as classification and regression trees (CART)
[Morgan and Sonquist, 1963, Friedman, 1977, Gordon and Olshen, 1978, Breiman et al., 2017]
(we reserve the term CART for frequentist implementations of the methodology as it is commonly
used). Chipman et al. [1998] introduced Bayesian binary tree regression models for continuous and
categorical outcomes; however, we restrict our attention to continuous outcomes in this investigation.
For this introduction, we have the following notation: yi is a continuous outcome where i indexes
subjects i = 1, . . . , N ; xi is a vector of covariates; T denotes the tree structure and branch decision
rules;M≡ {µ1, µ2, . . . , µL} denotes the L leaf values; µ is a constant that centers the data (a typical
choice is µ = ȳ) and g(xi; T ,M) is a regression tree function. These models have the following form:

yi = µ+ g(xi; T ,M) + εi where εi
iid∼ N

(
0, σ2

)
. However, the performance of these Bayesian models

was no better than frequentist CART which was disappointing since an advance in predictive ability
was naturally sought. Nevertheless, Bayesian tree priors were an active and promising area for future
research [Chipman et al., 1998, Denison et al., 1998, Pratola, 2016].

During this time period, the machine learning revolution was growing. In particular, ensemble
models were discovered [Krogh and Solich, 1997] that lead to machine learning methods such as
gradient boosting [Freund and Schapire, 1997, Friedman, 2001] and random forests [Breiman, 2001].
So, it became clear that the logical extension of a Bayesian binary tree is an ensemble of binary
trees which has come to be known as BART [Chipman et al., 2010] with improved out-of-sample
predictive performance. BART is a sum of binary trees nonparametric machine learning regression
model since the relationship between the outcome, yi, and the covariates, xi, is learned from the
data itself (i indexes subjects i = 1, . . . , N). This framework consists of the following (where µ
approximately centers the data as above; typically, µ = ȳ).

yi = µ+ f(xi) + εi εi|σ2 iid∼ N
(
0, σ2

)
f

prior∼ BART(a, b, k,H) σ2 prior∼ νλχ−2 (ν)

f(xi) ≡
H∑
h=1

g(xi; Th,Mh)
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Where possible, prior default argument settings are employed that often provide adequate fitting in
most settings: a = 0.05, b = 2 and k = 2. The number of trees, H, is large with typical settings of
50, 100 or 200 where 50 is a common choice [Bleich et al., 2014]. For a detailed discussion of these
priors, please refer to the following work [Chipman et al., 2010, Sparapani et al., 2021].

2.2 Heteroskedastic BART

Heteroskedastic BART is an extension to BART where we have both a mean function, f , and a
variance function, s2, to fit [Pratola et al., 2020] (N.B. we assume that there are known constants,
w2
i , that are multiples of the variance; if not, then simply let wi ≡ 1).

yi = µ+ f(xi) + εi εi|s2
ind∼ N

(
0, w2

i s
2(xi)

)
f

prior∼ BART(a, b, k,H) s2
prior∼ HBART(ν, λ, H̃) (1)

s2(xi) ≡
H̃∏
h=1

g(xi; T̃h,M̃h)

For f and s2, in concert, prior default argument settings are employed that often provide adequate
fitting in most settings: ν = 10, λ = s2y, a = 0.05, b = 2 and k = 5. For s2 the number of trees, H̃, is
typically about one-fifth that of H since previous experience has shown that the data contains less
information about the variance than the mean so fewer trees are necessary, i.e., the default setting
is H̃ ≈ H/5. For a more detailed discussion of the HBART prior specification, please see Pratola
et al. [2020].

2.3 Accelerated failure time (AFT)

Suppose that we have time-to-event data of the following form: (ti, δi) where ti is time; and δi
is the event status: 0 for right-censoring or 1 for an event. Furthermore, there is a vector of P
observed covariates, xi, along with an unknown vector of regression coefficients, β, that we intend
to estimate. For the purpose of this discussion, let the event times follow a Weibull distribution:

ti
ind∼ Weibull (η, κ) where κ = exp(β0 + x′iβ) and E [ti] = κ−1Γ(1 + η−1). Now suppose that we

employ the natural logarithm transform, yi = log ti, then yi∼ExtremeValue
(
log κ, η−1

)
. Or, if we

re-parameterize the AFT model in the form of a linear model, then we have the following.

yi = log ti = β0 + x′iβ + εi εi|η
iid∼ ExtremeValue

(
0, η−1

)
(2)

The AFT analysis proceeds on the logarithm scale: AFT BART and NFT BART follow the same
paradigm as we shall see (further details of the AFT model analysis are omitted for brevity; see
Kalbfleisch and Prentice [2002] or Klein and Moeschberger [2003] for more information).

