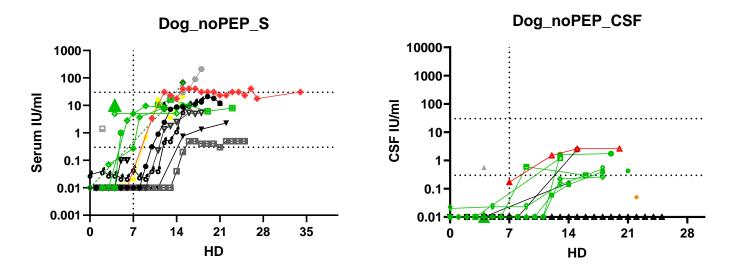
This protocol targets canine rabies in patients with normal immunity at any age, who did not receive rabies vaccine, immunoglobulins (RIG, IGIV), or immune suppression.

DO NOT administer rabies vaccine or immunoglobulin (RIG or IVIG)

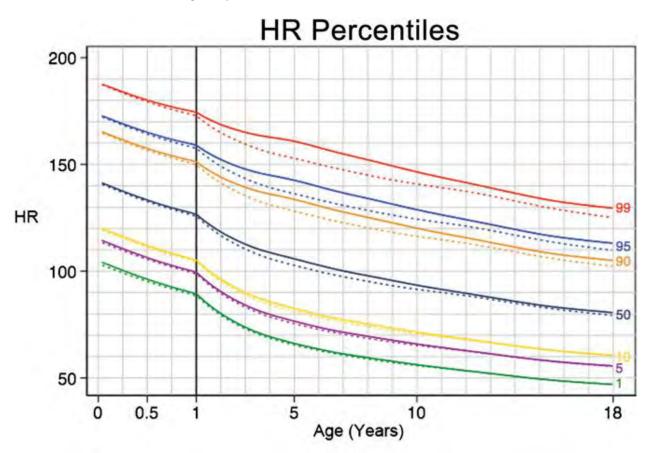
Hospital day (HD)	Risk	Therapy	Testing	Comments
Hospital day (HD) HD 0	Risk Cardiac arrest (dysautonomia) in 27% over the first 7 days	TherapyDO NOT administer rabies vaccine or immunoglobulin (RIG or IVIG)Minimize stimulation. Rabies causes extensive sensory and motor denervation over 10 days. The neurological exam is not useful and can 	TestingFor Diagnosis: Saliva for PCR Skin biopsy for PCR (or antigen) Serum for antibody (Corneal impressions NOT recommended)Results of testing can be delayed. It may be necessary to sedate or treat before diagnosis is confirmed. Sedation for 7 days is less dangerous than untreated rabies.EEG or BIS monitoring Rabies mimics include NMDAR autoimmune encephalitis, scorpion sting, elapid snake venom, Guillain Barre syndrome, and orofacial seizures.	CommentsPrediction is most accurate based on hospitalization for objective signs (not symptoms). First day =0Vaccination after onset of symptoms has never worked and may alter immune responses leading to adverse neurological outcomes.RIG or IVIG delays development of CSF antibodies, essential for survival.Sedation is tapered on HD 8 when vagal function ceases. During taper, consider addition of clonidine or dexmedetomidine rather than increases in benzodiazepines or ketamine.IMPORTANT: vagus nerve function and risk of arrest may persist in patients receiving favipiravir.We DO NOT recommend burst suppression. Ketamine and amantadine are given as neuroprotectants based on quinolinic acid in CSF (excitotoxin) and original use in the successful protocol. Ketamine is anti-nociceptive and avoids altering the pupillary response by opiates. Barbiturates are immunosuppressive and should be avoided. Propofol appears safe but may cause isoelectric EEG in rabies.Ventilate using normal parameters. Rabies patients maintain vascular responsiveness to changes in pCO2. Avoid hypocarbia. Please time tracheostomy between day 8 and 12 to avoid periods of known vasospasm and high risk of dysautonomia in the first 7 hospital days.Antipyretics have no effect in rabies. Ambient temperatures may have major effects on heart rate and blood pressure.

