

September 22, 2021

COGNITIVE APPRENTICESHIP: INTRO

Making expert thinking visible Experts often neglect to make their thinking visible to learners

- Teaching requires the externalization of processes typically carried out internally
- Each dimension has corresponding subdimensions that provide ways for educators to implement the CA framework into their everyday teaching practice
- Educators can use CA domains to design a learning environment that supports learners in their development of expertise

Collins, Brown & Newman's Cognitive Apprenticeship

Method

Ways to promote the development of expertise

Modeling Coaching Scaffolding Articulation Reflection Exploration

Sequencing

Keys to ordering learning activities
Global before Local Increasing Complexity Increasing Diversity

Sociology

Social characteristics of learning environments
Situated Learning Community of Practice Intrinsic Motivation Cooperation

Content

Types of knowledge required for expertise

Domain Knowledge Heuristic Strategies Control Strategies Learning Strategies

Collins, A., Brown, J. S., and Newman, S. E. (1989). "Cognitive Apprenticeship: Teaching the Craft of Reading, Writing and Mathematics! In L.B. Resnick (ed.) Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser. Hillsdale, NJ: Erlbaum.

COGNITIVE APPRENTICESHIP: HEALTH PROFESSIONS

- A small, but growing number of studies explore its use in the health professions (Lyons et al., 2017)
 - Primarily applied and studied in clinical learning environments
 - Strongest focus on Cognitive Apprenticeship (CA)-Methods domain
- <u>Purpose of our study:</u> identify aspects of the CA framework that pharmacy educators use in their didactic teaching practice
 - RQ 1. Which dimensions and sub-dimensions of CA are most commonly utilized within didactic learning environments?
 - RQ 2. Which **teaching activities and practices** are used within didactic learning environments that align with the dimensions and sub-dimensions of CA?
- Observational, retrospective design using pre-recorded videos

METHODOLOGY

Data Sources

- Videos of 17 educators from 3 schools of pharmacy (2 in United States & 1 in Australia)
- 58 class sessions from 23 courses across 3 years of pharmacy curricula
- Topics ranged from foundational (e.g. biostatistics) to advanced (e.g. pharmacotherapy)
- Data from sessions taught 2017-2019

Data Structure

• 58 videos: 37 pre-class & 21 in-class

Total: 1,553 minutes

• Range: ~1 minute (pre-class video) to 89 minutes (in-class video)

• Length: 26.8 ± 24.8 minutes (mean \pm st dev)

Data Analysis

- Deductive coding using CA Framework as codes
- Single researcher coded entire data set and 4 trained student researchers coded 70% of the data set (intercoder agreement was >80%
- Peer debriefing conducted with research team

RQ1 FINDINGS: MOST COMMONLY UTILIZED CA DIMENSIONS

CA Dimension	Pre-class (N=37 videos) 373 minutes Codes: n(%)	In-class (N=21 videos) 1,170 minutes Codes: n(%)	Total (N=58 videos) 1,553 minutes Codes: n(%)
Content	22(7.8%)	79(4.6%)	101(5.0%)
Methods	153(54.8%)	1,003(58.9%)	1,156(58.2%)
Sequencing	50(17.9%)	52(3.0%)	102(5.1%)
Sociology	54(19.3%)	573(33.5%)	627(31.5%)
Total number	279(100%)	1,707(100%)	1,986(100%)

- Instructors were observed primarily using the **Methods** (58.2%) and **Sociology** (31.5%) to explicate their thinking to learners
- Methods most frequent dimension observed in pre- and in-class
- Sociology more frequently observed in-class (33.5%) than pre-class (19.3%)
- Sequencing more frequently observed pre-class (17.9%) than in-class (3.0%)

RQ2 FINDINGS: TEACHING PRACTICES

- Numerous teaching patterns emerged from the data
- Some patterns demonstrated structured teaching activities that were designed and implemented in-class
- Other patterns were more spontaneous in delivery

Structured CA In-class patterns Example

Think, Pair, Share Domain Knowledge/Explanation → Reflection/Articulation → Collaboration → Faculty presented domain knowledge → Faculty asked an application question Community of Practice → Explanation → Learners talked in small groups → Learners shared with class → Faculty

expanded on learner responses **Concept Map Development** Learners tasked with creating a concept map of acute kidney rejection based

Reflection/Articulation & Situated Learning → Modeling → Collaboration → Coaching/Scaffolding → Community of upon a case study \rightarrow Faculty provided an example of a concept map \rightarrow

Practice → Coaching

Learners worked in groups → Faculty made whole class announcement about expectations for the concept map \rightarrow Learners shared concept maps with class

→ Faculty provided feedback during whole class discussion

Spontaneous CA pattern Example

Community of Practice → Explanation Faculty Responding to Learner Questions Learner asks faculty a content question \rightarrow Faculty responds to learner inquiry

IMPLICATIONS

- This study serves as a <u>first step</u> in determining how various teaching practices of pharmacy educators map to the CA framework
- Findings highlight the <u>use of active learning</u> teaching strategies within pharmacy curricula
- Results show <u>variability in strategies</u> used pre-class and in-class
- By including multiple institutions, educators, and class topics, this study produced a <u>foundational understanding</u> of teaching practices pharmacy instructors use to make expert thinking visible
- The findings support the development of a <u>standardized language for</u> <u>discussing teaching practices</u>

NEXT STEPS

- Examine strategies faculty use in sequential pre- and in-class sessions
- Examine additional areas of teaching, such as preparation, implementation, and assessment to gain insight into all facets of teaching in pharmacy
- Efforts should focus on why sequencing is less frequently observed than other CA dimensions
- Additional schools of pharmacy will be included to expand the sample and gain additional insight into the CA framework in pharmacy education

ACKNOWLEDGEMENTS

This research was supported by an American Association of Colleges of Pharmacy (AACP) Scholarship of Teaching and Learning (SOTL) grant.

Student Data Analyst

Kate Lowe, MPharm candidate – Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Vic, Australia

Erica Bell, MPharm candidate -- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Vic, Australia

Vorandi Kahandi, MPharm candidate – Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Vic, Australia

Devon Greene, PharmD candidate -- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA

REFERENCES

- Ahn, B. (2016). Applying the cognitive apprenticeship theory to examine graduate and postdoctoral researchers mentoring practices in undergraduate research settings. *International Journal of Engineering Education*, 32(4), 1691-1703.
- Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. *American Educator*, 15(3), 6-11.
- Lyons, K., McLaughlin, J. E., Khanova, J., & Roth, M. T. (2017). Cognitive Apprenticeship in health sciences education: A qualitative review. *Advances in Health Science Education*, 22, 723-739.

Additional Resources

- Collins A. Kapur M. (2014). Cognitive apprenticeship. In R. K. Sawyer (Ed.) *The Cambridge Handbook of the Learning Sciences.* (pp. 109-127). Cambridge University Press.
- Linnet, K. M., Andersen, L. B., & Balsley, T. (2012). Cognitive apprenticeship learning in pediatric clinical settings. *The Open Medical Education Journal*, *5*, 1-4.
- Stalmeijer, R. E., Domnas, D. H. J. M., Snellen-Balendong, H. A. M., van Santen-Hoeufft, M. Wolfhagen, I. H. A. P., & Scherpbier, A. J. J. A. (2013). Clinical teaching based on principles of cognitive apprenticeship: Views of experienced clinical teachers. *Academic Medicine*, 88, 861-865.
- Minshew, L. M., Malone, D. T., Cain, J. & McLaughlin, J. E. (under review, submitted July 2021). An international study of Cognitive Apprenticeship in didactic pharmacy education.