2.4 AFT BART

Although Bonato et al. [2011] proposed an AFT extension to BART, the framework created by
Henderson et al. [2020] for AFT BART has the added flexibility of a nonparametric random error
term; therefore, we restrict our attention to the latter work. AFT BART replaces the linear regression
in AFT with BART and the parametric distribution of random error as follows subject to the
constraint N−1

∑
i µi = 0 for identifiability.

yi = µ+ f(xi) + εi εi|(µi, σ2)
ind∼ N

(
µi, σ

2
)

(3)

f
prior∼ BART(a, b, k,H) σ2 prior∼ νλχ−2 (ν)
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Since some of the yi are unobserved due to censoring, we set the value µ = β̂0 from an AFT model
with no covariates (2). We defer the description of the prior for µi until Section 2.6; in particular, as
shown in (5), however, the details are not needed for the following points to be made. First, when
we have a censored time, then we resort to data augmentation by random draws from the truncated
distribution (N.B. left-/interval-censoring can be handled similarly, but we only show draws with
respect to right-censoring here merely for notational convenience).

yi

{
∼ N

(
µ+ µi + f(xi), σ

2
)

I(log ti,∞) if δ = 0, right-censoring

= log ti if δ = 1, an event time

AFT BART has nonparametric flexibility allowing it to adapt to the distribution of random er-
ror; however, the covariates are only capable of explaining a location-shift which is a result of the
restrictive AFT assumption.

2.5 NFT BART

Here we provide an extension, which we call NFT BART, that allows the covariates more nonpara-
metric freedom to explain the time-to-event distribution. From here on, we move fluidly between a
parameterization by the precision, τi, and by that of the variance, σ2

i = τ−1i , whenever it is more
convenient notationally since it is often arbitrary except where noted otherwise. The NFT BART
model subject to the constraints N−1

∑
i µi = 0 and N−1

∑
i σ

2
i = 1 for identifiability is as follows.

yi = µ+ f(xi) + εi εi|(µi, τi, s2)
ind∼ N

(
µi, σ

2
i s

2(xi)
)

(4)

f
prior∼ BART(a, b, k,H) s2

prior∼ HBART(ν, λ, H̃)

As with AFT BART, we set the value µ = β̂0 from an AFT model with no covariates (2). We
defer the description of the priors for µi and τi until Section 2.6; in particular, as shown in (6), but
those details are unnecessary to make the following points. First, for censored times, we use data
augmentation.

yi

{
∼ N

(
µ+ µi + f(xi), σ

2
i s

2(xi)
)

I(log ti,∞) if δ = 0, right-censoring

= log ti if δ = 1, an event time

NFT BART has more nonparametric flexibility, (µi, τi), than AFT BART, µi, allowing it to better
adapt to the distribution of the random error. Furthermore, with NFT BART, the covariates are
capable of explaining both a location-shift and a scale change alleviating the restriction of the AFT
assumption.

2.6 DPM, constrained DPM and LIO DPM

Both AFT BART and NFT BART are based on Dirichlet Process Mixtures (DPM). MCMC sampling
of the posterior for Bayesian nonparametric DPM, with both conjugate and non-conjugate priors,
can be performed efficiently [Neal, 2000, Ishwaran and James, 2002, Jain and Neal, 2007, Kalli et al.,
2011]. For AFT BART, the following DPM prior parameter default settings related to µi complete
the model description [Henderson et al., 2020] (where λ below is the same prior parameter as that
shown in (3)).

µi|G
prior∼ G G|α prior∼ DP (α, Fµ0

)

α
prior∼ Gamma (2, 0.1) µ0

prior∼
F

N(0, λ) (5)

The DPM shared atom clusters are random figments in the sense that they don’t represent
meaningful clusters of the data set (to detect data-derived DPM-like clusters for the purpose of
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interpretation, see Geng et al. [2019]). Rather, DPM clusters are employed here to nonparametrically
adapt to the unknown distribution of random error. If we index the MCMC draws by m = 1, . . . ,M ,
then the number of clusters for draw m is the random quantity Km that expands and contracts as
needed where K ∝ α logN (within context, we are suppressing the m subscript for convenience). The
number of subects sharing each atom is nj for j = 1, . . . ,K with corresponding weights wj = nj/N
that sum to one.