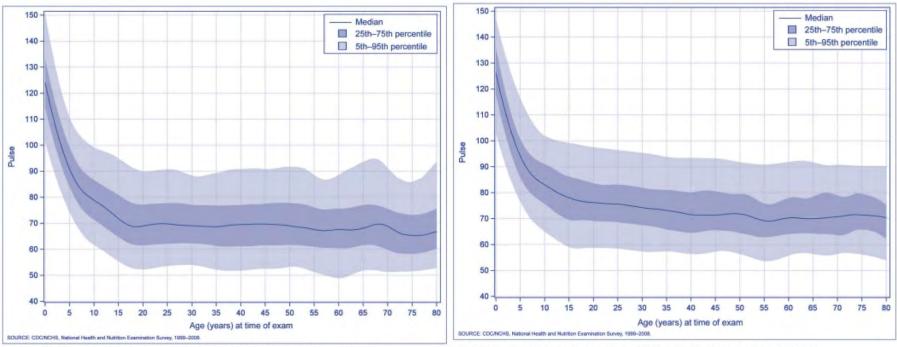
HD 0	Poor immune response in dog rabies (Figure 1)	Inquire IMMEDIATELY about the possibility of investigational or compassionate use of rabies antivirals, biologics, or gene therapies. These require time for approvals and logistics. If the patient has received BCG vaccination, strongly consider repeat intradermal (ID) BCG vaccination as soon as possible, preferably on the bitten limb. Ribavirin SHOULD NOT be used.	Monitoring: Saliva and serum/CSF are tested twice weekly.	CSF antibody is necessary for survival. Antibody must be detected by HD 7 (in the absence of experimental therapy) for survival. Chlorhexidine oral care interferes with PCR for rabies virus. Sample for virus and freeze saliva. CSF should be sent for cells and protein (criteria for futility) and lactate if available. Favipiravir (ebola oral dosing regimen) modifies the clinical course of rabies (less denervation) but its bioavailability in the brain is uncertain. Some countries have favipiravir available (China, Russia, Japan). There are theoretical reasons to administer BOTH IFN- beta and favipiravir together: interferons reduce the purine precursor pool to enhance inhibition by favipiravir.
HD 0-16	Increased intracranial pressure	Consider administration of interferon-beta. Anticipatory: Maintain head of bed elevated 30 degrees;		adjuvant in Oncology. Ribavrin is immunosuppressive. It is an inosine monophosphate dehydrogenase (IMPDH) inhibitor, similar to mycophenolate. Rabies is inhibited by type I interferons (IFN-alpha and IFN-beta). IFN-alpha can be neurotoxic, but IFN-beta is used in multiple sclerosis. We have anecdotal evidence for a reduction in salivary viral load after IFN- beta. We have not seen adverse effects. We have only used Avonex 30 mcg IM once weekly.


		Serum sodium > 140		
HD 0-16	Low risk of nosocomial transmission	Isolation		There has never been a laboratory-confirmed case of human to human rabies transmission (other than by corneal or solid organ transplantation) during medical care or autopsy. Blood and urine cannot transmit rabies. Patients can be removed from isolation when saliva is negative by PCR on 3 occasions in the presence of neutralizing antibody > 0.5 IU/ml by RFFIT, FAVN or other test for neutralizing antibodies
HD 4	Salt-wasting syndrome on HD 5	Begin fludrocortisone 100 mcg child or 200 mcg adult or other mineralocorticoid; use lactate or normal saline fluids Minimize vasopressors and diuretics; use fluids to maintain blood pressure <u>For hyponatremia,</u> enteric sodium (23%; 1 g in 5 ml water) is more efficacious than 3% IV hypertonic saline	Consider BNP or NT- pro-BNP monitoring Consider serum uric acid and urinary sodium Rabies serology (HD4)	A physiological dose of hydrocortisone (1X dosing) may be used if no pure mineralocorticoid: 15 mg/day divided Q8-12h in aduls; 8 mg/m2/day divided Q8h in children. HC risks immunosuppression at higher doses. Central venous pressure appears inaccurate in rabies. Monitoring inferior vena cava colapse by bedside ultrasound is preferred. Avoidance of hyponatremia appears to prevent vasospasm in human rabies. Rabies is associated with tetrahydrobiopterin (BH4) deficiency that causes adrenaline deficiency as well as nitric oxide (NO) deficiency. Vasopressor agonism is not opposed by NO dilation, leading to profound ileus.
HD 4	Neuroprotection during rabies	Hypothermia is NOT recommended Begin low-dose insulin infusion (0.5 U/h regular insulin in adults; 0.005 U/kg/h in	Urine dipsticks for ketones, daily	Hypothermia reduces the immune response This is NOT tight glucose control, rather prevention of catabolism. Reduce but maintain some insulin. Complications in rabies are associated with CSF markers of gluconeogenesis and ketogenesis. Promotion of anabolism (with adequate caloric intake) appears to improve survival curves by about one week. Insulin may minimize toxic alcohol metabolites

