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OVERVIEW KEY EQUIPMENT EXAMPLES OF RESEARCH SUPPORTED
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3. Assess new metabolism-based strategies for cancer treatment the run _ _ Figure 3: Relationship between OCR/ECAR and 2-DG-induced ATP depletion in various PDACs. (A) Oxygen consumption (AO,) and proton
4  Promote increased collaboration in cancer research between basic * Measure mitochondrial consequences of cancer production (AH*) after normalization to 1 pg of protein. (B) 2D map of OCR and ECAR in PDAC cell lines. (C) Intracellular ATP levels in specified
scientists and clinical researchers cell tr%ﬁg&:ﬁg:entg@ - - cell Ilnes treated with 2-DG as mc_jlc_ated for 24 hours. (D) Relationship betweerT tiasal ECAR value and 2-DG induced ATP loss (normalized to
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Figure 1: Bioenergetic profiles of Seahorse XF96 extracellular flux analyzer _ _ _ _ _ o _ Normal -
inout @@ 0, OCR examining (A) mitochondrial and (B) glycolytic function. Flgure 4. Measurements of mltochondrlal (QCR) and glycolytic (ECAR_) function in OPM2 cells in FOXI\/I_l_ and FOXM1X6 OPM2
multiple myeloma cells. (A) Line diagram depicting the oxygen consumption rate (OCR) of OPM2 cells containing normal levels of FOXM1
g

Advantages compared with alternatives (control) or lacking FOXM1 (KO-1 and KO-2). Steady-state baseline conditions in the first 30 min were interrupted by addition of metabolic

@;H cep — « (Capable of running 96-well microplate in a high throughput format modulators (indicated in left panels by arrows pointing down that are labeled) to determine base and spare respiration capacity (right panels).
___ - Decreased sample size compared to Clark electrode (B) Line diagram of extracellular acidification rate (ECAR) under baseline conditions (left panel) challenged by small compounds that
@_} .ﬁ,) ? . Capable of simultaneously measuring both mitochondrial function permit the determination of glycolysis and glycolytic capacity (right panel). [Cheng Y et al. Oncogene. 2022, 41, 3899-3911].
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Example 3: Specific detection and fluorescence imaging of peroxynitrite production by macrophages
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* Metabolic and bioenergetic effects of natural compounds in cancer (B) Response of the probe to ONOO- in a chemical system. (top) Fluorescence spectra; (bottom) Kinetic curves (C,D) Application of the probe for
cells the detection and monitoring (C, top) and imaging (C, bottom) of ONOO- formation in activated RAW 264.7 macrophages. (D) LC-MS-based

profiling of the products generated from the probe in activated macrophages. [Grzelakowska A et al. Free Radic. Biol. Med. 2021, 169, 24-35].
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