NFT BART follows the Low Information Omnibus (LIO) prior hierarchy for DPM [Shi et al.,
2019] to complete the model description for the prior parameter default settings related to (µi, τi)
as follows (N.B. LIO, like BART/HBART, was designed to have robust prior parameter default
settings that should work well for most data situations without needing manual intervention except
for perhaps altering the relative number of desired clusters via the α prior).

(µi, τi)|G
prior∼ G G|α prior∼ DP

(
α, F(µ0,τ0|k0,b0)

)
k0

prior∼ Gamma (1.5, 7.5) µ0|(τ0, k0)
prior∼
F

N
(
0, τ−10 k−10

)
(6)

b0
prior∼ Gamma (2, 1) τ0|b0

prior∼
F

Gamma (3, b0)

α
prior∼ Gamma (1, 0.1)

It is important to note that both AFT BART and NFT BART are over-parameterized such
that f and (f, s2), respectively, are not identifiable as the models have been described up to this
point. Therefore, we employ what is known as constrained DPM [Yang et al., 2010] to ensure
identifiability. First, consider µi for both AFT BART and NFT BART. We require the constraint
µ̄. = N−1

∑
i µi = 0. Constrained DPM is relatively simple to implement as follows. For NFT BART

(or AFT BART), simply draw (µi, τi)|G (or µi|G) without constraint defining µ̃i ≡ µi− µ̄. and then
re-defining µi = µ̃i . Similarly, for NFT BART, we require the constraint σ2 = N−1

∑
i σ

2
i = 1 so

we define τ̃i ≡ τiσ2 and then re-define τi = τ̃i .

2.7 Posterior inference with AFT BART and NFT BART

Our primary interest with respect to statistical inference here is the distribution of the time-to-event
in relation to the corresponding impact of the covariates. In particular, the survival function, S(t,x),
plays a central role with respect to inference. The nonparametric estimation of survival is arrived at
by aggregating over the DPM clusters [Escobar and West, 1995]. So, for AFT BART, we arrive at
the following calculation where Φ(.) is the standard Normal distribution function and m = 1, . . . ,M
indexes draws from the posterior.

Sm(t,x) = 1−
Km∑
j=1

wjmΦ

(
log t− µ− µ∗jm − fm(x)

σm

)
Similarly, for NFT BART we have the following calculation.

Sm(t,x) = 1−
Km∑
j=1

wjmΦ

(
log t− µ− µ∗jm − fm(x)

σ∗jmsm(x)

)
(7)

From the above, we calculate our survival function estimate by the mean with respect to the posterior
as Ŝ(t,x) = M−1

∑
m Sm(t,x) such that both AFT BART and NFT BART estimates are derived

accordingly. And, we can create 1 − 2π level credible intervals via the π and 1 − π quantiles of
the posterior, (Ŝπ(t,x), Ŝ1−π(t,x)), such that Ŝp(t,x) = Smp(t,x) where mp is the posterior draw
corresponding to the p = π, or p = 1− π, quantile respectively.
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However, notice that these are inferences for all covariates at once. Often, we are interested
in the marginal distribution of a subset of the covariates which are arrived at via an aggregation
technique similar to that employed for DPM inference; and, by serendipity, both operations are
readily accomplished simultaneously as we will see. For marginal effects, we employ Friedman’s
partial dependence function [Friedman, 2001] that is a common choice for nonparametric regression
and/or machine learning applications. We divide the covariates into a subset of interest, A, and
their complement, B, where all covariates are A∪B. The covariates of interest are fixed at settings
of interest, a single setting denoted xjA. The complement take on the observed values found in the
training data set, denoted xiB for subject i, with the corresponding setting for all covariates denoted
as (xjA,xiB). Therefore, we arrive at the marginal effect for setting xjA for NFT BART as follows
(inference for AFT BART is calculated analogously).