HD 4	Thrombosis of cerebral veins or sinuses	children) and gastric or jejunal feeds. Amantadine, Vitamin C (500 mg) and vitamin B complex are recommended. DVT prophylaxis		and lactic acidosis associated with benzodiazepine sedatives. Amantadine (alone with ketamine and midazolam) were part of the original successful protocol. There is biochemical evidence for high quinolinic acid in CSF during rabies (excitotoxicity). Ketamine, midazolam and amantadine are neuroprotectants. Vitamin C recycles BH2 to BH4. B vitamins may minimize demyelination.
HD 5-16	Antibody response causing heart block	Pacer at bedside	Daily ECG HD 5-16	Antibody response to rabies develops between HD 5 and HD 16. Response is very rapid but often is restricted to serum and not CSF. CSF antibody is necessary for survival. Antibody must be detected by HD 7 (in the absence of experimental therapy) for survival. Heart block is associated with the immune response to rabies and progresses over 2-3 days to 3 rd degree block. Pacing works well and blockade recovers over 1- 2 weeks. Consider caffeine base (adenosine inhibitor) if no pacer. Atropine no longer effective after 7 days. CAUTION: isoproterenol will dilate intracranial arteries
HD 5-16	Sepsis syndrome			The rabies immune response is associated with increased CRP, WBC with left shift and high platelets. Empirical use of antibiotics should be restricted to 3 days.
HD 6-8	Generalized intracranial vasospasm leading to coma	(fludrocortisone and Na > 145 meq/L)	Optional transcranial doppler ultrasound (needs baseline study)	Prophylaxis for vasospasm can also be considered using (a) sapropterin (5 mg/kg/day), vitamin C (500 mg) and 0.5 g/kg/day of arginine or citrulline, or (b) nimodipine at ½ to 1/3 the standard dose x 14 days. Vasospasm is associated with onset of coma and mild dysautonomia and pupillary changes. This is evident by transcranial doppler ultrasound and lasts about 1 day, then resolves. Vasospasm is followed by a gradual increase in intracranial pressure and changes in metabolism (see insulin- above).

