Doctoral Dissertation Defense Announcement

"Unraveling the complexity of the human peripheral blood B cell compartment through multiomic CITE-seq analyses"

Nathan J. Meinhardt
Candidate for Doctor of Philosophy
Department of Microbiology and Immunology
School of Graduate Studies
Medical College of Wisconsin

Committee in Charge:
Bonnie Dittel, PhD (Mentor)
Vera Tarakanova, PhD
Demin Wang, PhD
Aron Geurts, PhD
John Corbett, PhD

Date: Wednesday, May 8, 2024
Time: 1:00pm (CST)
Defense Location: VBRI Seminar Room
Zoom: link available upon request (nmeinhardt@mcw.edu)
Graduate Studies:

- Foundations in Biomedical Sciences I-IV
- Professional Development I-II
- Statistics for Basic Sciences
- Techniques in Molecular & Cell Biology
- Fundamentals of Neuroscience
- Graduate Neuroanatomy
- Writing a Scientific Paper
- Writing Individual Fellowship
- Integrated Microbiology & Immunology
- Ethics & Integrity in Science
- Research Ethics Discussion Series
- Neuroscience Journal Club
- Immunological Tolerance
- Microbiology & Immunology Seminar Series
- Reading and Research
- Doctoral Dissertation
Dissertation

“Unraveling the complexity of the human peripheral blood B cell compartment through multiomic CITE-seq analyses”

Classifying the heterogeneous human B cell compartment into discrete subsets based on surface phenotype alone remains a major challenge in the field of B cell biology. Our lab has discovered a novel mouse splenic IgM⁺IgDlow/- B cell subset (BDL) that induces Treg proliferation, making it a potentially significant therapeutic target for autoimmune diseases. But due to their rarity and lack of sufficient cell surface identifiers, a more definitive phenotype is required to track this B cell subset in humans.

The objective of these studies was to develop a pipeline to characterize human IgDlow/- B cells using peripheral blood (PB) B cells and multiomic cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis. Here, we adapted a standardized flow cytometry gating scheme (CD27 versus IgD and CD24 versus CD38) that captures all the major canonical human PB B cell subsets. This scheme allowed us to analyze FACS-purified CD19⁺IgM⁺IgDlow/- PB B cells using CITE-seq targeting those four protein markers and recreate biaxial plots similar to our flow cytometry analyses. Utilizing this strategy, we successfully identified naïve, transitional, and memory B cell subsets. Further trajectory analysis of naïve B cells revealed three distinct cell states, one of which included a newly matured subset.

It is increasingly understood that mRNA levels within a cell do not correlate well with cell surface protein expression. This represents a major drawback to using a transcriptome-only scRNA-seq approach because any ‘novel’ cell populations discovered based on the upregulation of surface protein transcripts may prove impossible to validate. The studies herein overcame that caveat by establishing a multiomic approach workflow to identify discrete human B cell subsets based on cell surface expression that can then be analyzed for transcriptional differences.
Education

Ph.D. in Biomedical Science
Medical College of Wisconsin – Department of Microbiology & Immunology, Milwaukee, WI

Master of Science in Biological Sciences
University of Wisconsin – Milwaukee, WI

Bachelor of Science in Biology
Saint Louis University, St. Louis, MO

Honors and Awards
Travel award ($2000) from Center for Immunology (C4I) MCW, Wisconsin for AAI conference, 2024
Travel award ($1000) from Graduate School of MCW for AAI conference, 2023

Presentations
Oral presentation (upcoming 5/2024), “Unraveling the complexity of the human peripheral blood B cell compartment through multiomic CITE-seq analyses”, American Association of Immunology (AAI) Conference, Chicago, IL, 2024

Oral presentation, “Phenotyping the complex human B cell compartment using CITE-seq analyses”, Autumn Immunology Conference, Chicago, Illinois, 2023

Oral presentation, “Phenotyping the complex human B cell compartment using CITE-seq analyses”, The Upper Midwest Chapter for Society for Neuroscience Conference, Green Bay, WI, 2023
Poster presentation, “Phenotyping the complex human B cell compartment using CITE-seq analyses”, Autumn Immunology Conference, Chicago, Illinois, 2023

Poster presentation, “Phenotyping the complex human B cell compartment using CITE-seq analyses”, American Association of Immunology (AAI) Conference, Washington, DC, 2023

Poster presentation, “Phenotyping the complex human B cell compartment using CITE-seq analyses”, ACTRIMS Young Scientist Summit, Scottsdale, AZ, 2023

Poster presentation, “Phenotyping the complex human B cell compartment using CITE-seq analyses”, Center for Immunology Symposium, Milwaukee, Wisconsin, 2022