ŜA(t,xjA) = 1−M−1N−1
∑
m

N∑
i=1

Φ

(
log t− µ− µim − fm(xjA,xiB)

σimsm(xjA,xiB)

)
(8)

And, finally, credible intervals for the marginal effects are provided by the posterior quantiles as
shown above.

2.8 Model performance comparison and selection

A challenge in survival analysis is that we do not observe the outcome of each subject; therefore, we
are limited to considering the distribution of the outcome with respect to the covariates considered.
This limits the approaches avaliable to assess model performance and comparisons along with the
relative importance of the covariates. Here, we briefly review the approaches that are applicable to
AFT BART and NFT BART.

2.8.1 Harrell’s c-index

With respect to a validation data set, model performance can be assessed by the probability of con-
cordance between pairs of event times to their corresponding survival estimates. Such an approach
is what has come to be known as Harrell’s c-index [Harrell Jr. et al., 1984] which compares the
survival probability of all possible pairs of subjects (although, it does not have a Bayesian basis).
Let’s consider any two patients with the potential for right-censoring: (ti, δi) and (tj , δj) where i 6= j
with the minimum time for subject i, i.e., ti ≤ tj . Theoretically, there are no ties for event times;
however, in typical studies of cancer treatement, events are often recorded in days (rather than finer
increments) so ties do rarely occur. If two patients suffer an event at the same time, then they are
non-informative with respect to model concordance since the ordering of their survival probabilities
is not evident (these pairs indicated by aij = δiδiI(ti = tj)). In untied circumstances, when ti < tj
and δi = 0, then the pair is also non-informative. The limitation of non-informativeness is a restric-
tion that requires that this comparison be made with respect to a particular data set such as that
held out for validation.

For all other pairings, the comparison is informative: tied or untied. For tied, ti = tj where
δi = 1 and δj = 0, we denote concordance by ζij = I(S(ti,xi) < S(ti,xj)), the pair is indicated by

bij = δiI(ti = tj) and the total of such pairs: B =
∑N−1
i=1

∑N
j=i+1(1 − aij)(bij + bji). For untied,

ti < tj where δi = 1, we denote concordance as before, the pair is indicated by cij = δiI(ti < tj) and

the total of such pairs: C =
∑N−1
i=1

∑N
j=i+1(1− aij)(1− bij − bji)(cij + cji). So, Harrell’s c-index is

provided by the following.

(B + C)−1
N−1∑
i=1

N∑
j=i+1

(1− aij)(bijζij + bjiζji + (1− bij − bji)(cijζij + cjiζji))
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2.8.2 Model comparison with pseudo-Bayes factors

Model comparison and variable selection go hand-in-hand. Comparison between models is often
performed with Bayes factors (BF) [Kass and Raftery, 1995]. For example, suppose that we want to
compare model 2 (denoted by ω2) vs. model 1 (ω1) with respect to the data’s evidence. So, consider

the BF as a ratio of marginal likelihoods: ψ = [y|ω2]
[y|ω1]

where [y|ω] =
∫
θω

[y|ω, θω] [θω] dθω with θω
denoting the parameters for model ω (and [θ] is generic bracket notation [Gelfand and Smith, 1990]
denoting the distribution of θ, e.g., the prior for θ). A BF substantially larger than one would imply
that there is more evidentiary support in favor of model 2 found within the data as opposed to
model 1. However, for models with a nonparametric BART prior, the marginal distribution [y|ω] is
not computable.

A proposed alternative to the marginal likelihood is what is known as the pseudo-marginal likeli-

hood (PML) from the predictive distribution: [̃y|ω] =
∏
i [yi|y−i, ω] [Geisser and Eddy, 1979] where

the term [yi|y−i, ω] is called the conditional predictive ordinate (CPO). Furthermore, the CPO can be

approximated conveniently from the posterior samples by [yi|y−i, ω] =
{
M−1

∑
m [yi|θωm, ω]

−1
}−1

[Gelfand and Dey, 1994]. For the CPO calculation with NFT BART and right-censoring, we re-

place the term [yi|θωm, ω] with φ(zim)δi [1− Φ(zim)]
1−δi where zim = log ti−µ−µim−fm(xi)

σimsm(xi)
and φ(.)

is the standard Normal density function. Therefore, we can conduct model comparisons via the
so-called pseudo-Bayes factor (PBF) as the ratio of PML from each model analogously to the BF.
N.B. Jeffreys [1961] has suggested thresholds for BF inference which are applicable to PBF as well.