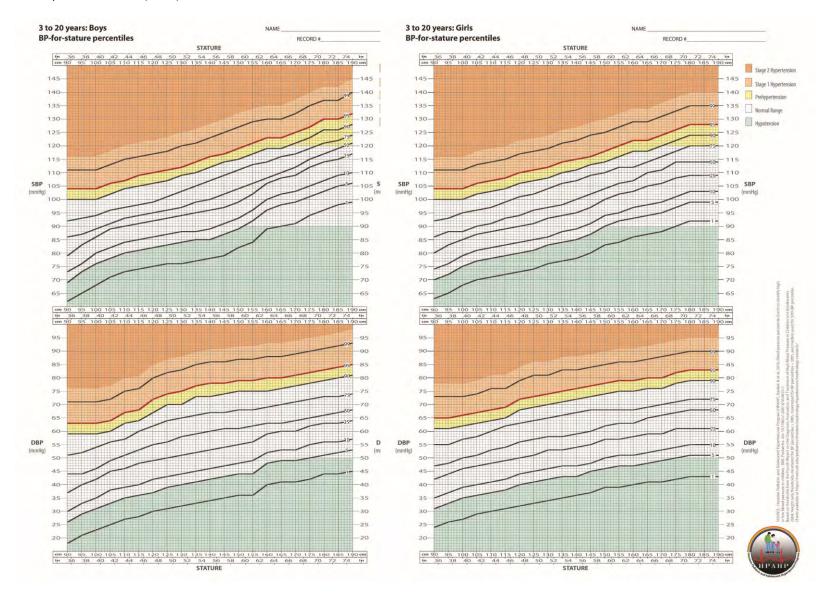
HD 7 HD 8	Survival is associated with detection of neutralizing antibody by HD 7 Risk of cardiac arrest abates (unless you use	Rapidly taper sedation	<u>Key:</u> Serum and CSF for rabies neutralizing antibody	TCDs are often normal in patients who appear brain- dead by exam. Lack of detection of neutralizing antibody in CSF by HD 7 indicates medical futility of further care unless you are using an antiviral or other biological. This lab test is essential to unnecessary prolongation of medical care. There is generally a "honeymoon" of medical stability between HD 8-12 that may be useful for tracheostomy and use of diuretics.
HD 10	favipiravir or other biological) Total paralysis by HD 10		Rabies serology (HD10)	Paralysis reverses (distal to proximal) with virus clearance and often includes orofacial dyskinesias (myokymia) during progression and recovery. These are not seizures.
HD 12-15	Severe generalized intracranial vasospasm; diabetes insipidus		Optional transcranial doppler ultrasound (needs baseline study)	In the absence of neutralizing antibody, the patient develops dysautonomia, drop in intracranial pressure and blood flow (high resistance), with flattening of EEG and pupillary dilation, followed in 24 hours by diabetes insipidus.
HD 15 -21	Medical futility vs recovery		Optional transcranial doppler ultrasound (needs baseline study) Criteria for futility (HD >10): diabetes insipidus, isoelectric EEG, CSF lactate > 4 mM, CSF protein > 250 mg/dL	 Following "type II" vasospasm, low resistance, chaotic blood flow then supervenes leading to cerebral edema and death. There is no recovery. Virology studies should ALWAYS be completed even if the patient dies. This allows retrospective interpretation of care decisions and the opportunity to detect new complications and improve future care. In the presence of CSF neutralizing antibody (>0.3 IU/ml in our experience), the patient regains pupillary activity, cough and diaphragmatic activity, and reinnervates distal to proximal motor reflexes, then function. Sensation and vestibular function lag. Myokimia re-appears. Dysautonomia occurs with cares and must be tolerated. There are a few days of profuse sialorrhea, bronchial and gastric secretions. There is a subtle SIADH. A few patients develop profound cachexia before recovering. The patients do not regulate temperature well and heart rate (and blood pressure) varies by body temperature; the patients require bundling.


Autopsy		There are many ICU complications that result in death during rabies care. The autopsy will identify new complications in 25% of patients. It may show virus clearance (evidenced by lack of virus cultivation and spotty rather than homogeneous detection of virus antigen and RNA in tissues). This finding of virus clearance is often of consolation to family members and the medical staff.
		There are needle biopsy alternatives to standard autopsy when the standard form is prohibited by cultural or religious norms. THERE HAS NEVER BEEN TRANSMISSION OF RABIES DURING AN AUTOPSY.


Figure 1. Immune response to dog rabies without immunomodulation (vaccine, RIG, immunocompromise) in serum and CSF in our series and the literature. In serum, 28% were in range by 7 days. In CSF, 7% detected by 7 days.

APPENDIX

Heart rate norms. There is always some tachycardia and fluctuation in rabies. We must tolerate some. By significant dysautonomia that we need to treat with sedation, we refer to heart rates and blood pressures above or below the 99th percentiles for age or height (e.g. P >150 or < 60; BPsys>120 or < 75 in children. For adults, we refer to heart rates and blood pressures above or below the 95th percentiles -- for lack of more extreme normative data (e.g. BPsys > 152 or < 100.



