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Introduction and Methods: Improving error estimates is crucial for inferring accurate structural 
information via distance measurements. Most methods of estimating errors tacitly assume that parameter 
space is Euclidean. In practice, this is not the case. It is straightforward to show that parameter space, even for 
a simple Lorentzian line, has negative curvature1.  The methods of Information Geometry facilitate precise, 
mathematically consistent error analysis.  This is especially important for challenging signals that may consist 
of multiple, poorly resolved features at low signal to noise ratio (SNR). As an example of a model system on 
which these ideas could be tested, Earle and Hock2 used Information Geometry allied with methods of 
Bayesian analysis, in particular the Nested Sampling Algorithm3, to assess the effects of varying SNR and 
unmodelled signal, e.g., a broad background, on parameter inference and error estimates for an 
inhomogeneously broadened Pake doublet spectrum. 
 

Results: The effects of parameter space curvature were most significant for cases of low SNR, cor-
responding to signal detection at the sensitivity limit.  Error estimates also change significantly in the presence 
of unmodelled signal, e.g., a broad, inhomogeneous background. The Fisher information4 was the most useful 
metric for summarizing correlations among fit parameters, particularly in the presence of unmodelled signals. 
Plots of the Fisher information landscape as the model parameters were varied allowed a clear visualization of 
the effects of unmodelled signals on the best-fit model parameters and parameter uncertainties. 
 

Implications:  When reporting parameter uncertainties, the most common procedure is to use the 
uncertainties returned by some non-linear, least-squares fitting routine without accounting for curvature 
corrections.  For systems under study near the sensitivity limit, it is imperative to account for curvature 
corrections in order to achieve reliable results. In the case studied here, the inhomogeneous broadening 
parameterizes the width of the distance distribution.  If the width of this distribution is under- or over-estimated, 
then incorrect inferences about the structure of conformers may be drawn with further implications for un-
raveling mechanistic details.  As an example of a situation where accurate widths for distance distributions play 
a crucial role, inhibitors often change distance distributions of ‘flaps’, or other nearby protein structures. The 
work highlighted here emphasizes that for systems with low SNR it is particularly important to carefully assess 
the contribution to error estimates arising from the curvature of the parameter space.  If the width of the 
distance distribution is inferred incorrectly, then promising drug candidates may be overlooked, or ineffective 
drugs may be chosen erroneously for clinical trial. 
 

Discussion: The model system studied here had an analytical expression for the homogeneous line 
shape, and the inhomogeneity could be modelled well by Gaussian convolution.  The concepts of Information 
Geometry and methods of Bayesian data analysis are generic, however, and can be applied whenever a 
computable model is available. Earle and coworkers have demonstrated proof of principle for the rotational 
diffusion problem, for example1.  These methods will also be useful for rigorous analysis of NARS spectra in 
order to achieve maximally unbiased parameter and error estimates.  Rigorous analysis of time-series, e.g., 
pulse spectra, are also amenable to the Information Geometric, Bayesian analysis approach discussed here.  
The particular implementation of the nested sampling algorithm developed for this work is also being extended 
to the case of simultaneous, multi-frequency spectral analysis. 
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