2.8.3 Variable selection with Thompson sampling

BART and variable selection were natural partners from the very beginning [Chipman et al., 2010].
And over time, ever more powerful variable selection techniques have been proposed: permutation-
based [Bleich et al., 2014]; decoupling, shrinkage and selection [Hahn and Carvalho, 2015, Sparapani
et al., 2020]; sparse Dirichlet priors [Linero, 2018]; and Thompson sampling [Liu and Ročková,
2021]. Here we give a brief introduction to Thompson sampling variable selection (TSVS) that we
will employ in our real data example. TSVS can be performed with, or without, the assistance of
sparse Dirichlet priors; however, their pairing together is likely to be more effective.

TSVS relies on Thompson sampling as the name implies (for a tutorial of Thompson sampling,
see Russo et al. [2018]). Briefly, Thompson sampling is a heuristic algorithm for decision problems
where actions are taken sequentially counter-balancing the optimization of current performance
based on what has been learned in favor of stochastically exploring the problem space to accumulate
new knowledge benefiting future performance. The algorithm addresses a broad range of problems
in a computationally efficient manner.

TSVS builds upon a multi-armed bandit foundation. The algorithm has a Bayesian flavor;
although, it is not entirely Bayesian. By randomly choosing arms/variables based on posterior
samples of their reward probabilities, TSVS is an amalgam of combinatorial bandits with spike-and-
slab variable selection. Bringing together Bayesian reinforcement learning with BART extends the
reach of variable selection to nonparametric models for large data sets with many predictors (big
P ), or many observations (big N). Unlike deterministic optimization methods for spike-and-slab
variable selection, the stochastic nature of TSVS makes it less prone to sub-optimal convergence
and, hence, more robust.

Here, we give a concise adaptation of TSVS for NFT BART with big P . TSVS requires a small
number of trees such that the BART/HBART prior is poised to select only those variables of the
greatest import; therefore, we set H + H̃ for a total that is small such as 10, 20 or 40 where smaller
numbers engender more sparsity. TSVS is an iterative process, as follows, where k = 1, . . . ,K are
the number of steps taken.

a. For j = 1, ..., P : draw θjk ∼ Beta (aj,k−1, bj,k−1).

b. Set Bk = {j : θjk > 0.5}: the subset of covariates selected at step k.
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c. Fit an NFT BART model with covariates xij where j ∈ Bk.

d. For j = 1, ..., P : do each sub-step.

(i) If j 6∈ Bk, then γjk = 0, else γjk = I(UjkM + VjkM > 0) where UjkM (VjkM ) are the
number of branch decision rules for variable xij at step k from f (s2) with draw M .

(ii) Update based on the reward: ajk = aj,k−1 + γjk and bjk = bj,k−1 + 1− γjk .

(iii) Calculate inclusion probabilities: πjk =
ajk

ajk+bjk
.

Variables are deemed to be important that have trajectories for πjk exceeding 0.5 by K.

3 Results

3.1 Simulated data sets of known progeny

Via a simulation study, we conducted a comparison between the AFT BART and NFT BART models.
Data sets were simulated from AFT BART and NFT BART while subsequently analyzed by both
models. The simulated training data sets were created with two sample sizes: 500 and 2000. For
training data sets of size 500 (2000), we simulated 200 (100) data set replicates. The out-of-sample
validation data set was simulated at a sample size of 500. Two cases were considered for censoring:

0% (no censoring) and 50%. For each data set, we simulated P = 20 covariates: x2j+1
iid∼ B(0.5)

and x2j
iid∼ U(0, 1) where j = 1, . . . , 10. We considered two data generation scenarios: homoskedasitc

AFT and heteroskedastic NFT. AFT data was generated by log t∼N(µ(x), exp(−4)) where µ(x) =
2+1.6x1+0.8x2−2.4x2x3, i.e., only three covariates have an impact on the outcome and the rest are
noise. NFT data was generated by log t∼N

(
µ(x), σ2(x)

)
where µ(x) = 2−1.5x1+0.5x2+2x2x3 and

σ(x) = exp(−2 + 1.6x4 + 0.8x5 − 2.4x5x6), i.e., only six covariates have an impact on the outcome
and the rest are noise.