Blood pressure norms (adults)

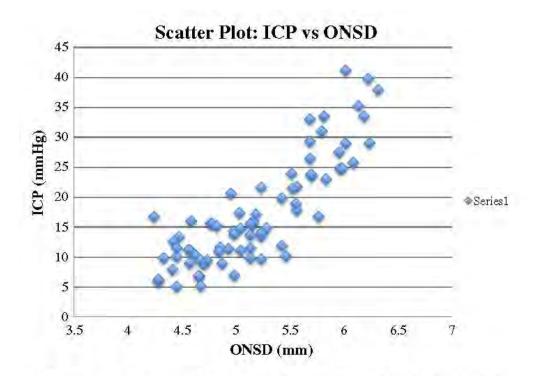


Figure 2. Resting pulse rates for females, by age: National Health and Nutrition Examination Survey, 1999-2008

Blood pressue norms (child)

Optic nerve sheath diameter norms (adult)

Fig. 1. Scatter Plot 1: ICP vs ONSD. Scatter plot of 75 measurements of ICP in the X axis against the ONSD value in the Y axis. Generally this scatter plot shows a linear relationship. However towards the extreme end of ICP value, the ONSD value started to reach a plateau phase. This is due to maximal dilatation of the optic nerve sheath despite elevation of ICP. Prior studies suggested that with increasing ICPs there might be a maximum nerve sheath diameter that would create an asymptotic relationship. A scatterplot of ICP as a function of ONSD demonstrates this relationship with the maximum ONSD in this population of 6.31 mm.

Milwaukee Protocol, version 7A (canine rabies, no rabies vaccine)

Optic nerve sheath diameter norms (child)

Table 6ONSD cut-off values inchildren >1 year old and childrenwith a closed AF	ICP threshold (in mmHg)	ONSD cut-off in children over 1 year old (in mm)	ONSD cut-off in children with a closed AF (in mm)
	≥20	5.75	5.81
	≥15	5.49	5.50
	≥10	5.20	5.20
	≥5	5.10	5.00

Transcranial doppler ultrasound norms (child): mean flow (time-averaged mean max) and resistive index, middle cerebral artery

were a set of the first of Manager and an and an

Age	n	Middle cerebral	Internal carotid	Anterior cerebral	Posterior cerebral artery		Basilar artery
		artery	artery	artery	P1*	P2†	
Systolic peak flow velocity:							
0-10 days	18	46 (10)	47 (9)	35 (8)		-	_
11-90 days	14	75 (15)	77 (19)	58 (15)		-	-
3-11-9 months	13	114 (20)	104 (12)	77 (15)	-		
1-2-9 years	9	124 (10)	118 (24)	81 (19)	67 (18)	69 (9)	71 (6)
3-5-9 years	18	147 (17)	144 (19)	104 (22)	84 (20)	81 (16)	88 (9)
6-9-9 years	20	143 (13)	140 (14)	100 (20)	82 (11)	75 (10)	85 (17
10-18 years	20	129 (17)	125 (18)	92 (19)	75 (16)	66 (10)	68 (11
Mean flow velocity‡:				The Sta			
0-10 days	18	24 (7)	25 (6)	19 (6)	-	-	-
11-90 days	14	42 (10)	43 (12)	33 (11)	100		-
3-11.9 months	13	74 (14)	67 (10)	50 (11)			
1-2.9 years	9	85 (10)	81 (8)	55 (13)	50 (17)	50 (12)	51 (6)
3-5.9 years	18	94 (10)	93 (9)	71 (15)	56 (13)	48 (11)	58 (6)
6-9.9 years	20	97 (9)	93 (9)	65 (13)	57 (9)	51 (9)	58 (9)
10-18 years	20	81 (11)	79 (12)	56 (14)	50 (10)	45 (9)	46 (8)
End diastolic peak flow vel	ocity:			100.00			
0-10 days	18	12 (7)	12 (6)	10 (6)	-	-	
11-90 days	14	24 (8)	24 (8)	19 (9)	-		-
3-11.9 months	13	46 (9)	40 (8)	33 (7)	10 1000		-
1-2.9 years	9	65 (11)	58 (5)	40 (11)	36 (13)	35 (7)	35 (6
3-5-9 years	18	65 (9)	66 (8)	48 (9)	40 (12)	35 (9)	41 (5
6-9.9 years	20	72 (9)	68 (10)	51 (10)	42 (7)	38 (7)	44 (8
10-18 years	20	60 (8)	59 (9)	46 (11)	39 (8)	33 (7)	36 (7

Table 3 Mean (SD) flow velocities in basal cerebral arteries (in cm/second) in a cross sectional study of healthy children (n = 112)

*Precommunicating part of posterior cerebral artery. *Postcommunicating part of posterior cerebral artery. *Mean flow velocity=time-mean of the maximal velocity envelope curve.