Model comparisons were performed with the following metrics at a grid of times corresponding to
survival probabilities of 0.9, 0.7, 0.5, 0.3 and 0.1: root mean square error (RMSE), bias, 95% interval
coverage and 95% interval length. We define these metrics as follows. Suppose that j = 1, . . . , 5
indexes the known survival probability at a grid of time-points chosen such that S(tij ,xi) = Sj =
0.9 − 0.2(j − 1) for subject i in the validation data set. Now, we can calculate the bias for subject

i at survival Sj as bij = K−1
∑
k

[
Ŝk(tij ,xi)− Sj

]
where k = 1, . . . ,K indexes the simulated

data sets. Similarly, the RMSE is rij =
√
K−1

∑
k(Ŝk(tij ,xi)− Sj)2. We calculate 95% interval

coverage as cij = K−1
∑
k I
(
Ŝk,0.025(tij ,xi) < Sj < Ŝk,0.975(tij ,xi)

)
. And 95% interval length is

lij = K−1
∑
k

[
Ŝk,0.975(tij ,xi)− Ŝk,0.025(tij ,xi)

]
. All of these metrics are summarized via box-plots

for the 500 subjects in the validation data set.

3.1.1 Sample size of 2000

Here we restrict our attention to the larger sample size of 2000 (for 500, see below). Consider the
data generated from the AFT scenario In Figure 2, we summarized RMSE and their was a slight
advantage in favor of AFT BART as might be expected. In Figure 3, we summarized interval
coverage and there was a slight advantage in favor of AFT BART being closer to the 95% level. In
Figure 4, we summarized bias and there was a slight advantage in favor of AFT BART as might be
expected. In Figure 5, we summarized the 95% interval length and there was an advantage in favor
of AFT BART as might be expected.

Consider data generated from the NFT scenario for the larger sample size of 2000. In Figure 6,
we summarized RMSE and their was a considerable improvement in favor of NFT BART as we
anticipated. In Figure 7, we summarized interval coverage and there was a considerable advantage
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in favor of NFT BART being closer to the 95% level at virtually all survival settings. In Figure 8, we
summarized bias and there was a considerable advantage in favor of NFT BART as we anticipated.
In Figure 9, we summarized the 95% interval length and there was an advantage in favor of NFT
BART as we anticipated.

3.1.2 Sample size of 500

Here we restrict our attention to the smaller sample size of 500 Consider the data generated from
the AFT scenario. In Figure 10, we summarized RMSE and their was a slight advantage in favor of
AFT BART as might be expected. In Figure 11, we summarized interval coverage and there was a
slight advantage in favor of AFT BART being closer to the 95% level. In Figure 12, we summarized
bias and there was a slight advantage in favor of AFT BART as might be expected. In Figure 13,
we summarized the 95% interval length and there was an advantage in favor of AFT BART for 0%
censoring while NFT BART had an advantage for 50% censoring.

Consider data generated from the NFT scenario for the smaller sample size of 500. In Figure 14,
we summarized RMSE and their was a considerable improvement in favor of NFT BART as we
anticipated. In Figure 15, we summarized interval coverage and there was a considerable advantage
in favor of NFT BART being closer to the 95% level. In Figure 16, we summarized bias and there
was a considerable advantage in favor of NFT BART as we anticipated. In Figure 17, we summarized
the 95% interval length and there was an advantage in favor of NFT BART as we anticipated.

4 Discussion

An intent of this research was to address perceived short-comings in modern time-to-event method-
ology. For example, parametric survival analysis has been criticized by Bayesians and frequentists
alike. Therefore, we build upon a solid Bayesian nonparametric foundation of the DPM LIO prior hi-
erarchy. Furthermore, we avoid precarious restrictive assumptions such as linearity, proportionality
and/or AFT by employing heteroskedastic BART.

In this research, we have shown that NFT BART has advantages beyond that of other BART
time-to-event methodology in a number of areas; particularly, for data sets of increasingly larger
sample sizes. Furthermore, NFT BART can be seamlessly employed in the tasks of model comparison
and variable selection with modern Bayesian/pseudo-Bayesian techniques. While NFT BART has
distinct advantages, it is not immediately clear if NFT can easily be extended to advanced survival
analysis outcomes such as recurrent events [Sparapani et al., 2020] and/or competing risks [Sparapani
et al., 2020]. Nevertheless, NFT BART is a flexible Bayesian nonparametric time-to-event inference
methodology that has attractive properties.
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A Software Implementation

The software necessary to implement the methodology explored in this article is not trivial to
implement. For NFT BART, we created the nftbart R package that is freely available online hosted
on the Comprehensive R Archive Network (CRAN) [Sparapani and McCulloch, 2021]. The nftbart
package relied on several key computational methods some of which were explored in this article.
The next section demonstrates an example discussing missing data imputation and the marginal
effects methodology employed here. Further, the Gibbs conditionals necessary for NFT BART are
shown in the last section of the Appendix. Other computational methods employed include BART
[Chipman et al., 2010], HBART [Pratola et al., 2020], efficient BART/HBART posterior sampling
[Pratola, 2016], efficient DPM sampling [Neal, 2000], constrained DPM [Yang et al., 2010], DPM
LIO [Shi et al., 2019] and data augmentation for left-/right-censoring [Henderson et al., 2020]. For
AFT BART [Henderson et al., 2020], we relied on the AFTrees R package freely available online at
https://github.com/nchenderson/AFTrees.

A.1 Advanced lung cancer example

With the nftbart R package, we present a real data example of an advanced lung cancer study
[Loprinzi et al., 1994]. Two-hundred and twenty-eight patients with lung cancer were followed by
the North Central Cancer Treatment Group for a median of roughly one year. Several covariates
of interest were collected including age, sex, daily activity performance scores, diet and weight-
loss information. All of these variables were largely non-missing with the exception of the calories
consumed at meals for which missingness was 20.6%.

For this limited amount of missing data, we utilized record-level cold-decking imputation that is
biased towards the null. The name reflects its similarity to hot-decking [de Waal et al., 2011] except
that no attempt is made to locate a nearby/hot neighbor based on the outcome nor any other
covariate criteria (near/hot vs. further/cold distances like in the children’s game hide’n’seek), i.e.,
cold-decking is a simple random selection of a non-missing subject’s record to replace the missing
values with. For subject’s with multiple missing values, the joint relationships between covariates
are maintained by replacing all of the missing values from the non-missing subject randomly chosen.
This simple missing data imputation method is sufficient for data sets with relatively few missing
values; for more prevalent missingness we recommend the sequential BART algorithm [Xu et al.,
2016].

For this example, sex was determined to be the most important covariate by TSVS with 138 male
and 90 female participants. To demonstrate a common computation with nftbart, we will compare the
survival experience of males vs. females by their marginal effects with Friedman’s partial dependence
function [Friedman, 2001] as shown in (8). As we can see in Figure 1, females generally have longer
survival; however, for advanced lung cancer the prognosis is dire in the era of the collected data since
the survival probability declines precipitously for both sexes. This demonstration is included with
the nftbart package. You can install the nftbart R package and run this example as follows (use a
nearby CRAN mirror for best results installing; see http://cran.r-project.org/mirrors.html).

> options(repos=c(CRAN="http://cran.r-project.org"))

> install.packages("nftbart", dependencies=TRUE)

> ## system.file() shows you where lung.R is installed to see its contents

> system.file("demo/lung.R", package="nftbart")

> source(system.file("demo/lung.R", package="nftbart"))

> ## demo("lung", package="nftbart") ## via the demo() facility

B Derivations for NFT BART: Gibbs conditionals

In order to perform Markov chain Monte Carlo (MCMC) posterior sampling, we need to derive the
Gibbs conditionals. Derivations like these are fairly standard in the BART literature; what Tan and
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Roy have coined a term for: the “General BART” model [Tan and Roy, 2019].
First, we isolate the impact of f from the other parameters by ri ≡ yi − µ − µi = f(xi) +

s(xi)σiεi where ri|(f, s2, µi, τi)∼N
(
f(xi), s

2(xi)σ
2
i

)
. So, let ri ≡ yi − µ− µi be the outcome (with

w2
i = s2(xi)σ

2
i as in (1)), then draw f |(r, s2, µi, τi) from its Gibbs conditional. Next, we draw s

similarly: ui ≡ ri−f(xi)
σi

= s(xi)εi where ui|(f, s2, µi, τi)∼N
(
0, s2(xi)

)
. So, with ui ≡ ri−f(xi)