7. Appendices 115

Appendix IVe. Resistance index RI = (vs-vd)/vs-mean values

Age		MCA	ICA	SIPH	ACA	PCA 1	PCA 2	BAS
0-10	days	0.71	0.71*		0.64+	_		
11-90	days	0.63	0.71*	\leftrightarrow	0.60+	-	-	
3-11.9	months	0.58	0.67*		0.60+	-	—	-
1-2.9	years	0.47	0.52	0.57	0.55	0.55	0.52	0.55
3-5.9	years	0.55	0.60	0.63	0.57	0.58	0.59	0.60
6-9.9	years	0.50	0.55	0.55	0.57	0.55	0.52	0.55
10–16.9	years	0.53	0.58	0.58	0.58	0.55	0.57	0.57
Standard	l deviatio	ons:	0–10 da	ys	1.4	0.11		
			-11-90 da	ys	1	0.07-	-0.10	
			3-11.9 1	nonths	1	0.05-	-0.07	
			>1 year			0.04	-0.06	

Transcranial doppler ultrasound norms (adult)

TABLE I	the second second second	Reference Valu in Different Ag			elocitie	es in the Ba	asal C	erebral			
Blood Flow			Subjects								
Velocity (cm/sec)	п	All	20-4	D Years Old	41-60	Years Old	>60	Years Old			
ACA	313										
Peak		79 (37-121)	82	(40-124)	80	(36-124)	72	(52-102)			
Mean		53 (33-83)	56	(42-84)	53	(37-85)	44	(22-66)			
End-diastolic		35 (13-57)	38	(16-60)	35	(13-57)	28	(12-44)			
MCA	335										
Peak		110 (54-166)	120	(64-176)	109	(65-175)	92	(58-126)			
Mean		73 (33-133)	81	(41-121)	73	(35-111)	59	(37-81)			
End-diastolic		49 (21-77)	55	(29-81)	49	(23-75)	37	(21-53)			
PCA	336										
Peak		71 (39-103)	75	(43-107)	74	(40-108)	62	(38-86)			
Mean		49 (25-73)	52	(28-76)	51	(25-75)	40	(22-58)			
End-diastolic		33 (15-51)	36	(20-52)	34	(18-50)	26	(14-38)			

ACA = anterior cerebral artery, MCA = middle cerebral artery, PCA = posterior cerebral artery. Range of velocities (calculated as mean ± 2 SD) is given in parentheses.

TABLE 2	Normal Reference Values of Impedance Indexes in the Basal Cerebral Arteries in Different Age Groups								
Impedance	Subjects								
Index ^a	All	20-40 Years Old	41-60 Years Old	>60 Years Old					
ACA									
PI	0.87 ± 0.16	0.80 ± 0.14	0.85 ± 0.16	1.02 ± 0.18					
RI	0.56 ± 0.07	0.53 ± 0.05	0.56 ± 0.07	0.62 ± 0.06					
MCA									
PI	0.86 ± 0.15	0.83 ± 0.14	0.82 ± 0.13	0.96 ± 0.17					
RI	0.56 ± 0.06	0.54 ± 0.05	0.55 ± 0.05	0.60 ± 0.06					
PCA									
PI	0.81 ± 0.15	0.76 ± 0.12	0.79 ± 0.12	0.94 ± 0.16					
RI	0.54 ± 0.07	0.52 ± 0.06	0.53 ± 0.05	0.60 ± 0.09					

ACA = anterior cerebral artery, PI = pulsatility index, RI = resistivity index, MCA = middle cerebral artery, PCA = posterior cerebral artery.

^aMean ± 2 SD.