σi
as the

outcome, then draw s2|(u, f, µi, τi) as in (1). And, finally, we draw (µi, τi) with vi ≡ yi−µ−f(xi)
s(xi)

=

µi

s(xi)
+σiεi where vi|(f, s2, µi, τi)∼N

(
µi

s(xi)
, σ2

i

)
. Here, vi ≡ yi−µ−f(xi)

s(xi)
is the outcome and we draw

(µi, τi)|(v, f, s2, α) as in (6). However, notice that we are actually drawing θi = E [vi] = µi

s(xi)
rather

than µi. Therefore, we define µi ≡ s(xi)θi in the training cohort. And, since µi is random, we define
it by analogy µ∗j ≡ s(x)θ∗j in other calculations such as that shown in (7).

14



0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

weeks
t

S
(t,

 x
)

Mortality
Males
Females

Figure 1: Advanced lung cancer study example: males vs. females. Two-hundred and twenty-
eight patients with lung cancer were followed by the North Central Cancer Treatment Group for
a median of roughly one year: 138 male and 90 female participants. For this data set, statistical
inference was performed with NFT BART for the collected covariates including age, gender, daily
activity performance scores, diet and weight-loss information. The solid lines summarize the survival
marginal effect for males (blue) and females (red) where the dashed lines are 95% credible intervals.
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Figure 2: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. RMSE is on the vertical axis and survival settings are on the horizontal axis. This figure
consists of data generated from the AFT scenario. The left (right) column are the results for AFT
(NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 3: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. 95% interval coverage is on the vertical axis and survival settings are on the horizontal axis.
This figure consists of data generated from the AFT scenario. The left (right) column are the results
for AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 4: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. Bias is on the vertical axis and survival settings are on the horizontal axis. This figure consists
of data generated from the AFT scenario. The left (right) column are the results for AFT (NFT)
BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 5: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. 95% interval length is on the vertical axis and survival settings are on the horizontal axis.
This figure consists of data generated from the AFT scenario. The left (right) column are the results
for AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 6: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. RMSE is on the vertical axis and survival settings are on the horizontal axis. This figure
consists of data generated from the NFT scenario. The left (right) column are the results for AFT
(NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 7: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. 95% interval coverage is on the vertical axis and survival settings are on the horizontal axis.
This figure consists of data generated from the NFT scenario. The left (right) column are the results
for AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 8: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. Bias is on the vertical axis and survival settings are on the horizontal axis. This figure consists
of data generated from the NFT scenario. The left (right) column are the results for AFT (NFT)
BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 9: Results of a simulation study comparing AFT BART to NFT BART with sample size
2000. 95% interval length is on the vertical axis and survival settings are on the horizontal axis.
This figure consists of data generated from the NFT scenario. The left (right) column are the results
for AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 10: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. RMSE is on the vertical axis and survival settings are on the horizontal axis. This figure
consists of data generated from the AFT scenario. The left (right) column are the results for AFT
(NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 11: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. 95% interval coverage is on the vertical axis and survival settings are on the horizontal axis.
This figure consists of data generated from the AFT scenario. The left (right) column are the results
for AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 12: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. Bias is on the vertical axis and survival settings are on the horizontal axis. This figure consists
of data generated from the AFT scenario. The left (right) column are the results for AFT (NFT)
BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 13: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. 95% interval length is on the vertical axis and survival settings are on the horizontal axis. This
figure consists of data generated from the AFT scenario. The left (right) column are the results for
AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 14: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. RMSE is on the vertical axis and survival settings are on the horizontal axis. This figure
consists of data generated from the NFT scenario. The left (right) column are the results for AFT
(NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 15: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. 95% interval coverage is on the vertical axis and survival settings are on the horizontal axis.
This figure consists of data generated from the NFT scenario. The left (right) column are the results
for AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 16: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. Bias is on the vertical axis and survival settings are on the horizontal axis. This figure consists
of data generated from the NFT scenario. The left (right) column are the results for AFT (NFT)
BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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Figure 17: Results of a simulation study comparing AFT BART to NFT BART with sample size
500. 95% interval length is on the vertical axis and survival settings are on the horizontal axis. This
figure consists of data generated from the NFT scenario. The left (right) column are the results for
AFT (NFT) BART. The top (bottom) row are for data generated with 0% (50%) censoring.
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